
Microkernel Hypervisor for a Hybrid
ARM-FPGA Platform

1

Khoa D. Pham, Abhishek K. Jain, Jin Cui, Suhaib A. Fahmy, Douglas L. Maskell
School of Computer Engineering
Nanyang Technological University, Singapore
(in collaboration with TUM CREATE, Singapore)

Int. Conf. Application-specific Systems, Architectures and Processors (ASAP)
5-7 June 2013, Washington, USA

Motivation

•  Increased computing in vehicles through increased
number of compute nodes

•  Isolation essential for safety à complex network

•  Desire to consolidate compute on fewer nodes

•  New hybrid architectures provide ideal platform

2

ECU
 ECU
 ECU

Hybrid Platform

•  New hybrid FPGAs with ARM cores provide:

–  Processor-first view of device, independently functional

–  A core of comparable performance to existing SoCs

–  High throughput between core and fabric

•  Offers us the software-programming view but with
hardware performance

•  How can we take advantage of hardware isolation
while still offering a software interface?

•  This is still a key difficulty in design for these hybrid
architectures (design time)

3

4
Courtesy Xilinx

Proposed Approach

•  A hypervisor to virtualise access to all resources

–  Software, including bare metal applications, full OS,

realtime OS

–  Hardware:

• Static accelerators

• Virtual fabric for ease of programming

• Partially reconfigurable regions

•  Task management across resources, with low latency
communication and context switch

5

Proposed Approach

6

Hardware Support

•  Communication:

–  Zynq provides high performance AXI interface between

processor and fabric

•  Context Frame Buffer

–  Hardware tasks can be decomposed into multiple contexts

–  Storing contexts off-chip is more scalable

–  A buffer in Block RAMs makes access faster

•  Intermediate Fabric

–  A way of using the logic fabric at a higher layer of abstraction

–  Communicate through dual ported Block RAMs

7

Hardware Support

IF or DPR

Master Controller
(DMA Master)

CFB

AXI Slave AXI Master HP

12

DMA Controller in PS
attached on AXI Main Memory

CFB

CPU 3

Monitor Status

AXI Interconnection

3

DMA Control

Data

ConfigurationRegisters Context
Sequencer

Dual Port BRAMs

PCAP

8

Porting the Hypervisor

The CODEZERO hypervisor from B-Labs was modified:

•  Rewriting drivers for the Zynq ARM (PCAP, timers,

interrupt controller, etc.)

•  FPGA initialisation (clocks, pin mapping, interrupts)

•  Hardware task management and scheduling

•  DMA transfer support

•  All scheduling and management is managed by the
hypervisor

9

Context Sequencer

•  Manages hardware tasks

•  Loads context frames (parts of a task)

•  Memory mapped register interface in fabric

•  Control register to control how many frames and base

address for configuration

•  Status register indicates hardware task status like

completion

10

Context Sequencer

IDLE

CONTEXT_START

Start_bit=1

CONFIGURE

Start_bit=0

EXECUTE

CONTEXT_FINISHRESET IF/DPR

DONE

Counter=Num_Context

Counter != Num_Context

Task Start

Task finished

Context Start

Context Finish

11

Intermediate Fabric

•  Allows more coarse
grained use of FPGA
logic fabric

–  Simple compilation

–  Reduced

configuration time

–  Predictable timing

12

Intermediate Fabric

•  A simple fabric with DSP
block-based processing
elements

•  Configurable nearest
neighbour connections

•  Map two applications:

–  Matrix multiplication

–  FIR filter

•  Fabric not optimised, but
proof of concept

13

Hardware task management

•  Non-preemptive switching

–  Hypervisor mutex mechanism used to block access to

hardware

–  On completion of a context, lock is released to allow switch

–  No need for context save and restore

–  Minimal modifications to hypervisor required

•  Preemptive switching

–  Must be able to store and load contexts

–  Modifications to user thread control block and context switch

–  Can provide faster response time at cost of overhead

14

Case Study

•  Proof of concept with three containers:

–  Real-time OS container with 14 software tasks

–  A bare metal application that runs a hardware FIR filter task

–  A bare metal application that runs a hardware matrix

multiplication task

–  The hardware tasks use the same intermediate fabric

•  FIR filter uses single context frame

•  Matrix mult requires 3 context frames

15

Case Study

CPU

Microkernel based Hypervisor

uC/OS-II FIR application
(HW)

Matrix
multiplication

(HW)

Task 1
(SW)

Task 14
(SW)…

FPGA

16

Case Study

•  Context switch time:

•  Configuration and response times:

17

structure as a hardware task to the IF three times it is possible
to calculate three output elements simultaneously, as shown in
Fig. 7. Thus the complete task can finish in three such contexts.
In this example, the PE is configured as a DSP block with 3
inputs and a single output. The CBs are configured to map the
data-flow as shown in Fig. 7, requiring 3 “input” BRAMs and
3 “output” BRAMs. The latency of a context is 8 cycles.

