
School of Computer Engineering

E�cientOverlayArchitectureBasedonDSPBlocks
Abhishek Kumar Jain, Suhaib A. Fahmy, Douglas L. Maskell
abhishek013@ntu.edu.sg, sfahmy@ntu.edu.sg, asdouglas@ntu.edu.sg

Background and Motivation

Major issues in mainstream adoption of FPGAs:

• Di�culty of accelerator design at low level

• Long compilation times (Place and route)

• Poor design productivity

One possible solution is to use FPGA Overlay:

• Accelerator design in a high level language

• Fast compilation and development cycles

• Cost: Area and performance overheads

• Little consideration for the underlying
FPGA architecture in existing overlays

• Possible inference of hard blocks by syn-
thesis tools for compute logic

• Does not exploit full cabability of the block

Exploit fully pipelined DSP Blocks:

• As programmable processing elements

• To develop high throughput overlays

Contributions

• An RTL implementation of a pipelined
overlay architecture for Xilinx FPGAs us-
ing the DSP48E1 primitive, achieving near
maximum frequency

• A mapping �ow that takes a high level de-
scription of a compute kernel, bypasses the
conventional FPGA compilation process,
and maps to the overlay

Observations

• Resource usage tracks our expectations

• Slice usage becomes a limiting factor

• A modest drop in frequency

• A frequency of 300 MHz for an 8×8 overlay
with a peak throughput of 56 GOPS

• Upto 53% savings in the number of tiles
required to map the benchmark set (Using
DSP48E1 aware mapping)

• A throughput of up to 21.6 GOPS for the
benchmarks using the proposed overlay

• Recon�guration time of 11.5 us and 28 us
for Overlay-I and Overlay-II, respectively,
compared to 31.6 ms for the entire PL us-
ing PCAP

Conclusions and Future Work

• Pipelined execution of compute kernels us-
ing DSP block based e�cient overlay

• An improvement of 11�52% in throughput
compared to Vivado HLS implementations

• Area reduction of the overlay further
through careful optimizations of the rout-
ing architecture and synchronization logic.

• Balancing DSP/CLB resource usage
across FUs and overlay routing

• Alternative interconnect architectures for
a low overhead routing network

E�cient Overlay Architecture

2D array of tiles:

• Programmable functional unit (FU) and
routing resources in each tile

• Functional units interconnected via an
island-style routing network

• Coarse grained switch boxes, connec-
tion boxes and routing channels as pro-
grammable routing resources

• Customizable channel width (CW), num-
ber of tracks in a routing channel

Border Border Border Border
B
or
de
r

B
or
de
r

B
o
rd
e
r

B
o
rd
er

SB

Tile Tile Tile Tile

Tile Tile Tile Tile

Tile Tile Tile Tile

Tile Tile Tile Tile

CB

SB CB

Functional Unit 

Vertical Channel

H
o

ri
zo

n
ta

l C
h

a
n

n
el

DSP Block Based Functional Unit

• Fully pipelined DSP48E1 as a pro-
grammable processing element (PE)

• Achievable frequency near theoretical lim-
its for providing high throughput

• A pre-adder, a multiplier and an ALU in-
side the functional unit

• Can support upto 3 operations

• MUX based reordering logic to handle log-
ical inequivalence at the PE inputs

• SRL based variable-length shift registers
for balancing pipeline latencies

MUL 

B Register

Pre-Adder

C

M

INMODE

OPMODE

B

A

D

C

1
0

0

ALUMODE

P

16

16

16

16

5

7

4 1

4

16

SRLs

SRLDELAY 24

MUXSEL 10

Immediate 16

DSP48E1

SRLs

SRLs

SRLs

X

Y

Z

Rapid, Vendor-Independent, Automated Mapping of Compute Kernels

• C to DFG Transformation: DFG generation from a C description of the compute kernel

• DSP48E1 Aware Mapping: Compute node merging based on the capability of the DSP block

• Placement and Routing of FU Netlist: Using VPR for mapping nodes in the graph to the DSP
blocks, and edges onto the coarse grained tracks

• Latency Balancing: Parsing VPR output �les and generating a routing resource graph to
determine the latency imbalance at each node and hence the required delays at the FU inputs

add_Imm_5_N8

O0_N9

I0_N1

mul_N2

mul_N3

mul_Imm_16_N4

mul_N5

mul_N6

sub_Imm_20_N7

add_Imm_5_N8

O0_N9

I0_N1

mul_N2

mul_N3

mul_Imm_16_N4

mul_N5

mul_N6

sub_Imm_20_N7

O0_N7

I0_N1

mul_N2

mul_N3

mul_Imm_16_N4

mul_sub_Imm_20_N5

mul_add_Imm_5_N6

Routing succeeded with a channel width factor of 2.



N4.fu

.fu

.fu

.fu

.fu

N5.fu

.fu

.fu

.fu

.fu

N3.fu

.fu

.fu

.fu

.fu

N6.fu

.fu

.fu

.fu

.fu

N2.fu

.fu

.fu

.fu

.fu

44 444 4 3

55 5 5

Experimental Evaluation

• Two example overlays on Zynq device to execute the benchmark set: a 5×5 Overlay-I with
CW=2 operating at 370 MHz and a 7×7 Overlay-II with CW=4 operating at 300 MHz

• RTL generation of benchmarks using Vivado HLS for performance (throughput) comparison

2 3 4 5 6 7 8

0

20

40

60

80

100

Overlay Size (N×N)

%
F
P
G
A
re
so
u
rc
es

LUTs
FFs
DSPs
Slices

2 3 4 5 6 7 8

0

20

40

60

80

100

Overlay Size (N×N)

%
F
P
G
A
re
so
u
rc
es

LUTs
FFs
DSPs
Slices

2 3 4 5 6 7 8

0

200

400

600

Overlay Size (N×N)

f m
a
x
in

M
H
z

0

50

100

150

200

P
ea
k
T
h
ro
u
g
h
p
u
t

fmax for CW=2
fmax for CW=4

Peak Throughput for CW=2
Peak Throughput for CW=4

Benchmark Characteristics Routability Overlay Results HLS Implementation Results
Benchmark i/o op merged savings CW=2 CW=4 Latency MLI GOPS Latency Fmax GOPS Slices DSPs

nodes nodes nodes

chebyshev 1/1 7 5 28% 3×3 3×3 49 36 2.59 13 333 2.3 24 3
sg�lter 2/1 18 10 44% 4×4 4×4 54 31 6.66 11 278 5.0 40 8
mibench 3/1 13 6 53% 3×3 3×3 47 35 4.81 9 295 3.8 81 3
qspline 7/1 26 22 15% 5×5 5×5 76 64 9.62 21 244 6.3 126 14
poly1 2/1 9 6 33% 3×3 3×3 34 22 3.33 12 285 2.56 62 4
poly2 2/1 9 6 33% 3×3 3×3 29 7 3.33 11 295 2.65 45 4
poly3 6/1 11 7 36% 3×3 3×3 31 11 4.07 12 250 2.75 52 6
poly4 5/1 6 3 50% 2×2 2×2 24 12 2.22 7 312 1.87 36 3
atax 12/3 60 36 40% � 6×6 72 58 18.0 13 263 15.8 78 18
bicg 15/6 30 18 40% � 6×6 46 32 9.0 7 270 8.1 91 18
trmm 18/9 54 36 33% � 7×7 58 30 16.2 8 222 11.9 105 36
syrk 18/9 72 45 37% � 7×7 41 19 21.6 10 250 18 237 24


