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Background and Motivation

Major issues in mainstream adoption of FPGAs:

• Di�culty of accelerator design at low level

• Long compilation times (Place and route)

• Poor design productivity

One possible solution is to use FPGA Overlay:

• Accelerator design in a high level language

• Fast compilation and development cycles

• Cost: Area and performance overheads

• Little consideration for the underlying
FPGA architecture in existing overlays

• Possible inference of hard blocks by syn-
thesis tools for compute logic

• Does not exploit full cabability of the block

Exploit fully pipelined DSP Blocks:

• As programmable processing elements

• To develop high throughput overlays

Contributions

• An RTL implementation of a pipelined
overlay architecture for Xilinx FPGAs us-
ing the DSP48E1 primitive, achieving near
maximum frequency

• A mapping �ow that takes a high level de-
scription of a compute kernel, bypasses the
conventional FPGA compilation process,
and maps to the overlay

Observations

• Resource usage tracks our expectations

• Slice usage becomes a limiting factor

• A modest drop in frequency

• A frequency of 300 MHz for an 8×8 overlay
with a peak throughput of 56 GOPS

• Upto 53% savings in the number of tiles
required to map the benchmark set (Using
DSP48E1 aware mapping)

• A throughput of up to 21.6 GOPS for the
benchmarks using the proposed overlay

• Recon�guration time of 11.5 us and 28 us
for Overlay-I and Overlay-II, respectively,
compared to 31.6 ms for the entire PL us-
ing PCAP

Conclusions and Future Work

• Pipelined execution of compute kernels us-
ing DSP block based e�cient overlay

• An improvement of 11�52% in throughput
compared to Vivado HLS implementations

• Area reduction of the overlay further
through careful optimizations of the rout-
ing architecture and synchronization logic.

• Balancing DSP/CLB resource usage
across FUs and overlay routing

• Alternative interconnect architectures for
a low overhead routing network

E�cient Overlay Architecture

2D array of tiles:

• Programmable functional unit (FU) and
routing resources in each tile

• Functional units interconnected via an
island-style routing network

• Coarse grained switch boxes, connec-
tion boxes and routing channels as pro-
grammable routing resources

• Customizable channel width (CW), num-
ber of tracks in a routing channel
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DSP Block Based Functional Unit

• Fully pipelined DSP48E1 as a pro-
grammable processing element (PE)

• Achievable frequency near theoretical lim-
its for providing high throughput

• A pre-adder, a multiplier and an ALU in-
side the functional unit

• Can support upto 3 operations

• MUX based reordering logic to handle log-
ical inequivalence at the PE inputs

• SRL based variable-length shift registers
for balancing pipeline latencies
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Rapid, Vendor-Independent, Automated Mapping of Compute Kernels

• C to DFG Transformation: DFG generation from a C description of the compute kernel

• DSP48E1 Aware Mapping: Compute node merging based on the capability of the DSP block

• Placement and Routing of FU Netlist: Using VPR for mapping nodes in the graph to the DSP
blocks, and edges onto the coarse grained tracks

• Latency Balancing: Parsing VPR output �les and generating a routing resource graph to
determine the latency imbalance at each node and hence the required delays at the FU inputs
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Routing succeeded with a channel width factor of 2.
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Experimental Evaluation

• Two example overlays on Zynq device to execute the benchmark set: a 5×5 Overlay-I with
CW=2 operating at 370 MHz and a 7×7 Overlay-II with CW=4 operating at 300 MHz

• RTL generation of benchmarks using Vivado HLS for performance (throughput) comparison
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Benchmark Characteristics Routability Overlay Results HLS Implementation Results
Benchmark i/o op merged savings CW=2 CW=4 Latency MLI GOPS Latency Fmax GOPS Slices DSPs

nodes nodes nodes

chebyshev 1/1 7 5 28% 3×3 3×3 49 36 2.59 13 333 2.3 24 3
sg�lter 2/1 18 10 44% 4×4 4×4 54 31 6.66 11 278 5.0 40 8
mibench 3/1 13 6 53% 3×3 3×3 47 35 4.81 9 295 3.8 81 3
qspline 7/1 26 22 15% 5×5 5×5 76 64 9.62 21 244 6.3 126 14
poly1 2/1 9 6 33% 3×3 3×3 34 22 3.33 12 285 2.56 62 4
poly2 2/1 9 6 33% 3×3 3×3 29 7 3.33 11 295 2.65 45 4
poly3 6/1 11 7 36% 3×3 3×3 31 11 4.07 12 250 2.75 52 6
poly4 5/1 6 3 50% 2×2 2×2 24 12 2.22 7 312 1.87 36 3
atax 12/3 60 36 40% � 6×6 72 58 18.0 13 263 15.8 78 18
bicg 15/6 30 18 40% � 6×6 46 32 9.0 7 270 8.1 91 18
trmm 18/9 54 36 33% � 7×7 58 30 16.2 8 222 11.9 105 36
syrk 18/9 72 45 37% � 7×7 41 19 21.6 10 250 18 237 24