A11

C11

B11

A12

B21

A13

B31

CB PE CB PE CB

PE CB PE CB PE

CB PE CB PE CB

PE CB PE CB PE

CB PE CB PE CB

BRAM

BRAM

BRAM

BRAM

BRAM

BRAM

BRAM

BRAM

BRAM

BRAM

BRAM BRAM BRAM BRAM BRAM

BRAM BRAM BRAM BRAM BRAM

Fig. 7: Matrix Multiplication and its mapping on IF.

C. Multiple software-hardware tasks on ZynQ

In this experiment, uC/OS-II runs in container 0, while the
FIR Filter and the matrix multiplication run in container 1 and
2, respectively, as shown in Fig. 5. We use the CODEZERO
microkernel scheduler to switch tasks between container 0, 1
and 2. Software tasks running in container 0 are allocated and
executed on the CPU. Hardware tasks running in containers 1
and 2 are allocated and run on the IF. A context of a hardware
task will first lock the IF, configure the fabric behaviour,
execute to completion and then unlock the fabric (that is it
implements non-preemptive context switching). Algorithm 1
shows the steps involved in non-preemptive context switching.
Table IV gives the hardware context switch overhead for
the CODEZERO hypervisor. The context switch times are
significantly less than those for Linux [43]. The configuration
times and the (best-worst) hardware application response times
are given in Table V. It should be noted that these times will
increase both with application complexity and IF size.

TABLE IV: Hardware context switch overhead for
CODEZERO.

Clock cycles (time) Non-preemptive Preemptive
Tlock (no contention) 214 (0.32µs)

NA
Tlock (with contention) 7738 (11.6µs)

TC0 switch 3264 (4.9µs) 3140 (4.7µs)

VI. CONCLUSIONS AND FUTURE WORK

We have presented a framework for hypervisor based
virtualization of both HW and SW tasks on hybrid computing

TABLE V: Hardware task configuration time and total
application response times for the case study.

Clock cycles Non-preemptive Preemptive
(time) FIR MM FIR MM
Tconf 2150 (3.2µs) 3144 (4.7µs) 3392(5.1µs) 5378 (8.1µs)

Thw resp (8.5µs-19.7µs) (9.9µs-20.3µs) (9.8µs) (12.8µs)

Algorithm 1: Pseudocode for non-interrupt implementa-
tion for non-preemptive HW context switching.

begin
context id = 0;
while (!poll Task status()) do

l4 mutex control(IF lock, L4 MUTEX LOCK);
gen CF (context id, ∗(cf base + context id ∗
sizeof(cf)), ...,);
set CB commands(...);
...;
set PE commands(...);
...;
set BRAM commands(...);
...;
set Input addr(∗src base);
set Output addr(∗dst base);
start IF ();
while (!poll Context status()) do
end
reset IF ();
context id + +;
l4 mutex control(IF lock, L4 MUTEX UNLOCK);

end
end

architectures, such as the Xilinx Zynq 7000. The framework
accommodates execution of SW tasks on the CPUs, as either
real-time (or non-real-time) bare-metal applications or appli-
cations under OS control. In addition, support has been added
to the hypervisor for the execution of HW tasks in the FPGA
fabric, again as either bare-metal HW applications or as HW-
SW partitioned applications. By facilitating the use of static
hardware accelerators, partially reconfigurable modules and
intermediate fabrics, a wide range of approaches to virtualiza-
tion, to satisfy varied performance and programming needs,
can be facilitated.

The case study demonstrates that the hypervisor functional-
ity works, and that different types of tasks (both HW and SW)
can be managed concurrently, with the hypervisor providing
the necessary isolation. We are now working on providing
full support for DPR, and enabling fast partial reconfiguration
through the use of a custom ICAP controller and DMA
bitstream transfer. Additionally, we are working on developing
a more fully featured intermediate fabric, to enable higher
performance and better resource use. We also plan to examine
alternative communications structures between SW, memory,
hypervisor and FPGA fabric, to better support virtualized HW
based computing. Finally, with these initiatives we hope to
reduce the hardware context switching overhead, particularly
of the intermediate fabric, with the aim of developing a
competitive preemptive hardware context switching approach.

ACKNOWLEDGEMENT

This work was partially supported by the Singapore Na-
tional Research Foundation under its Campus for Research Ex-
cellence And Technological Enterprise (CREATE) programme.

225

structure as a hardware task to the IF three times it is possible
to calculate three output elements simultaneously, as shown in
Fig. 7. Thus the complete task can finish in three such contexts.
In this example, the PE is configured as a DSP block with 3
inputs and a single output. The CBs are configured to map the
data-flow as shown in Fig. 7, requiring 3 “input” BRAMs and
3 “output” BRAMs. The latency of a context is 8 cycles.

