
NANYANG TECHNOLOGICAL UNIVERSITY

PLACEMENT AND ROUTING TOOL FOR COARSE GRAINED

FPGA OVERLAYS

by

MUTHUSWAMI LAKSHMINARAYANAN SUSHEEL

(U1222684A)

A Report Submitted in partial fulfillment of

the requirements for the degree of

Bachelor of Computer Engineering

Supervised by

Assoc. Prof. Douglas L. Maskell

March 2016

Contents

1 Introduction 2

1.1 Motivation . 2

1.2 Contribution . 3

1.3 Organization . 3

2 Background 5

2.1 Coarse Grained FPGA Overlays . 5

2.2 Placement and Routing . 9

3 Literature Survey 11

4 Placement of DFG nodes on Island-style Overlay 14

4.1 Island-style Overlay Architecture . 14

4.2 Automated Mapping Tool . 15

4.2.1 Data Flow Graph (DFG) Generation 15

4.2.2 DFG to VPR Compatible Netlist Conversion 17

4.2.3 Placement and Routing onto the Overlay 17

4.3 Detailed description of Placement process 19

4.3.1 Initial Placement of DFG onto the Overlay 20

4.3.2 Evaluation of Moves at a given Temperature 20

4.3.3 Detailed description of Each Move 22

5 Routing of DFG edges on Island-style Overlay 24

5.1 Generic Interconnect Architecture . 25

i

ii CONTENTS

5.1.1 Channels . 25

5.1.2 Connection Boxes . 26

5.1.3 Switch Boxes . 26

5.1.4 Interconnect architecture used for the overlay 26

5.2 Routing Algorithm . 27

5.2.1 Pathfinder Algorithm for Routing 28

5.2.1.1 Cost Function . 29

5.2.1.2 Description of Algorithm 30

6 Conclusions and Future Work 33

6.1 Conclusions . 33

6.2 Future work . 34

Appendix A Python Implementation of Placement Algorithm 35

Appendix B Python Implementation of Routing Algorithm 41

Bibliography 43

List of Figures

2.1 FPGA Overlay Architecture . 6

2.2 DySER Interfacing with Host Processor [17] 6

2.3 Mapping of Kernels on DySER Architecture. 7

2.4 Intermediate Fabric (IF) Interfacing with Host Processor [25] 8

2.5 Verilog Code for accumulating four 16-bit numbers. 9

2.6 Placement of Routing on Fine-grained architecture 10

2.7 Placement of Routing on Coarse-grained architecture 10

3.1 Intermediate Fabrics as Island-style Overlay [15]. 12

3.2 Nearest-neighbor connected Mesh of Functional units [16]. 13

4.3 Data Flow Graph (DFG) . 18

4.4 DFG mapped onto the Overlay after Placement and Routing. 18

4.5 Initial Placement Connections . 20

4.6 Placement Iterations at a Given Temperature 21

4.7 Placement Algorithm . 23

5.1 High level architecture showing interconnect resources 24

5.2 Connection Box . 25

5.3 Switch Box Topologies . 26

5.4 Switch Box Uni-Directional Routing 27

5.5 Routing Resource Graph . 28

5.6 Algorithm for Routing . 29

5.7 Directed Search Route Net . 31

iii

List of Tables

4.1 Compute Kernel Code Descriptions 16

4.2 PAR input File . 17

4.3 Evaluation of Moves at a Given Temperature 22

A.1 Python Function for Initial Placement 35

A.2 Python Functions developed for Placement process 36

A.3 Python Function for Try Swap . 37

A.4 Python code for Placement . 38

A.5 Python Class for Block . 39

A.6 Python Class for Net . 40

B.1 Python Functions for Directed Search 41

B.2 Python Functions for Routing . 42

iv

Abstract

With the advancements in technology, parallel processing architectures such as multi-

core processors, digital signal processors (DSPs), graphics processing units (GPUs),

massively parallel processor arrays (MPPAs) and field programmable gate array

(FPGA) based accelerators are gaining popularity for accelerated execution of com-

pute kernels. Research efforts have shown strength of FPGA accelerators in a wide

range of application domains where compute kernels can be implemented as high per-

formance fully parallel and pipelined designs. Despite these advantages, FPGAs have

not yet been ready for mainstream computing. One reason is that design productiv-

ity remains a major challenge, restricting the effective use of FPGA accelerators to

niche disciplines involving highly skilled hardware engineers. Coarse-grained FPGA

overlay architectures have been shown to be effective when paired with general pur-

pose processors, offering software-like programmability, fast compilation, application

portability and improved design productivity. These architectures enable general pur-

pose hardware accelerators, allowing hardware design at a higher level of abstraction.

This report presents a placement and routing (PAR) tool for coarse grained island-

style overlays based on the algorithms used in widely accepted VPR placement and

routing tool. We start with understanding the PAR algorithms in detail and develop

a python based PAR tool customized for coarse-grained island-style overlays.

Acknowledgment

First and foremost, I would like to thank Assoc Prof Dr Douglas Leslie Maskell for his

guidance, enthusiastic support and strong encouragement without which my project

would not be a success.

Moreover I would also like to thank Abhishek Kumar Jain for his professional

guidance, continuous support, effective suggestions, constructive criticism and timely

help. I am thankful for his technical advice, subject matter tips and continuous

encouragement during the course of the project. I am also thankful to him for carefully

guiding me, reading and commenting on countless revisions of this report.

I would also like to thank Hsieh, Mu-Hua for her contribution to the project and

working on it together in a team which has been greatly beneficial for the completion

of the work.

Finally, I am indebted to my family for their prayers and encouragement. I

thank them for their understanding and their efforts to support me in my Final

Year Project.

1

Chapter 1

Introduction

1.1 Motivation

Silicon technology will continue to provide an exponential increase in the availability

of raw transistors. Effectively translating this resource into application performance,

however, is an open challenge that conventional processor designs will not be able to

meet. On the other hand, Field Programmable Gate Array (FPGA) devices provide

a sea of high performance computing blocks for implementing kernels as high per-

formance fully parallel and pipelined designs. For more than a decade, researchers

have shown that FPGAs can accelerate a wide variety of software, in some cases by

several orders of magnitude compared to state-of-the-art general purpose processors.

The most fundamental difference is that general-purpose processors provide function-

ality to execute a list of instructions sequentially, whereas FPGA architectures can

implement compute kernels by mapping compute operations on configurable blocks.

While the performance benefits of FPGAs over processor based systems have been

well established [1, 2, 3, 4], such platforms have not seen wide use beyond specialist

application domains such as digital signal processing and communications. Poor

design productivity has been a key limiting factor, restricting their effective use to

experts in hardware design [5]. Even as High Level Synthesis (HLS) tools improve in

efficiency [6, 7], prohibitive compilation time (specifically place and route time) still

limits productivity and mainstream adoption of reconfigurable platforms.

2

1.2. CONTRIBUTION 3

Despite numerous efforts in reducing reconfiguration times and improving CAD

tool support for dynamic reconfiguration of FPGA fabric [8, 9, 10, 11, 12], It still

prevents designers from using FPGA as a rapidly reconfigurable hardware accelerator.

Thus, the requirement to rapidly change the hardware fabric, that is to perform

a hardware context switch, has led to the development of coarse grained overlay

architectures which allow for fast compilation and software like programmability.

Coarse-grained FPGA overlay architectures [13, 14, 15, 16, 17, 18, 19, 20, 21]

have been shown to be effective when paired with general purpose processors, of-

fering software-like programmability, fast compilation, application portability and

improved design productivity. These architectures enable general purpose hardware

accelerators, allowing hardware design at a higher level of abstraction. In our work,

we aim to develop a placement and routing (PAR) tool for coarse grained island-style

overlays.

1.2 Contribution

We start with understanding the algorithms used in widely accepted VPR placement

and routing tool and develop a python based PAR tool customized for coarse-grained

overlays. APIs from Python graph library have been used for implementing the tool.

We aim to adapt the algorithms to support different interconnect architectures as a

future work. The main contributions can be summarized as follows:

� Understanding of placement and routing algorithms used in VPR tool

� Python based implementation of the algorithms

1.3 Organization

The remainder of the report is organized as follows: Chapter 2 presents background

information on overlay architectures including placement and routing. Chapter 3

studies current state of the art overlays and techniques for placement and routing.

Chapter 4 shows the steps involved in the placement of a data flow graph (DFG)

4 CHAPTER 1. INTRODUCTION

nodes on an island-style coarse grained overlay. Chapter 5 shows the steps involved

in the routing of a data flow graph (DFG) edges on the overlay. We conclude in

chapter 6 and discuss future work.

Chapter 2

Background

2.1 Coarse Grained FPGA Overlays

Overlay architectures consist of a regular arrangement of coarse grained routing and

compute resources. The key attraction of overlay architectures is software-like pro-

grammability through mapping from high level descriptions, application portability

across devices, design reuse, fast compilation by avoiding the complex FPGA imple-

mentation flow, and hence, improved design productivity. Another main advantage is

rapid reconfiguration since the overlay architectures have smaller configuration data

size due to the coarse granularity. Accelerators can be described at a higher level of

abstraction and compiling it for overlays is several orders of magnitude faster than for

the fine grained FPGAs. Researchers have proposed fine [22], [23] and coarse grained

[13], [14], [15], [16], [20], [24] overlay architectures to abstract FPGA fabric resources.

