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Sparse Deep Neural Network (SDNN) Challenge

» Bunch of sequential Layers
each layer has a weight matrix with very high sparsity ( > 97%)

multiply input feature vector with weight matrix, followed by bias addition and ReLU
- example:y; =y, X Wy + by

- or compose as Sparse Matrix by Vector (SpMV) product: y," = W,T x y,"+ b,"

- neurons per layer ranges from 1K to 64K

- number of layers (L) ranges from 120 to 1920

- challenge contains 60,000 input feature vectors

» Mainly two approaches in previous submissions:
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Sparse Deep Neural Network (SDNN) Challenge

) Input Output
» Bunch of sequential Layers Features \\\'/,/g Classification
- each layer has a weight matrix with very high sparsity ( > 97%) Yo ;?:5.’515 BB Vs

» Mainly two approaches in previous submissions:

_ Sparse Matrix by Matrix (SpMM) Sparse Matrix by Vector (SpMV)
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multiply input feature vector with weight matrix, followed by bias addition and ReLU

example: y; =y, X Wy + by

or compose as Sparse Matrix by Vector (SpMV) product: y,;T =W " x y," + b,"
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number of layers (L) ranges from 120 to 1920

challenge contains 60,000 input feature vectors

Use all input feature vectors at once
- large matrix (batch size of 60000)

For 120-layer 120 x 1 =120 SpMM calls

network

One feature vector processing at a
time - one vector (batch size of 1)

120 x 60K = 7.2 million SpMV calls
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Sparse Matrix Vector Multiplication (SpMV)

» Key primitive for a wide range of ML, HPC and Graph problems
examples: sparse neural nets, conjugate gradient, pagerank etc.

» Traditional CPU/GPU platforms do not perform well for SpMV workload:

due to highly irregular and random memory access pattern (very high cache miss rate)
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Table: Matrix A encoded in COO format
row 0 0 2 2 3 3 3 3
col 0 2 2 3 0 1 2 3

for(i = 0; 1 < NNZs; i++){
y[row[i]] += data[i] * x[col[i1]];

}

Note: NNZs = Number of non-zeros
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Sparse Matrix Vector Multiplication (SpMV)
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Key primitive for a wide range of ML, HPC and Graph problems

examples: sparse neural nets, conjugate gradient, pagerank etc.

» Traditional CPU/GPU platforms do not perform well for SpMV workload:

due to highly irregular and random memory access pattern (very high cache miss rate)

» FPGA platforms are attractive for SpMV due to:
the use of many block memories (BRAMs/URAMS) to hold x and y vectors on-chip
the ability to avoid off-chip random memory access
streaming multiple non-zeros (NZs) in parallel from off-chip DRAM
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Table: Matrix A encoded in COO format
row 0 0 2 2 3 3 3 3
col 0 2 2 3 0 1 2 3

for(i = 0; 1 < NNZs; i++){
y[row[i]] += data[i] * x[col[i1]];

}

Note: NNZs = Number of non-zeros
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Streaming Dataflow Pipeline

v

Common theme of Streaming Dataflow Pipeline
Two stages: Scatter and Gather

Scatter
a multi-ported buffer for storing x
perform N reads in parallel, multiply with corresponding data

Gather
a multi-ported buffer for storing y
perform N reads in parallel,
add with corresponding data and write back in 'y

for(i = 0; 1 < NNZs; i++){
y[row[i]] += data[i] * x[col[i]l];
}

{ data[i], row]i], col[i] }

for(i =

=)
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Streaming Dataflow Pipeline

» Banked Vector Buffer (BVB) based SpMV 1l
- pipeline for streaming 32 non-zeros .
- scatter > 32 banks of block memories + two crossbars Scatter Gather
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1. Fowers, Jeremy, Kalin Ovtcharov, Karin Strauss, Eric S. Chung, and Greg Stitt. "A high memory bandwidth fpga accelerator for sparse matrix-vector multiplication." FCCM 2014
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Sparse DNN Accelerator around FPGA based SpMV

» Sparse DNN accelerator!
- SpMV as a building block
- 15 blocks on the device = 15 parallel SpMV calls
- 5x higher energy efficiency compared to the CPU baseline
- rely on low DRAM bandwidth (30 GB/s) on FPGA board (VC709)

» Scaling limitations and Performance bottlenecks
= require input vector replication (16 buffers)
- limited on-chip memory capacity - only small-scale networks (1K neuron)

FPGA Chip-— - -

Sparse DNN Accelerator
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FPGA based Sparse DNN Accelerator from HPEC 2019

1. Huang, Sitao, et al. "Accelerating sparse deep neural networks on fpgas." IEEE High Performance Extreme Computing Conference (HPEC), 2019.
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Sparse DNN Accelerator around FPGA based SpMV

» Scaling limitations and Performance bottlenecks
- multiple blocks share the bandwidth of a DRAM channel