A11

C11

B11

A12

B21

A13

B31

CB PE CB PE CB

PE CB PE CB PE

CB PE CB PE CB

PE CB PE CB PE

CB PE CB PE CB

BRAM

BRAM

BRAM

BRAM

BRAM

BRAM

BRAM

BRAM

BRAM

BRAM

BRAM BRAM BRAM BRAM BRAM

BRAM BRAM BRAM BRAM BRAM

Fig. 7: Matrix Multiplication and its mapping on IF.

C. Multiple software-hardware tasks on ZynQ

In this experiment, uC/OS-II runs in container 0, while the
FIR Filter and the matrix multiplication run in container 1 and
2, respectively, as shown in Fig. 5. We use the CODEZERO
microkernel scheduler to switch tasks between container 0, 1
and 2. Software tasks running in container 0 are allocated and
executed on the CPU. Hardware tasks running in containers 1
and 2 are allocated and run on the IF. A context of a hardware
task will first lock the IF, configure the fabric behaviour,
execute to completion and then unlock the fabric (that is it
implements non-preemptive context switching). Algorithm 1
shows the steps involved in non-preemptive context switching.
Table IV gives the hardware context switch overhead for
the CODEZERO hypervisor. The context switch times are
significantly less than those for Linux [43]. The configuration
times and the (best-worst) hardware application response times
are given in Table V. It should be noted that these times will
increase both with application complexity and IF size.

TABLE IV: Hardware context switch overhead for
CODEZERO.

Clock cycles (time) Non-preemptive Preemptive
Tlock (no contention) 214 (0.32µs)

NA
Tlock (with contention) 7738 (11.6µs)

TC0 switch 3264 (4.9µs) 3140 (4.7µs)

VI. CONCLUSIONS AND FUTURE WORK

We have presented a framework for hypervisor based
virtualization of both HW and SW tasks on hybrid computing

TABLE V: Hardware task configuration time and total
application response times for the case study.

Clock cycles Non-preemptive Preemptive
(time) FIR MM FIR MM
Tconf 2150 (3.2µs) 3144 (4.7µs) 3392(5.1µs) 5378 (8.1µs)

Thw resp (8.5µs-19.7µs) (9.9µs-20.3µs) (9.8µs) (12.8µs)

Algorithm 1: Pseudocode for non-interrupt implementa-
tion for non-preemptive HW context switching.

begin
context id = 0;
while (!poll Task status()) do

l4 mutex control(IF lock, L4 MUTEX LOCK);
gen CF (context id, ∗(cf base + context id ∗
sizeof(cf)), ...,);
set CB commands(...);
...;
set PE commands(...);
...;
set BRAM commands(...);
...;
set Input addr(∗src base);
set Output addr(∗dst base);
start IF ();
while (!poll Context status()) do
end
reset IF ();
context id + +;
l4 mutex control(IF lock, L4 MUTEX UNLOCK);

end
end

architectures, such as the Xilinx Zynq 7000. The framework
accommodates execution of SW tasks on the CPUs, as either
real-time (or non-real-time) bare-metal applications or appli-
cations under OS control. In addition, support has been added
to the hypervisor for the execution of HW tasks in the FPGA
fabric, again as either bare-metal HW applications or as HW-
SW partitioned applications. By facilitating the use of static
hardware accelerators, partially reconfigurable modules and
intermediate fabrics, a wide range of approaches to virtualiza-
tion, to satisfy varied performance and programming needs,
can be facilitated.

The case study demonstrates that the hypervisor functional-
ity works, and that different types of tasks (both HW and SW)
can be managed concurrently, with the hypervisor providing
the necessary isolation. We are now working on providing
full support for DPR, and enabling fast partial reconfiguration
through the use of a custom ICAP controller and DMA
bitstream transfer. Additionally, we are working on developing
a more fully featured intermediate fabric, to enable higher
performance and better resource use. We also plan to examine
alternative communications structures between SW, memory,
hypervisor and FPGA fabric, to better support virtualized HW
based computing. Finally, with these initiatives we hope to
reduce the hardware context switching overhead, particularly
of the intermediate fabric, with the aim of developing a
competitive preemptive hardware context switching approach.

ACKNOWLEDGEMENT

This work was partially supported by the Singapore Na-
tional Research Foundation under its Campus for Research Ex-
cellence And Technological Enterprise (CREATE) programme.

225

Future Work

•  Porting Linux to be para-virtualised on top of
CODEZERO

•  A detailed comparison with hardware managed by
Linux threads on the same hypervisor

•  Direct support for partial reconfiguration

•  Improved intermediate fabric

•  Optimisation of communication between hypervisor,

hardware, and software tasks

18