As shown in Fig. 2.1, coarse grained FPGA overlay architecture is a two-dimensional

array of reconfigurable tiles, implemented on top of a commercial FPGA device.

Coarse grained tiles contains programmable processing elements (PEs) interconnected

using programmable interconnect (PI) and the functions of the PE and the PI are

controlled by configuration data. The overlay overcomes the need for a full cycle

through the vendor implementation tools, instead presenting a much simpler problem

of placing arithmetic operations on an array of processing elements and routing data

via an interconnect network.

5

6 CHAPTER 2. BACKGROUND

Overlay

FPGA fabric

Coarse Grained Logic Blocks (DSPs)

Coarse Grained Array of Tiles

Figure 2.1: FPGA Overlay Architecture

Researchers have shown the effective use of coarse grained overlay architectures

by pairing them with host processors as a coprocessor [21, 25] or as a part of the

processor’s pipeline [26]. Fig. 2.2 shows the integration of DySER [26, 27] overlay

into the pipeline of a processor.

Figure 2.2: DySER Interfacing with Host Processor [17]

2.1. COARSE GRAINED FPGA OVERLAYS 7

In DySER overlay, the functional unit (FU) provides resources for the mathemati-

cal and logical operations, and synchronization logic. It receives its input values from

the four neighboring switches and outputs its result to the switch in the south-east

direction. The switches allow datapaths to be dynamically specialized. They form

a on chip network that creates paths from inputs to the functional units, between

functional units, and from functional units to outputs. Fig. 2.3 shows the mapping

of kernels on DySER architecture.

Figure 2.3: Mapping of Kernels on DySER Architecture.

One example of pairing the overlay (Intermediate Fabric (IF) Overlay [15]) with

a high performance ARM processor via an Advanced eXtensible Interface (AXI) in-

terface in a commercial computing platform (the Xilinx Zynq[28]) is shown in Fig.

2.4. Zynq platform partition the hardware into a Processing system (PS), containing

one or more processors along with peripherals, bus and memory interfaces, and the

Programmable Logic (PL) where custom hardware including an overlay can be imple-

mented. The Xilinx-Zynq consists of a dual-core ARM Cortex A9 processor equipped

with a double-precision Floating Point Unit (FPU), commonly used peripherals and

reconfigurable fabric.

8 CHAPTER 2. BACKGROUND

DDR

ARM Processor

DDR
Controller

Hard DMA

HP PortGP Port

Central
Interconnect

M M S S S S S S

PS

PL

BRAM BRAM BRAM BRAM...

IF Region
Static

Region

AXI4

AXI-Lite

Figure 2.4: Intermediate Fabric (IF) Interfacing with Host Processor [25]

When paired as a coprocessor, run-time management, including overlay configu-

ration loading, data communication, can be carried out using an operating system

(Linux) [21] and also using a commercial hypervisor [29]. Firstly, user needs to iden-

tify a kernel, to be implemented on top of overlay. Then DFG can be extracted after

compiling this code using compiler front-end. After that a place and route tool can

be used to map the DFG on top of overlay. After generating configurations based on

the placement and routing, kernel code can be transformed in the code containing

overlay APIs.

An overlay provides a leaner mechanism for hardware task management at runtime

as there is no need to prepare distinct bitstreams in advance using vendor-specific

compilation (synthesis, map, place and route) tools. Instead, the behaviour of the

overlay can be modified using software defined overlay configurations. The possible

configuration space and configuration data size is much smaller than for direct FPGA

implementation of kernels because of the coarser granularity of the overlay. In the

next section, we provide an overview of placement and routing for fine-grained and

coarse-grained architectures.

2.2. PLACEMENT AND ROUTING 9

2.2 Placement and Routing

In this section, we will discuss about placement and routing for fine grained and coarse

grained architectures with the help of examples. In case of fine-grained architectures,

generally applications are described in hardware description language (HDL) such as

Verilog/VHDL. The process of generating configuration data from HDL description

can be divided into four major steps:

� Synthesis

� Technology Mapping

� Placement

� Routing

Synthesis step transforms the HDL to a hierarchical network of basic building

blocks. Given a set of library cells, technology mapping is generally defined as map-

ping the network to the library cells. In case of FPGAs, this library is composed of

k-LUTs, flip-flops, basic arithmetic circuits like adders, and advanced hard blocks.

Therefore, the technology mapping for FPGAs consists of transforming the Boolean

network into a set of nodes. Placement is the process of determining which logic

blocks should be placed where. In other words, which specific logic blocks on FPGA

should be used for a particular instance of a logic block of given network. Routing

is the process of finding routes so that all logic blocks used in placement stage are

properly connected.

To give an example, Fig. 2.5 shows HDL description of a compute kernel for

accumulating four 16-bit numbers. Fig. 2.6 shows the mapping of the description

onto a fine-grained FPGA architecture.

1 module kernel(a,b,c,d,out);

2 input[15:0] a,b,c,d;

3 output[15:0] out;

4
5 assign out = a + b + c + d;

6
7 endmodule

Figure 2.5: Verilog Code for accumulating four 16-bit numbers.

10 CHAPTER 2. BACKGROUND

Figure 2.6: Placement of Routing on Fine-grained architecture

Figure 2.7: Placement of Routing on Coarse-grained architecture

Fig. 2.7 shows the mapping on a coarse grained architecture where each track is

16-bit wide and each functional unit (FU) is a 16-bit arithmetic operator.

Chapter 3

Literature Survey

In the area of coarse grain overlay architectures, the compute routing logic can ei-

ther perform the same operation over the time, or can loop over a short list of in-

structions or can execute a fully fledged instruction stream. Based on this variety,

researchers have proposed both spatially configured and time multiplexed overlays

that are mapped to the fine grained fabrics of modern FPGAs. In spatially config-

ured overlays, the compute logic and routing of the overlay are unchanged while a

compute kernel is executing while in time multiplexed overlays, the compute logic

and routing of the overlay change on a cycle by cycle basis while a compute kernel is

executing [20, 30, 31]. In this report, we focus on the work done by other researchers

in the area of placement and routing on spatially configured overlays.

An island-style interconnect based overlay architecture (spatially configured), re-

ferred to as an intermediate fabric (IF) [15], [32] was proposed to support near-

instantaneous placement and routing (shown in Fig. 3.1). Standard VPR [33] algo-

rithms were used for placement and routing of compute kernels. It consists of 192

heterogeneous functional units comprising 64 multipliers, 64 subtracters, 63 adders,

one square root unit, and five delay elements with a 16-bit datapath and supported

the fully parallel, pipelined implementation of compute kernels.

Unlike a physical device, whose architecture must support many applications, IFs

have been specialized for particular domains or even individual applications. Such

specialization hides the complexity of fine-grained Commercial Off-the-shelf (COTS)

11

12 CHAPTER 3. LITERATURE SURVEY

Figure 3.1: Intermediate Fabrics as Island-style Overlay [15].

devices, thus enabling fast place and route (700x speedup over vendor tools) at the

cost of significant area (34% - 44%) and performance (7%) overhead when imple-

mented on an Altera Stratix III FPGA [32]. However, the IF only achieved an Fmax

of 125 MHz resulting in low throughput for the application benchmarks tested. Area

overhead comes into picture mainly because of virtual interconnect logic which com-

prised of multiplexers based routing. Based on the above mentioned work on IFs, an

end-to-end tool flow was presented for FPGA-accelerated scientific computing [34].

Another spatially configured overlay based on nearest neighbor interconnect (shown

in Fig. 3.2) was proposed in [16]. This overlay executes a given DFG by mapping the

graph nodes to the FUs and by configuring the routing logic to establish inter-FU

connections that reflect the graph edges [16]. Multiple instances of the DFGs are then

executed in a pipelined fashion on the overlay to achieve high performance. It con-

sisted of a 24×16 overlay with a nearest-neighbor-connected mesh of 214 routing cells

and 170 heterogeneous functional units (FU) comprising 51 multipliers, 103 adders

and 16 shift units. When implemented on an Altera Stratix IV FPGA, the overlay

consumed 75% of the total device ALMs, with the routing network consuming 90%

of the ALM resource used. An Fmax of 355 MHz and a peak throughput of 60 GOPS

was reported. A placer and router was developed by customizing VPlace [35] and

PathFinder [36], respectively.

13

Figure 3.2: Nearest-neighbor connected Mesh of Functional units [16].

DySER [17, 27] was proposed as a coarse grained overlay architecture for improv-

ing the performance of general purpose processors. It was originally designed as a het-

erogeneous array of 64 functional units interconnected with a circuit-switched mesh

network and implemented on ASIC. The DySER architecture was then improved

and prototyped, along with the OpenSPARC T1 RTL, on a Xilinx XC5VLX110T

FPGA [26]. However, due to excessive LUT consumption, it was only possible to fit

a 2x2 32-bit DySER, a 4x4 8-bit DySER or an 8x8 2-bit DySER on the FPGA. An

adapted version of a 6x6 16-bit DySER was implemented on a Xilinx Zynq-7020 [19].

The larger DySER array was achieved by using a DSP block as the compute logic,

thus better targeting the architecture to the FPGA.