- bandwidth utilization and performance improves when activating up-to 7 Effect of adding more kernels on runtime

blocks
- performance and parallelization is limited by DRAM memory bandwidth
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1. Huang, Sitao, et al. "Accelerating sparse deep neural networks on fpgas." IEEE High Performance Extreme Computing Conference (HPEC), 2019.
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Sparse DNN Accelerator around FPGA based SpMV

» Scaling limitations and Performance bottlenecks
- multiple blocks share the bandwidth of a DRAM channel _ )

- bandwidth utilization and performance improves when activating up-to 7 Effect of adding more kernels on runtime
blocks

- performance and parallelization is limited by DRAM memory bandwidth

» Our approach

- avoid replication of input feature vector - implement all networks (1K,
4K, 16K and 64K neurons)

- uses multi-ported multi-banked buffer (based on URAMs and NoC)

- Each block has dedicated HBM channels - No need of sharing
Memory BW Wall [
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- memory bandwidth - no longer the performance bottleneck
- supports floating point FP32 arithmetic

- supports completely unstructured sparse matrices (standard encoding Our approach on Alveo HBM
format: COO) 0
2 4 6 8 10 12

Number of Kernels on FPGA device

1. Huang, Sitao, et al. "Accelerating sparse deep neural networks on fpgas." IEEE High Performance Extreme Computing Conference (HPEC), 2019.

& XILINX.

6 © Copyright 2021 Xilinx



Streaming Dataflow Pipeline for SpMV Block

» Load-store adaptor to supply data in and out of compute pipeline
Each HBM PC - 32-Byte (32B) interface - packs 4 non-zeros
Each non-zero - 8B packed tuple - {4B FP32 value, 2B row id, 2B col id}

» Operations for SpMV:
load vector x from 32B memory interface PC1 (8 FP32 entries in parallel)
stream matrix A from PCO and PC1 (8 non-zero in parallel, 4 from PCO and 4 from PC1)
store vector y to PC1 (8 FP32 entries in parallel)

» Streaming dataflow pipeline built using
FPGA-optimized NoC RTL (B and D) and HLS-generated building blocks (A, C and F)

Load-store

adaptor

Scatter p% Gather W,
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Streaming Dataflow Pipeline for SpMV Block
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Streaming Dataflow Pipeline for SpMV Block

roid example (wide_mat_dt *matrix, wide_vec_dt *x, wide_wvec_dt *y, l -

stream wide mat dt &stream wide mat, stream wide wvec dt &stream wide x,
stream token_dt &stream token, stream wide vec_dt &stream wide_y,
int mat_size, int vec_size)

Load-store

lGather
adaptor
w:de vec_ dr_ temp x;

(A)

noc_1
;1< vec _size; i++) { N
-agma HLS PIPELINE II=1 (B)
temp x = x[i]; Load vector x
stream wide x.write(temp_x);
}
wide mat_dt temp;
forﬁ_ ;1 < mat_size; i++) {

#pr
#pr IFELINE II

temp = matrix[i]; Stream matrix A
stream wide mat.write(temp); Load'Store

adaptor

(A)

S
HBM
PCO
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}

token_dt token = vec_size*2 +
stream_token.write (token) ;

wide wec dt temp_y:

fort"'- i=20; i< vec_size; i++) {

$pragma HLS PIPELINE IT= Store vector y
t=rr[: y = rtrﬂarr L wide y.read():
yI[i]l = temp_y;




Butterfly Fat Tree (BFT) NoC

» FPGA-optimized 2x2 switches (S) built around dataflow units (split, merge and elastic buffers)
» Flow-control using ready-valid handshake

» 8x8 BFT NoC using multi-stage switching network (12 switches)

2x2 Switch (S) - 2 Split, 2 Merge _
and 4 Elastic Buffers (EBs) 8x8 BFT NoC using 8 URAM
12 Switches (S) Banks (B)

— B
S
— B
A B
\

Load-store

# | i1 18 adaptor
(A)

-~
~

: 2-way Split \\‘\\\\
: 2-way Merge 1

—
=P : Elastic Buffer (EB)
—_—
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SpMV appliance on HBM-enabled FPGA

S
HBM
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SpMV appliance on HBM-enabled FPGA

HYDRA HYDRA
0] 1

HBM
PC2
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SpMV appliance on HBM-enabled FPGA

» SpMV appliance using HYDRA:

- One block is able to saturate two HBM
channels

- AXI master 32B interface:
- AXI slave 32B interface:

- AXIl stream interfaces connecting six sub-
blocks (A,B,C,D,E and F) via AXI stream
channels (1,2,3,4,5,6 and 7)

0 and eare 8B wide 8 parallel channels
4B wide 8 parallel channels

- 9163”‘3'6 are 6B wide 8 parallel

channels
- 0 32B wide single channel
_ _ Load-store
= Our implementation for SDNN challenge adaptor

uses 12 HYDRA blocks and 24 HBM PCs

HBM
PC2

& XILINX.
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SpMV appliance on HBM-enabled FPGA

| « 0 1
i 48

pblocks

Pipes in
HMSS IP

HBM
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Implementation on HBM-enabled FPGA sblocks