An overlay architecture with the FU based on the DSP blocks found in Xilinx

FPGAs was recently proposed [18]. This overlay combines multiple operations in a

compute kernel and maps them to the DSP block, resulting in a significant reduction

in the number of processing nodes required. An Fmax of 370 MHz with throughputs

better than that achieved by directly implementing the benchmarks onto the fabric

using Xilinx Vivado HLS were reported. In the next chapters, we use this overlay

architecture as a base platform to discuss about the placement and routing of data

flow graphs.

Chapter 4

Placement of DFG nodes on

Island-style Overlay

In this chapter, we first describe an island-style coarse-grained overlay architecture

(published previously in [18]) and then describe the placement of input DFG on to

the overlay using placement algorithm used in VPR tool. We also describe our python

implementation of the placement algorithm.

4.1 Island-style Overlay Architecture

Border Border Border Border

B
or
de
r

B
or
de
r

B
or
d
er

B
o
rd
e
r

SB

Tile Tile Tile Tile

Tile Tile Tile Tile

Tile Tile Tile Tile

Tile Tile Tile Tile

(a) Overlay block diagram.

CB

SB

CB

SB

SB CBSB CB

FUCB

SB CB

FUCB

SB CB

FUCB

SB CB

FUCB

SB CB

SB

(b) Architecture of a 2×2 overlay.

CB

SB CB

Functional Unit

Vertical Channel

H
o

ri
zo

n
ta

l C
h

a
n

n
el

(c) Tile architecture.

Figure 4.1: Overlay architecture.

14

4.2. AUTOMATED MAPPING TOOL 15

The overlay instantiates the tiles and borders, where each tile instantiates virtual

routing resources and a functional unit (FU) and each border instantiates one switch

box (SB) and one connection box (CB), forming the boundary at the top and right

of the array, as shown in Fig. 4.1(a). This results in an overlay architecture which

contains I/O around the periphery of the overlay fabric. This I/O can be connected

to a FIFO or BRAM I/O data port. Fig. 4.1(b) shows the architecture of a 2×2

overlay having four tiles, east boundary (two east borders), north boundary (two

north borders) and a switch box at the north east corner. It shows that a 2×2 overlay

would consist of 4 FUs, 9 SBs and 8 CBs. Extrapolating, an N × N overlay would

incorporate N2 FUs, (N+1)2 SBs and N2+2∗N CBs. Each tile contains a functional

unit (FU) and virtual routing resources, as shown in more detail in Fig. 4.1(c).

4.2 Automated Mapping Tool

In this section, we describe an automated mapping tool (published previously in

[18]) which allows to map high level description of compute kernels onto the overlay.

The mapping process comprises DFG extraction from high level compute kernels,

mapping of the DFG nodes onto the DSP48E1 primitives, VPR compatible FU netlist

generation, the placement and routing of the FU netlist onto the overlay, latency

balancing and finally, the configuration generation.

4.2.1 Data Flow Graph (DFG) Generation

Starting with a C description of the compute kernel, the tool transforms this to a

DFG description, as shown in Table 4.1. Fig. 4.2(a) shows the nodes and edges

in an example DFG. In the next step, the DFG description is parsed and trans-

lated into a technology-mapped DFG. For example, we can use multiply-subtract

and multiply-add to collapse N5-N7 and N6-N8 in Fig. 4.2(a) into N5 and N6 of

Fig. 4.2(c), respectively. This results in the mapped DFG shown in Fig. 4.2(b).

16CHAPTER 4. PLACEMENT OF DFG NODES ON ISLAND-STYLE OVERLAY

Table 4.1: Compute Kernel Code Descriptions

(a) C description (b) DFG description

1 #include <math.h>

2 #define SIZE 1000

3
4 int kernel(int x){

5 int temp = 16*x;

6 return (x*(x*(temp*x-20)x+5));

7 }

8
9 int main(void){

10 int i;

11 int in[SIZE];

12 int out[SIZE];

13 for (i=0; i<SIZE; i++){

14 out[i] = kernel(in[i]);

15 }

16 return 0;

17 }

1 digraph kernel {

2 N8 [ntype="operation", label="add_Imm_5_N8"];

3 N9 [ntype="outvar", label="O0_N9"];

4 N1 [ntype="invar", label="I0_N1"];

5 N2 [ntype="operation", label="mul_N2"];

6 N3 [ntype="operation", label="mul_N3"];

7 N4 [ntype="operation", label="mul_Imm_16_N4"];

8 N5 [ntype="operation", label="mul_N5"];

9 N6 [ntype="operation", label="mul_N6"];

10 N7 [ntype="operation", label="sub_Imm_20_N7"];

11 N8 -> N2;

12 N1 -> N5;

13 N1 -> N6;

14 N1 -> N2;

15 N1 -> N3;

16 N1 -> N4;

17 N2 -> N9;

18 N3 -> N6;

19 N4 -> N5;

20 N5 -> N7;

21 N6 -> N8;

22 N7 -> N3;

23 }

add Imm 5 N8

O0 N9

I0 N1

mul N2

mul N3

mul Imm 16 N4

mul N5

mul N6

sub Imm 20 N7

(a) Input DFG

add Imm 5 N8

O0 N9

I0 N1

mul N2

mul N3

mul Imm 16 N4

mul N5

mul N6

sub Imm 20 N7

(b) Node-merging

O0 N7

I0 N1

mul N2

mul N3

mul Imm 16 N4

mul sub Imm 20 N5

mul add Imm 5 N6

(c) Mapped DFG

Figure 4.2: DSP48E1 aware mapping.

4.2. AUTOMATED MAPPING TOOL 17

4.2.2 DFG to VPR Compatible Netlist Conversion

We use a netlist generator which takes the mapped DFG and generates a VPR-

compatible netlist of FUs, as shown in Table 4.2. We now make use of algorithms

used in VPR tool to place nodes onto the overlay and route signals between them.

Rather than map logic functions to LUTs and single-bit wires to 1-bit channels, we

are mapping nodes in the graph to FUs, and 16-bit wires onto 16-bit channels.

Table 4.2: PAR input File

Netlist description

1 .input N1

2 pinlist: N1

3
4 .output out:N7

5 pinlist: N7

6
7 .fu N2

8 pinlist: N1 N6 open open N7 open open open open

9 subblock: N2_blk 0 1 open open 4 open open open open

10
11 .fu N3

12 pinlist: N1 N5 open open N3 open open open open

13 subblock: N3_blk 0 1 open open 4 open open open open

14
15 .fu N4

16 pinlist: N1 open open open N4 open open open open

17 subblock: N4_blk 0 open open open 4 open open open open

18
19 .fu N5

20 pinlist: N1 N4 open open N5 open open open open

21 subblock: N5_blk 0 1 open open 4 open open open open

22
23 .fu N6

24 pinlist: N1 N3 open open N6 open open open open

25 subblock: N6_blk 0 1 open open 4 open open open open

4.2.3 Placement and Routing onto the Overlay

The place and route algorithm maps DFG nodes onto homogeneous FUs and DFG

edges to the overlay’s routing pats to connect mapped FUs. At this level of granu-

larity, a netlist can have 100’s of nodes, making the problem much smaller than that

of fine-grained FPGA placement and routing which deals with netlists of millions of

nodes. Placement of DFG (shown in Fig. 4.3) onto a 5×5 overlay is shown in Fig. 4.4.

18CHAPTER 4. PLACEMENT OF DFG NODES ON ISLAND-STYLE OVERLAY

O0 N7

I0 N1

mul N2

mul N3

mul Imm 16 N4

mul sub Imm 20 N5

mul add Imm 5 N6

Figure 4.3: Data Flow Graph (DFG)

Routing succeeded with a channel width factor of 2.

N4.fu

.fu

.fu

.fu

.fu

N5.fu

.fu

.fu

.fu

.fu

N3.fu

.fu

.fu

.fu

.fu

N6.fu

.fu

.fu

.fu

.fu

N2.fu

.fu

.fu

.fu

.fu

44 444 4 3

55 5 5

Figure 4.4: DFG mapped onto the Overlay after Placement and Routing.

4.3. DETAILED DESCRIPTION OF PLACEMENT PROCESS 19

4.3 Detailed description of Placement process

Placement algorithm used in VPR tool uses simulated annealing which is a method for

solving optimization problems. It models the heating of a metal at high temperatures

and gradually lowering temperature thereby minimizing energy and reducing defects.

In the case of FPGA placement, a high temperature is first selected. In VPR, the

annealing schedule automatically adjusts to different cost functions and circuit sizes.

It is a heuristic-based search for minimizing the value of a cost function. The cost

function takes real values over a set of states and is shown in Eq. 4.1.

Cost =
Nnets∑
n=1

q(n)

[
bbx(n)

Cav,x(n)
+

bby(n)

Cav,x(n)

]
(4.1)

The q(n) factor has different values depending on the number of terminals a net

has. The value of q(n) becomes greater than one for a net with more than 3 terminals.

Cav,x(n) and Cav,y(n) are the average channel capacities (in tracks) in the x and y

directions over the bounding box of the given net. The cost function used here is linear

congestion cost function and focuses only on wire length and penalizes placements

which require more routing in areas of the overlay that have narrower channels. In

case of overlay, we assume all channels to have the same capacity (in other words

equal density of tracks in all channels), hence we use a constant value, 0.01, for

both Cav,x(n) and Cav,y(n). Hence the linear congestion cost function reduces to a

bounding box cost function. The total cost of a placement is the summation of the

costs of each net involved. Bounding box of a net is calculated by considering the

maximum range of its x and y co-ordinates. bbx and bby denote the horizontal and

vertical spans of the bounding box of a net. If (x1, y1) and (x2, y2) are the bounding

box coordinate of a net, then bbx and bby can be calculated using the equation shown

in Eq. 4.2 and Eq. 4.3.

bbx = x2 − x1 + 1 (4.2)

bby = y2 − y1 + 1 (4.3)

20CHAPTER 4. PLACEMENT OF DFG NODES ON ISLAND-STYLE OVERLAY

4.3.1 Initial Placement of DFG onto the Overlay

The algorithm starts with a random initial placement. The initial temperature is

defined thorough the execution of Nblocks moves, where Nblocks = number of I/O

nodes + number of compute nodes.

Figure 4.5: Initial Placement Connections

Initially, the blocks are placed randomly and the cost of the placement is calculated

by adding the cost of each net. For example, the nodes in the DFG (shown in Fig. 4.3)

are placed on a 3×3 overlay as shown in Fig. 4.5. N1 is the input node in the DFG

which is placed initially on the I/O block located at (0,2). N7 is the output node

in the DFG which is placed initially on the I/O block located at (2,0). The initial

placement shows 5 compute blocks, 2 I/O blocks and 6 nets. The cost of the initial

placement is calculated as 0.2432. We use the initial temperature as 0.4 and evaluate

a fixed number of moves at this temperature.

4.3.2 Evaluation of Moves at a given Temperature

At a given temperature, a fixed number of moves are made. The number of moves

(move lim) made is calculated according to the Eq. 4.4.

move lim = 10 ∗ (Nblocks)
1.33 (4.4)

4.3. DETAILED DESCRIPTION OF PLACEMENT PROCESS 21

A logic block is selected at random and moved to another random location. If

another logic block occupied that location then the two blocks are swapped. The cost

is calculated for this new configuration and compared to the previous cost. In most

cases, moves where the cost reduces are the ones which are accepted. However, at

high temperatures even moves where the cost increases are accepted. In this way we

do not get stuck at a local minima. At lower temperatures the percentage of moves

where the cost increases that get accepted is far lower. The placement obtained after

all the iterations are complete is the optimum placement given the parameters and

the value of the objective function obtained is minimum. Fig. 4.6 shows few moves

and their evaluation at a given temperature.

N6

N2

N5

N4

N3N1

N7

Net1

Net2

Net3

Net0

Net4

(0, 0)

Net5

N6

N2

N4

N5 N3N1

N7

Net1

Net2

Net3

Net0

Net4

Net5

N6

N2

N5

N4

N3N1

N7

Net1

Net3

Net0

Net4

Net5

Net2

(a) Initial Placement with a cost = 0.2432
(b) Moving N4 from (3,3) to (2,3), Net 0 and Net 5
affected, change in cost = - 0.01, Move accepted

N6

N2

N3

N4

N5N1

N7

Net1

Net3

Net0

Net4

Net5
Net2

(c) Moving N4 from (2,3) to (2,1), Net 0 and Net 5
affected, change in cost = - 0.01, Move accepted

(d) Swapping N5 and N3, Net 0, Net3, Net 4 and Net 5
affected, change in cost = 0, Move accepted

Figure 4.6: Placement Iterations at a Given Temperature

22CHAPTER 4. PLACEMENT OF DFG NODES ON ISLAND-STYLE OVERLAY

4.3.3 Detailed description of Each Move

Table 4.3 shows the manual trace of Moves.

Table 4.3: Evaluation of Moves at a Given Temperature

Cost Calculation

1 Iteration 0 :

2 Swap N4(3,3) <-> empty (2,3).

3 Nets to be updated: Net 0, Net 5

4 Net 0 bbCoor = [(1,1), (3,3)] Temp Cost =1.2206*(3 -1+1) /100

5 +1.2206*(3 -1+1) /100=0.073236

6 Delta=Temp Cost -N0Cost =0.073236 -0.073236=0

7 Net 5 bbCoor = [(2,2), (2,3)]

8 Temp Cost =1*(2 -2+1) /100 +1*(3 -2+1) /100=0.03

9 Delta=Temp Cost -N5Cost = 0.03 -0.04 = -0.01 DeltaTotal =0+(-0.01) =-0.01

10 DeltaTotal < 0 -> Accept

11
12 Iteration 1:

13 Swap N4 (2,3) <-> empty (2,1)

14 Nets to be updated: Net0 , Net5

15 Net0 bbCoor [(1,1), (3,2)]

16 TempCost =1.2206*(3 -1+1) /100 +1.2206*(2 -1+1) /100=0.06103

17 Delta=TempCost -N0Cost = 0.06103 -0.073236 = -0.012206

18 Net5 bbCoor [(2,1), (2,2)]

19 TempCost = 1*(2 -2+1) /100 +1*(2 -1+1) /100=0.03

20 Delta = TempCost -N5Cost = 0.03 -0.03=0

21 DeltaTotal = -0.012206

22 DeltaTotal <0 => Accept

23
24 Iteration 2:

25 Swap N5(2,2) <-> N3(3,2)

26 Nets to be updated: Net0 , Net3 , Net4 , Net5

27 For Net0 , Net3 , the cost will be the equivalent as bbCoor is same.

28
29 Net4 bbCoor [(1,2), (2,2)]

30 TempCost = 1*(2 -1+1) /100+1*(2 -2+1) /100=0.03

31 Delta=TempCost -N4Cost =0.03 -0.04= -0.01

32 Net5 bbCoor [(2,1), (3,2)]

33 TempCost =1*(3 -2+1) /100 +1*(2 -1+1) /100=0.04

34 Delta=TempCost -N5Cost =0.04 -0.03=0.01

35 DeltaTotal = -0.01+0.01 = 0

36 prob_fac = exp (-0/0.4) = 1 > 0.5 -> Accept

In the first iteration (Iteration 0), block N4 which is initially at (3,3) is moved to a

randomly selected location - (2,3), which is initially empty. N4 has two nets connected

to it - Net 0 and Net 5. Due to the movement of N4, the bounding box of these two

nets changes and thus their cost. The new costs of these two nets are calculated using

the new bounding box values. Change in cost for each net is calculated and then the

total change. If Delta (net change) is negative, the move is accepted. Otherwise, the

4.3. DETAILED DESCRIPTION OF PLACEMENT PROCESS 23

swap is assessed using the probability factor calculated as shown in Eq. 4.5. If this

value is greater than that of a random number between 0 and 1, then the move is

accepted. Otherwise it is rejected.

prob fac = e−delta/Temp (4.5)

In the next iteration (Iteration 1), N4 is again selected randomly and the destina-

tion randomly selected is (2,1), which is empty in this case too. The bounding boxes

for the nets are calculated again and the value of the delta is calculated. It is negative

again, so the move is accepted.

In iteration 2, N5 is selected randomly. The random destination is (3,2) which

happens to be occupied by N3. Thus, the nets to consider in this case are the ones

which are connected to either N5 and N3. Net0, Net3, Net 4 and Net 5 are the nets

whose bounding box value is updated. The change in cost of these nets is found to

be 0. The move is then accepted after assessing the swap.

The above iterations show us an example of the process of placement by using

placement algorithm shown in Fig. 4.7. At a given temperature, multiple iterations

of moves are executed. The temperature is then updated according to the annealing

schedule selected. Alpha is the scaling factor for the updated temperature. Once

the temperature is updated the iterative process is repeated again. The anneal is

terminated when T ≤ 0.005 ∗ Cost/Nnets.

Figure 4.7: Placement Algorithm

Chapter 5

Routing of DFG edges on

Island-style Overlay

The next step after placement of DFG nodes on coarse-grained overlay is routing of

DFG edges. In this chapter, we first explain the interconnect architecture and then

we describe the implementation of the algorithms for routing used in the VPR tool.

Figure 5.1: High level architecture showing interconnect resources

24

5.1. GENERIC INTERCONNECT ARCHITECTURE 25

5.1 Generic Interconnect Architecture

The DFG is mapped onto homogeneous functional units (in Fig. 5.1 shows as logic

block) and needs to be connected using the interconnect architecture. The main

elements of the interconnect architecture are channels, connection boxes and switch

boxes.

5.1.1 Channels

Channels in turn consist of tracks. Tracks travel in horizontal and vertical directions.

These are responsible for the connection of the pins of logic blocks which are mapped

onto the overlay. The width of the channels is represented by W which is equal to

the number of tracks present in the channel. Channel segments can generally have

variable length or they may have the size of one CLB span only. In our overlays, we

assume that the segments span one Logic block. In addition, channels can be uni-

directional or bi-directional. Uni-directional channels can connect structures only

in one direction and not the opposite direction. In our case, we use uni-directional

channels. Channels are connected to Logic block pins via connection boxes and to

other channels through switch boxes.

Figure 5.2: Connection Box

26 CHAPTER 5. ROUTING OF DFG EDGES ON ISLAND-STYLE OVERLAY

5.1.2 Connection Boxes

Connection boxes connect the channel wires with the I/O pins of the logic blocks.