» SpMV appliance implemented on Alveo U280 (Vivado 2020.1)
- host app (OpenCL) for managing the entire appliance and data movement between host and appliance
- host communicates with U280 using PCle Gen 3x16 (matrix A and vectors x,y)
- sparse matrix: COO-encoded, with FP32 data and 2-Byte indexes
» Timing closed at 275 MHz for 12 block design ﬁ'&eSSS'TP
- manual floorplan of each HYDRA block
- each block uses < 3.33% of device resources
- bias and ReLU adds extra eight FP32 adders and ReLU operators
- throughput of each block is up-to 8 non-zero (or edges) every cycle @ 275 MHz

HYDRA block 50K (2%) 25K (2%) 40 (0.5%) 24 (1.2%) 32 (3.33%)

10 & XILINX.
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Challenge Results: 120-layer network (1024 neurons)

» Previous FPGA implementation! hits a wall at 7 blocks - low memory bandwidth available on the platform (only 30 GB/s)

» In our case: run time is scaling linearly by providing more blocks and more HBM channels

Previous FPGA Ours on Alveo U280 with 12
Implementation [1] HYDRA blocks

Effect of adding more kernels on runtime

Best run time 252 seconds 63 seconds (4x faster)
n
Feature vector Replicate input vectors to No need to replicate (multi- e
storage expose more read ports ported multi-banked buffer) §
Neurons allowed Only 1K neurons (due to All the neurons in the challenge UC)
replication on vectors) (1K, 4K, 16K, 64K) ‘©
S
Flexibility Require different bitstream for Single bitstream for all networks =
each network in SDNN challenge = Memory BW Wall (1]
Arithmetic 16-bit Fixed point Floating point FP32
Implementation Memory bound on VC709 FPGA  No longer memory bound on
Board Alveo U280 HBM platform Our approach on Alveo HBM

2 4 6 8 10 12
Number of Kernels on FPGA device

1. Huang, Sitao, et al. "Accelerating sparse deep neural networks on fpgas." IEEE High Performance Extreme Computing Conference (HPEC), 2019.
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Challenge Results: 120-layer networks for all neuron size

Comparison of inference throughput between Alveo U280 and CPU Baseline!s!
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[3] Kepner, Jeremy, et al. "Sparse deep neural network graph challenge.” IEEE High Performance Extreme Computing Conference (HPEC) 2019.
[9] Huang, Sitao, et al. "Accelerating sparse deep neural networks on fpgas." IEEE High Performance Extreme Computing Conference (HPEC), 2019.
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Challenge Results: 10x speedup over CPU baseline

13

Neurons Layers Connections Time Inference Time Inference Time  Inference
per Layer (edges) | (Seconds) Rate | (seconds) Rate | (seconds) Rate
CPU baseline [3] [9] Ours
1024 120 3932160 626 376x10° 251 940x10° 63.5 3715x10°
1024 480 15728640 2440 386x10° — — 251 3759x10°
1024 1920 62914560 9760 386x10° - - 997 3786 x10°
4096 120 15728640 2446  385x10° - — 255 3701x10°
4096 480 62914560 10229  369x10° - — 985 3832x10°
4096 1920 251658240 40245 375x10° - — 3917 3854 x10°
16384 120 62914560 10956 344 x10° — — 1030 3664 x10°
16384 480 251658240 45268 333 x10° - — 3916 3855x10°
16384 1920 1006632960 179401  336x10° - - 15664  3856x10°
65536 120 251658240 45813  329x10° - - 4012 3763x10°
65536 480 1006632960 202393  299x10° - — 16327 3699 x10°
65536 1920 4026531840 - - - - 63478 3699 x10°
[3] Kepner, Jeremy, et al. "Sparse deep neural network graph challenge." IEEE High Performance Extreme Computing Conference (HPEC) 2019.
[9] Huang, Sitao, et al. "Accelerating sparse deep neural networks on fpgas." IEEE High Performance Extreme Computing Conference (HPEC), 2019.
& XILINX.
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Conclusions and Future Work oblocks

» Presented a high-performance SpMV block, HYDRA, which supports

- completely unstructured sparse matrices
- floating point FP32 arithmetic

» Used HYDRA for constructing an appliance which can be

- used for sparse data processing Pipes in

HMSS IP
- adopted in both edge and data center (cloud) scenarios

» Demonstrated that the SpMV appliance can be used for DNN workloads
- by running a variety of sparse neural net workloads given as part of the SDNN challenge
- linear scaling in inference throughput performance as we activate up-to 12 blocks
- 3.7 billion edges per second inference throughput on Alveo U280 platform

- 10x faster execution compared to challenge CPU baseline

v

Planning to extend this work
- to support Sparse Matrix by Sparse Matrix (SpMSpM) multiplication in HYDRA block
- to support reuse of streaming weight matrix across multiple feature vectors instead of just one

& XILINX.
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