The number of tracks in each channel to which each logic block input and output pin

can connect is called connection box flexibility, fc. The topology of a connection box

decides the pattern of switches that connects logic block I/O to the tracks as shown

in Fig. 5.2.

5.1.3 Switch Boxes

Switch boxes are responsible for connecting channels with one another. They allow

the wires of a channel to switch directions between horizontal and vertical directions.

The flexibility fs indicates for a segment that enters the switch block, the maximum

number of segments that it can connect to in the switch block. The topology of

the switch block defines the connections and influences the routing results of the

interconnect matrix. Fig. 5.3 shows the common topologies used for the switch box.

Figure 5.3: Switch Box Topologies

5.1.4 Interconnect architecture used for the overlay

Each logic block has 4 RECEIVER pins, 4 DRIVER pins and one global pin. In

our coarse-grained overlay implementation, we have channel width of 2 meaning two

tracks per channel. Also, the channels are unidirectional. Switch box flexibility fs is

equal to 3 and fc = 1. A pin of a logic block can thus connect to all the tracks of

a channel. In our case, switch box architecture allows a track to connect to 3 other

tracks from neighbouring channels. Coarse-grained overlays have greatly simplified

5.2. ROUTING ALGORITHM 27

the task of routing. The replacement of 16-bit wires with 1-bit wires has reduced the

number of nodes and resources needed from millions to a few hundreds. Thus we aim

to exploit this main advantage.

Figure 5.4: Switch Box Uni-Directional Routing

5.2 Routing Algorithm

Routing involves using the physical resources of the overlay to implement net con-

nections between logic blocks. Firstly, all the resources are mapped onto a routing

resource graph. Algorithms are then implemented on this graph to achieve routing.

There are general two stages in solving the routing problem: Global and Detailed

Routing. Global routing performs a coarse route with the objective of balancing con-

gestion across the channels while connecting the nets. Initially, each net connection

is routed according to lowest cost. However,as the iterations progress, the congestion

is balanced out.

Given a global routing, detailed Routing selects individual tracks for connecting

nets. All possible detailed routes are considered by means of searching on the routing

resource graph. A directed graph is constructed using resources to represent con-

nections betweens tracks, input pins, switch boxes and output pins. In other cases,

a single step detailed router performs the entire process of routing. In this case, a

28 CHAPTER 5. ROUTING OF DFG EDGES ON ISLAND-STYLE OVERLAY

Figure 5.5: Routing Resource Graph

routing resource graph is constructed. Each node on this graph is assigned a cost

function and search is performed on the graph to connect source to target.

The Algorithms used are based on Djikstra’s algorithm to find shortest path be-

tween two nodes. The algorithm implemented in VPR is the Pathfinder Negotiated

Congestion Algorithm. The Pathfinder algorithm is based on the Maze router which

involves an expanding wavefront technique to find the shortest path while avoiding

used resources. Pathfinder allows re-use of resources. However, the cost of over-used

resources is gradually increased in subsequent iterations making them unfavourable

for use. This combats Maze Router’s drawback of the performance being net ordering

dependent as a path found can block the routing of subsequent nets.

5.2.1 Pathfinder Algorithm for Routing

Before the routing process starts, some data structures need to be initialized. A

minimum spanning tree (MST) is created for each net prior to running the algorithm.

This MST contains the source and all the targets of the net. They are inserted in

order of minimum distance.

A binary heap is also required for the directed search algorithm. The neighbours

of a given node are inserted into the heap along with their cost. The head of the heap

always contains the minimum cost neighbour to visit next.

5.2. ROUTING ALGORITHM 29

Figure 5.6: Algorithm for Routing

5.2.1.1 Cost Function

The Pathfinder negotiated congestion algorithm used in VPR incorporates details

about current routing as well as history of congestion in previous iterations into

the cost function for routing resources. Each node in the routing resource graph is

assigned a cost. The cost function that is updated in each iteration when a portion

of a net’s routing is complete is shows in Eq. 5.1.

RRnode pres cost = 1 + (occ + 1 − capacity) ∗ pres fac (5.1)

30 CHAPTER 5. ROUTING OF DFG EDGES ON ISLAND-STYLE OVERLAY

where RRnode pres cost is the present cost of a node in the routing resource

graph, occ is the number of nets which utilize this node, capacity is the maximum

utilization allowed and pres fac is the present sharing penalty factor. pres fac is

multiplied with factor every iteration to increase the sharing penalty. The cost that

is updated for each iteration of routing all the nets is shown in Eq. 5.2 and Eq. 5.3

when occ ≥ capacity:

RRnode acc cost = RRnode acc cost + (occ − capacity) ∗ acc factor (5.2)

RRnode pres cost = 1 + (occ + 1 − capacity) ∗ pres fac (5.3)

Else, RRnode acc cost does not change and RRnode pres cost can be calculated

as shown in Eq. 5.4

RRnode pres cost = 1 + pres fac (5.4)

where RRnode acc cost is the accumulated cost of a resource, acc factor is the

historical congestion cost multiplier. If the occupancy of a node is greater than its

capacity then the accumulated cost is increased according to acc factor. If not, then

the accumulated cost is not updated as it is within the capacity of the resource.

5.2.1.2 Description of Algorithm

A loop of 50 iterations is then run where each iteration uses the directed search

algorithm to route each net. Since, overuse is allowed, some resources such as tracks

of channels might be used by more than one net. In such cases, the routing is not

feasible. The overused resources are assigned a higher cost for the next iteration and

the loop continues. After all the iterations complete, if a successful routing is not

found, then the routing as failed.

The directed search route algorithm attempts to route a net by iteratively con-

necting its source to its sinks, if there are multiple sinks. It uses a Maze Router

5.2. ROUTING ALGORITHM 31

Figure 5.7: Directed Search Route Net

(Djikstra Algorithm) to route a net. It iterates number of sinks times till all are

connected. Till the sink is reached in the head of the heap, the program loops. In

the first iteration, the source of the net is added into the heap, along with a cost

calculated based on the congestion cost and the expected cost to reach the target

node.In each iteration, the head of the heap becomes the current node. When a node

is added into the heap, its total cost is calculated using the expected cost to reach the

target node. If the new cost of the current node from the heap is less than the cost

which is stored in the node data structure previously, the cost and path details stored

in the node data structure are updated to the current node values and the neighbours

of the current node are added into the heap along with their cost. In case of multi-fan

32 CHAPTER 5. ROUTING OF DFG EDGES ON ISLAND-STYLE OVERLAY

out nets, the algorithm restarts with the entire first wire segment included as part of

the source. This makes the program more efficient as a new wavefront does not have

to be created from start. The routing resource nodes routed so far are added to the

heap structure after their total cost is calculated. For each sink iteration, code loops

till the head of the heap is the target sink. It then updates the net into the trace,

frees the heap and updates congestion cost for the next iteration.

The result of the routing algorithm after the process is finished is a complete trace

of the resources used for the connection of all logic blocks placed in the overlay. The

resources used to connect the Source to the Sink nodes for each net are listed one

by one along with their coordinates. This gives us the path to route each net and

achieves the objective of the algorithm.

Chapter 6

Conclusions and Future Work

This chapter concludes and summarizes this report. Furthermore, in this chapter we

discuss future research directions in detail.

6.1 Conclusions

This report discussed the placement and routing of high level description of applica-

tion (in data-flow graph format) on coarse-grained FPGA overlays.

Course-grained FPGA overlays offer many-fold advantages such as software-like

programmability through mapping from high level descriptions, portability, reuse and

fast compilation. Faster compilation and rapid reconfiguration due to smaller con-

figuration data size lead to significantly improved design productivity and efficiency.

It helps reduce a complex problem that must be solved with vendor implementation

tools into a simpler one of placing functions on an array of processing elements and

routing data.

The algorithms used in Versatile Placement and Routing (VPR) tool were first dis-

cussed. This work included developing an understanding of the placement and routing

algorithm. We developed an understanding of the underlying FPGA architecture as

well as the various stages in the design process where placement and routing plays an

important role. We then develop python implementation of placement and routing

algorithms. We plan to release it publicly for others to use in research community.

33

34 CHAPTER 6. CONCLUSIONS AND FUTURE WORK

6.2 Future work

The future work in this project mainly involves adapting the algorithms for different

interconnect architecture since the current implementation only supports island-style

architectures. As a next step, we aim to work on scalability analysis and runtime

optimization of our implemenation. Long term goal is to build a Python-based tool-

chain to implement novel placement and routing algorithms which would make it

easier to further extend our research to alternative architectures.

Appendix A

Python Implementation of

Placement Algorithm

Table A.1: Python Function for Initial Placement

1 #Places the blocks into randomly selected coordinates

2 def doInitialPlacement():

3 index = 0

4 while blocksPlaced() == -1: #check if all blocks have been placed already

5 flag = 0

6 block = block_list[index]

7 print "Block being placed is ", block.name

8 if block.getType() == "CLB":

9 #possible coordinates for a CLB

10 rand_x, rand_y = random.randrange(1,4,1), random.randrange(1,4,1)

11
12 else:

13 location_list_io = [[0,1], [0,2],[0,3],[4,1], [4,2],[4,3],[1,0],[2,0],[3,0],[1,4],[2,4],[3,4]]

14 #list of possible locations for io blocks

15 random_index = randrange(0,len(location_list_io))

16 rand_x, rand_y = location_list_io[random_index]

17
18 print "The random coordinates are ", rand_x,rand_y

19 # CLheck random coordinates in list of all coordinates

20 for block1 in block_list:

21 print block1.name, block1.getLocation(),

22
23 if block1.getLocation()[0] == rand_x and block1.getLocation()[1] == rand_y:

24 flag = 1

25
26 if flag == 1:

27 print "Location generated", rand_x,rand_y, "is already filled"

28 print "generate another random location"

29 continue #generate another random location

30 else: #place block

31 block.x = rand_x

32 block.y = rand_y

33 print block.name, " is placed at", block.x,block.y

34 print "##################"

35 index += 1

35

36APPENDIX A. PYTHON IMPLEMENTATION OF PLACEMENTALGORITHM

Table A.2: Python Functions developed for Placement process

1 #checks if all blocks have been placed.

2 def blocksPlaced():

3 for block in block_list:

4 if block.isPlaced() == -1:

5 return -1

6 return 1

7
8 #return block object on providing the name of the block

9 def getBlock(name):

10 for block in block_list: #block_list is the list of block objects generated at the start

11 if block.name == name: #if query block is in the block list, then return the block object, need to put exception handle

12 return block

13
14 #Return net object on providing the name of the net

15 def getNet(name):

16 for net in net_list: #net_list is the list of net objects generated at the start

17 if net.name == name: #if query net is in the net list, then return the net object, need to put exception handle

18 return net

19
20 def printBB():

21 print "Bouding box coordinates of all the nets are"

22 for net in net_list:

23 print net.name,": (",net.minx,",",net.miny,"),(",net.maxx,",",net.maxy,")"

24
25 #assess if a swap is accepted or note

26 def assessSwap(delta, t):

27 if delta <= 0:

28 return 1

29 else:

30 randno = random.random()

31 prob_fact = math.exp(-delta/t)

32 if prob_fact > randno:

33 return 1

34 else:

35 return -1

36
37 # Criteria for Simulated Annealing to Stop

38 def exitCrit(temp,cost):

39 if temp <0.005*cost/len(net_list) : #num of nets = len(net_list)

40 return 1

41 else:

42 return 0

43
44 #Calculates total cost of a given configuration

45 def costFunction():

46 total_cost = 0

47 for net in net_list:

48 print "\n[Bounding box for net",net.name,"is :",net.getBBCoord(),"]"

49 print "bbx,bby = ",net.bbx,",",net.bby

50 cost = net.netCost()

51 total_cost+=cost

52 return total_cost

37

Table A.3: Python Function for Try Swap

1 #this function is used to attempt to make a swap in the location of a randomly selected block

2 def try_swap(t): # Return 1 if the move is accepted, otherwise return 0 if rejected

3 global current_cost

4 to_block = None

5 from_block = random.choice(block_list)

6
7 to_nets = [] #find out nets affected by swap

8 from_nets = from_block.getNets()

9 from_nets_name = []

10 for net in from_nets:

11 from_nets_name.append(net.name)

12
13 print "From block:",from_block.name, "- nets:", from_nets_name

14 _from_x = from_block.x # initial from coordinates

15 _from_y = from_block.y

16
17 if from_block.type == "CLB": #initial to coordinates

18 _to_x, _to_y = random.randrange(1,4,1), random.randrange(1,4,1)

19 else:

20 #selects a random value from the possible locations for io

21 location_list_io = [[0,1], [0,2],[0,3],[4,1], [4,2],[4,3],[1,0],[2,0],[3,0],[1,4],[2,4],[3,4]]

22 random_index = randrange(0,len(location_list_io))

23 _to_x, _to_y = location_list_io[random_index]

24
25 for block in block_list:

26 if (block.getLocation()[0] == _to_x)& (block.getLocation()[1] == _to_y) :

27 to_block = block

28 to_nets = to_block.getNets()

29
30 print "From location is ", from_block.x,from_block.y

31 print "To Location is ",_to_x,_to_y

32 if to_block == None:

33 print "To location is empty"

34 else:

35 print "To location is occupied by ", to_block.name

36 print "Nets of ",to_block.name,":",

37 for net in to_block.getNets():

38 print net.name,

39
40 #store list of nets to update - includes nets connected to 'to' block and 'from' block

41 nets_to_update = list(set(to_nets + from_nets))

42 #print to_nets, from_nets

43
44 #Print the current values of net cost and bounding box for nets in net_to_update

45 for net in nets_to_update:

46 print "\n[Bounding box for net",net.name,"is :",net.getBBCoord(),"]"

47 print "bbx,bby = ",net.bbx,",",net.bby

48 cost = net.netCost()

49
50 old_net_cost = 0

51 for net in nets_to_update:

52 old_net_cost += net.netCost() # Find the net cost of nets to be updated before swapping

53
54 print "old net cost of nets_to_update = ", old_net_cost # Perform swap

55 if to_block == None: # move to empty location

56 from_block.x = _to_x

57 from_block.y = _to_y

58 else: # swap to and from blocks

59 to_block.x,to_block.y = from_block.x, from_block.y

60 from_block.x, from_block.y = _to_x, _to_y

61
62 new_net_cost = 0

63 #Blocks have been swapped => nets attached to these blocks have different Bounding box coordinates

64 #Find net cost of nets to be updated after swapping

65 for net in nets_to_update:

66 new_net_cost += net.netCost()

67 print "new net cost of nets_to_update = ",new_net_cost #print new net costs

68
69 delta = new_net_cost - old_net_cost

70 keep_switch = assessSwap(delta,t) #assess the swap

71 if keep_switch == 1: #The move is accepted

72 current_cost += delta

73 return 1;

74 #print "The move is accepted: Delta = ", delta,"New Cost = ", current_cost

75 else: # The move is rejected

76 #print "The move is rejected"

77 from_block.x,from_block.y = _from_x,_from_y #revert block locations to old valuese

78 if to_block != None:

79 to_block.x, to_block.y = _to_x, _to_y

80 return 0;

38APPENDIX A. PYTHON IMPLEMENTATION OF PLACEMENTALGORITHM

Table A.4: Python code for Placement

1 ##

2 # Start Simulated Annealing #

3 num_blocks = len(graph.nodes())

4 inner_num = pow(num_blocks, 1.3333)

5 #move_lim = (int) (inner_num*pow(num_blocks,1.3333))

6 move_lim = int(10*inner_num)

7 print "Move lim = ", move_lim

8 list_all_nodes = list_compute_nodes + list_output_nodes + list_input_nodes

9
10 doInitialPlacement() #do initial placement

11
12 print " The nets in the design are listed"

13 for net in net_list:

14 print net.name, net.num_target,

15 net.printTargetList()

16 print " "

17
18 initial_cost = costFunction() #get initial cost

19 printPlacement() #print initial placement

20 printBB() #print bounding box

21 temp = intialTemp() #set initial temperature

22 current_cost = initial_cost

23 total_iter = 0

24
25 line = "T Av. Cost Accept. rat. Tot. Moves\n"

26 outfile.write(line);

27
28 #Start of while loop

29 while exitCrit(temp,current_cost) == 0:

30 print "Number of iterations = ", move_lim

31 print "Start of while loop!"

32 print "temperature = ", temp

33 success_sum = 0

34 avg_cost = 0

35
36 #start of inner iteration

37 for inner_iter in range(move_lim):

38 print "The cost of the configuration in this iteration is: ",current_cost

39 if try_swap(temp) == 1:

40 success_sum += 1

41 avg_cost += current_cost

42 #Total iterations is incremented

43 total_iter += move_lim

44 success_rat = float(success_sum/float(move_lim))

45
46 print "The average cost of the configuration in this iteration is: ",avg_cost, success_sum

47 if success_sum != 0 :

48 avg_cost = avg_cost/ success_sum

49
50 line = "%f %f %f %d\n" % (temp, avg_cost, success_rat, total_iter)

51 outfile.write(line)

52 print "The average cost of the configuration in this iteration is: ",avg_cost

53 #update temperature

54 oldt = temp

55 temp = tempSchedule(temp,success_rat) # Temperature is updated

56 print " The new temperature is", temp

57
58 print "Final placement cost is ", current_cost

59 print "The final placement is "

60 printPlacement()

39

Table A.5: Python Class for Block

1 #Data Structure to store information about a block

2 class Block:

3 pins = []

4 nets = [] #nets[0] - net connected to pin 0, nets[1] - net connected to pin 1, x,y - location

5
6 #constructor

7 def __init__(self,name,blk_type):

8 self.name = name #name is the node name in the dfg

9 self.type = blk_type #blk_type can be CLB/INPAD/OUTPAD

10 self.nets = []

11 self.x = self.y = -1 #initializing with -1, -1

12 if(self.type == 'CLB'):

13 self.pins = [-1 -1 -1 -1 -1 -1 -1 -1]

14 else:

15 self.pins = []

16
17
18 #Add nets to the blocks

19 def addNet(self, net):

20 self.nets.append(net)

21
22
23 #sets the coordinates of the block

24 def setLocation(self, x, y):

25 self.x = x

26 self.y = y

27
28
29 #returns the coordinates of the block

30 def getLocation(self):

31 return self.x,self.y

32
33 #checks if block is placed

34 def isPlaced(self):

35 if self.x > -1 and self.y > -1:

36 return 1

37 else:

38 return -1

39
40 #returns all details of the block

41 def details(self):

42 print self.name, self.type, self.getLocation(),

43
44 #returns the type of block

45 def getType(self):

46 return self.type

47
48 #returns the nets connecting to self

49 def getNets(self):

50 return self.nets

40APPENDIX A. PYTHON IMPLEMENTATION OF PLACEMENTALGORITHM

Table A.6: Python Class for Net

1 #Data Structure to store information about a block

2 # Net has 1 source and can have >=1 destination(target)

3 class Net:

4 num_target = 0

5 ncost = 0.0

6
7 #initialises net with net name and source block

8 def __init__ (self, name, src, src_blk):

9 self.name = name

10 self.source = src

11 self.source_blk = src_blk

12 self.target_list = []

13
14 #adds another destination to a net

15 def addConn(self,dest,dest_blk):

16 self.num_target += 1

17 self.target_block = dest_blk

18 if self.target_block != None:

19 self.target_list.append(self.target_block)

20
21 #bbx = [left bottom right top]

22 #sets q factor depending on number of terminals

23 def getQfactor(self):

24 if len(self.target_list)<=11:

25 self.qfactor = cross_count[len(self.target_list)]

26 else:

27 self.qfactor = 1.5455

28
29 return self.qfactor

30
31 #returns the coordinates of the bounding box for the net

32 def getBBCoord(self):

33 maxx = self.source_blk.getLocation()[0]

34 minx = max(maxx,1)

35 maxy = self.source_blk.getLocation()[1]

36 miny = max(maxy,1)

37 #check coordinates of each target in target list to set min and max of bb

38 for target in self.target_list:

39 if target.getLocation()[0] < minx:

40 minx = max(target.getLocation()[0],1)

41 if target.getLocation()[0] > maxx:

42 maxx = target.getLocation()[0]

43 if target.getLocation()[1] <miny:

44 miny = max(target.getLocation()[1],1)

45 if target.getLocation()[1] > maxy:

46 maxy = target.getLocation()[1]

47 #Bounding box coordinates for net is found

48 self.maxx = maxx

49 self.minx = minx

50 self.miny = miny

51 self.maxy = maxy

52 self.bbx = self.maxx - self.minx + 1

53 self.bby = self.maxy - self.miny + 1

54 mincoord = self.minx,self.miny

55 maxcoord = self.maxx,self.maxy

56
57 return mincoord,maxcoord

58
59 #returns the bouding box

60 def findBB(self):

61 return self.bbx, self.bby

62
63 #Returns cost of a net

64 def netCost(self):

65 self.bbx, self.bby = self.findBB()

66 #Cavx(n) and Cavy(n) are the average channel capacities

67 cavx = cavy = 0.01

68 cost = self.getQfactor() * (self.bbx + self.bby)*cavx

69 return cost

70
71 #prints list of target nodes for the net

72 def printTargetList(self):

73 for target in self.target_list:

74 if target.name != None:

75 target.details(),

Appendix B

Python Implementation of Routing

Algorithm

Table B.1: Python Functions for Directed Search

1 def directed_search_expand_trace_segment(trace, target, astar_fac, rem_conn_to_sink):

2 if rem_conn_to_sink == 0:

3 #usual case

4 for item in trace:

5 item_type = type(item)

6 item_info = getNodeinRRNodeInfo(item)

7 if item_type == Block:

8 sink = item_info.isSink

9 if item_type == Ipin or sink == 1:

10 total_cost = astar_fac * get_directed_search_expected_cost(item, target)

11 node_to_heap(item,total_cost)

12
13 def directed_search_expand_neighbour(heap, net,current,target,astar_fac):

14 bb_min_coord = []

15 bb_max_coord = []

16 bb_min_coord, bb_max_coord = net.getBBCoord()

17 #Puts all the nodes adjacent to the current node on the heap

18 for node_neighbour in current.neighbours():

19 #Check if node neighbour is outside the bounding box

20 if node_neighbour.x > bb_max_coord.x or node_neighbour.y > bb_max_coord.y or node_neighbour.x < bb_min_coord.x or node_neighbour.y

< bb_min_coord.y:

21 continue

22 #Prune away IPINs that lead to blocks other than the target one.

23 if type(node_neighbour) == Ipin and node_neighbour.blk != target:

24 continue

25
26 new_back_pcost = 0

27 #new_back_pcost = old_back_pcost + get_rr_cong_cost()

28 if bend_cost!= 0:

29 if (current.type == "CHANY" and node_neighbour.type == "CHANX") or (current.type == "CHANX" and node_neighbour.type == "CHANY")

:

30 new_back_pcost += bend_cost

31 #Calculate expected cost of the neighbour node to reach the target node

32 new_tot_cost = new_back_pcost +astar_fac*get_directed_search_expected_cost(node_neighbour, target_node)

33 node_info = getNodeinRRNodeInfo(neighbour_node)

34 node_info.total_cost = new_tot_cost

35 node_to_heap(node_neighbour,new_tot_cost)

41

42 APPENDIX B. PYTHON IMPLEMENTATION OF ROUTING ALGORITHM

Table B.2: Python Functions for Routing

1 def directed_search_route_net(net,mst_net):

2 #Start the Directed Search Algorithm to route a particular net

3 num_sinks = len(net.target_list)

4 heap = BinHeap()

5 target = mst_net[0][1]

6 directed_search_add_source_to_heap(net,target, astar_fac)

7
8 #do some more stuff.............

9 #Maze router is invoked num_sinks times to complete all the connections

10 for i in range(num_sinks):

11 #Since heap is emptied after a sink is found....

12 #in the first iteration the heap head contains the source node

13 target_node = mst_net[i][1]

14 directed_search_expand_trace_segment()

15 #In the first iteration, the source node is the head of the heap

16 current = getHeapHead(heap) # current node is head of the heap

17
18 if current == None:

19 print "\n Infeasible routing"

20 inode = current

21
22 #Expanding the wavefront from source node till target node is reached. Nodes are retrieved from the

23 #heap. The head of the heap contains the neighbour with minimum cost........

24 while inode != target_node:

25 rrnode_info = getNodeinRRNodeInfo(current.node)

26 old_tcost = rrnode_info.total_cost

27 new_tcost = current.cost

28 #old_back_cost = rrnode_info.backward_path_cost

29 #new_back_cost = current.backward_path_cost

30 if old_tcost >new_tcost:# and old_back_cost > new_back_cost:

31 directed_search_expand_neighbour(heap,net,current,target_node,astar_fac)

32 old_cur = heap.heapList[1]

33 current = heap.getHeapHead()

34
35 if current == None:

36 reset_path_costs()

37 return -1

38 #End of while loop

39 #After a sink is found..

40 updateTraceback()

41 pathfinderUpdateOneCost()

42 empty_heap()

43 reset_path_costs()

44 #get head from the Heap

45
46
47
48
49 def isFeasibleRouting():

50 print ""

51 return -1

52
53
54 def doRouting():

55
56 iter = 0

57 num_nets = len(net_list)

58 pres_fac = first_iter_pres_fac

59 #Do NUM_ITERATIONS iterations

60 while iter <= NUM_ITERATIONS:

61 #Reset RRNodeInfo[] items to default values at the start of every iteration

62 # The values keep updating until routing of all nets is attempted

63 del rr_node_info_list[:]

64
65 for inet in range(0,num_nets):

66 #First, get the MST of the net - holds info about the source and sinks.

67 mst_net = buildMST(net)

68 directed_search_route_net(net,pres_fac,0,mst_net)

69 #if the net is not routable return to ...

70 if isRoutable(nets[inet]) == 0:

71 return -1

72
73 if isFeasibleRouting() == 1:

74 #the routing is complete

75 return 1

76 else :

77 if iter == 0:

78 pres_fac = initial_pres_fac

79 pathfinderUpdateCost(pres_fac, 0)

80 else:

81 pres_fac *= pres_fac_mult

82 pathfinderUpdateCost(pres_fac,acc_fac)

Bibliography

[1] Katherine Compton and Scott Hauck. Reconfigurable computing: A survey of

systems and software. ACM Computing Surveys, 34(2):171–210, June 2002.

[2] Russell Tessier, Kenneth Pocek, and Andre DeHon. Reconfigurable computing

architectures. Proceedings of the IEEE, 103(3):332–354, 2015.

[3] Andre DeHon. Fundamental underpinnings of reconfigurable computing archi-

tectures. Proceedings of the IEEE, 103(3):355–378, 2015.

[4] Stephen M Trimberger. Three ages of FPGAs: A retrospective on the first thirty

years of FPGA technology. Proceedings of the IEEE, 103(3):318–331, 2015.

[5] Greg Stitt. Are field-programmable gate arrays ready for the mainstream? IEEE

Micro, 31(6):58–63, 2011.

[6] Andrew Canis, Jongsok Choi, Mark Aldham, Victor Zhang, Ahmed Kammoona,

Jason H. Anderson, Stephen Brown, and Tomasz Czajkowski. LegUp: high-level

synthesis for FPGA-based Processor/Accelerator systems. In Proceedings of the

International Symposium on Field Programmable Gate Arrays (FPGA), pages

33–36, 2011.

[7] Yun Liang, Kyle Rupnow, Yinan Li, and et. al. High-level synthesis: productiv-

ity, performance, and software constraints. Journal of Electrical and Computer

Engineering, 2012(649057):1–14, January 2012.

43

44 BIBLIOGRAPHY

[8] K. Vipin and Suhaib A. Fahmy. Architecture-aware reconfiguration-centric floor-

planning for partial reconfiguration. In Proceedings of the International Sympo-

sium on Applied Reconfigurable Computing (ARC), pages 13–25, 2012.

[9] K. Vipin and Suhaib A. Fahmy. A high speed open source controller for FPGA

partial reconfiguration. In Proceedings of International Conference on Field Pro-

grammable Technology (FPT), pages 61–66, 2012.

[10] K. Vipin and Suhaib A. Fahmy. Automated partitioning for partial reconfigura-

tion design of adaptive systems. In Proceedings of IEEE International Sympo-

sium on Parallel Distributed Processing, Workshops (IPDPSW) – Reconfigurable

Architectures Workshop (RAW), 2013.

[11] K. Vipin and Suhaib A. Fahmy. Automated partial reconfiguration design

for adaptive systems with CoPR for Zynq. In IEEE Symposium on Field-

Programmable Custom Computing Machines (FCCM), 2014.

[12] K. Vipin and Suhaib A. Fahmy. ZyCAP: Efficient partial reconfiguration man-

agement on the Xilinx Zynq. IEEE Embedded Systems Letters, January 2014.

[13] C. Plessl and M. Platzner. Zippy - a coarse-grained reconfigurable array with

support for hardware virtualization. In Proceedings of the International Con-

ference on Application-Specific Systems, Architecture Processors (ASAP), pages

213–218, 2005.

[14] Neil W. Bergmann, Sunil K. Shukla, and Jrgen Becker. QUKU: a dual-layer

reconfigurable architecture. ACM Transactions on Embedded Computing Systems

(TECS), 12:63:1–63:26, March 2013.

[15] J. Coole and G. Stitt. Intermediate fabrics: Virtual architectures for cir-

cuit portability and fast placement and routing. In Proceedings of the In-

ternational Conference on Hardware/Software Codesign and System Synthesis

(CODES+ISSS), pages 13–22, October 2010.

BIBLIOGRAPHY 45

[16] Davor Capalija and Tarek S. Abdelrahman. A high-performance overlay ar-

chitecture for pipelined execution of data flow graphs. In Proceedings of the

International Conference on Field Programmable Logic and Applications (FPL),

pages 1–8, 2013.

[17] Venkatraman Govindaraju, Chen-Han Ho, Tony Nowatzki, Jatin Chhugani, Na-

dathur Satish, Karthikeyan Sankaralingam, and Changkyu Kim. Dyser: Unifying

functionality and parallelism specialization for energy-efficient computing. IEEE

Micro, 32(5):38–51, 2012.

[18] A. K. Jain, S. A. Fahmy, and D. L. Maskell. Efficient overlay architecture based

on DSP blocks. In IEEE Symposium on FPGAs for Custom Computing Machines

(FCCM), 2015.

[19] A. K. Jain, X. Li, S. A. Fahmy, and D. L. Maskell. Adapting the DySER architec-

ture with DSP blocks as an Overlay for the Xilinx Zynq. In International Sympo-

sium on Highly-Efficient Accelerators and Reconfigurable Technologies (HEART),

2015.

[20] Cheng Liu, C.L. Yu, and H.K.-H. So. A soft coarse-grained reconfigurable array

based high-level synthesis methodology: Promoting design productivity and ex-

ploring extreme FPGA frequency. In IEEE Symposium on Field-Programmable

Custom Computing Machines (FCCM), pages 228–228, 2013.

[21] Jason Cong, Hui Huang, Chiyuan Ma, Bingjun Xiao, and Peipei Zhou. A fully

pipelined and dynamically composable architecture of cgra. In IEEE Symposium

on FPGAs for Custom Computing Machines (FCCM), pages 9–16, 2014.

[22] A. Brant and G.G.F. Lemieux. ZUMA: an open FPGA overlay architec-

ture. In IEEE Symposium on Field-Programmable Custom Computing Machines

(FCCM), pages 93–96, 2012.

[23] M. Hubner, P. Figuli, R. Girardey, D. Soudris, K. Siozios, and J. Becker. A het-

erogeneous multicore system on chip with run-time reconfigurable virtual FPGA

46 BIBLIOGRAPHY

architecture. In IEEE International Symposium on Parallel and Distributed Pro-

cessing Workshops (IPDPSW), 2011.

[24] Karel Heyse, Tom Davidson, Elias Vansteenkiste, Karel Bruneel, and Dirk

Stroobandt. Efficient implementation of virtual coarse grained reconfigurable

arrays on FPGAS. In Proceedings of the International Conference on Field Pro-

grammable Logic and Applications (FPL), pages 1–8, 2013.

[25] A. K. Jain, K. D. Pham, J. Cui, S. A. Fahmy, and D. L. Maskell. Virtualized

execution and management of hardware tasks on a hybrid ARM-FPGA platform.

Journal of Signal Processing Systems, 77(1–2):61–76, Oct. 2014.

[26] Jesse Benson, Ryan Cofell, Chris Frericks, Chen-Han Ho, Venkatraman Govin-

daraju, Tony Nowatzki, and Karthikeyan Sankaralingam. Design, integration

and implementation of the dyser hardware accelerator into opensparc. In In-

ternational Symposium on High Performance Computer Architecture (HPCA),

pages 1–12, 2012.

[27] Venkatraman Govindaraju, Chen-Han Ho, and Karthikeyan Sankaralingam. Dy-

namically specialized datapaths for energy efficient computing. In International

Symposium on High Performance Computer Architecture (HPCA), pages 503–

514, 2011.

[28] Xilinx Ltd. Zynq-7000 technical reference manual. http://www.xilinx.com/

support/documentation/user_guides/ug585-Zynq-7000-TRM.pdf, 2013.

[29] Khoa Dang Pham, Abhishek Kumar Jain, Jin Cui, Suhaib A Fahmy, and Dou-

glas L Maskell. Microkernel hypervisor for a hybrid ARM-FPGA platform. In

Proceedings of the International Conference on Application-Specific Systems, Ar-

chitecture Processors (ASAP), 2013.

[30] Alexander Brant. Coarse and fine grain programmable overlay architectures for

FPGAs. Master’s thesis, University of British Columbia, 2013.

http://www.xilinx.com/support/documentation/user_guides/ug585-Zynq-7000-TRM.pdf
http://www.xilinx.com/support/documentation/user_guides/ug585-Zynq-7000-TRM.pdf

BIBLIOGRAPHY 47

[31] K. Paul, C. Dash, and M.S. Moghaddam. reMORPH: a runtime reconfigurable

architecture. In Euromicro Conference on Digital System Design, 2012.

[32] G. Stitt and J. Coole. Intermediate fabrics: Virtual architectures for near-instant

FPGA compilation. IEEE Embedded Systems Letters, 3(3):81–84, September

2011.

[33] Vaughn Betz and Jonathan Rose. VPR: A new packing, placement and routing

tool for fpga research. In Field-Programmable Logic and Applications, pages

213–222, 1997.

[34] G. Stitt, A. George, H. Lam, C. Reardon, M. Smith, B. Holland, V. Aggarwal,

Gongyu Wang, J. Coole, and S. Koehler. An end-to-end tool flow for FPGA-

Accelerated scientific computing. IEEE Design and Test of Computers, 28(4):68–

77, August 2011.

[35] Alexander Marquardt, Vaughn Betz, and Jonathan Rose. Timing-driven place-

ment for fpgas. In Proceedings of the International Symposium on Field Pro-

grammable Gate Arrays (FPGA), pages 203–213, 2000.

[36] Larry McMurchie and Carl Ebeling. Pathfinder: a negotiation-based

performance-driven router for fpgas. In Proceedings of the International Sympo-

sium on Field Programmable Gate Arrays (FPGA), 1995.

	Introduction
	Motivation
	Contribution
	Organization

	Background
	Coarse Grained FPGA Overlays
	Placement and Routing

	Literature Survey
	Placement of DFG nodes on Island-style Overlay
	Island-style Overlay Architecture
	Automated Mapping Tool
	Data Flow Graph (DFG) Generation
	DFG to VPR Compatible Netlist Conversion
	Placement and Routing onto the Overlay

	Detailed description of Placement process
	Initial Placement of DFG onto the Overlay
	Evaluation of Moves at a given Temperature
	Detailed description of Each Move

	Routing of DFG edges on Island-style Overlay
	Generic Interconnect Architecture
	Channels
	Connection Boxes
	Switch Boxes
	Interconnect architecture used for the overlay

	Routing Algorithm
	Pathfinder Algorithm for Routing
	Cost Function
	Description of Algorithm

	Conclusions and Future Work
	Conclusions
	Future work

	Appendix Python Implementation of Placement Algorithm
	Appendix Python Implementation of Routing Algorithm
	Bibliography

