
© Copyright 2021 Xilinx

Sparse Deep Neural Network Acceleration on
HBM-Enabled FPGA Platform

Abhishek K Jain, Sharan Kumar, Aashish Tripathi, Dinesh Gaitonde

Xilinx Inc., San Jose, CA, United States

September 23, 2021

Graph Challenge Special, IEEE High Performance Extreme Computing (HPEC) Virtual Conference 2021

© Copyright 2021 Xilinx

Sparse Deep Neural Network (SDNN) Challenge

1

 Bunch of sequential Layers

 each layer has a weight matrix with very high sparsity (> 97%)

 multiply input feature vector with weight matrix, followed by bias addition and ReLU

 example: y1 = y0 x W0 + b0

 or compose as Sparse Matrix by Vector (SpMV) product: y1
T = W0

T x y0
T + b0

T

 neurons per layer ranges from 1K to 64K

 number of layers (L) ranges from 120 to 1920

 challenge contains 60,000 input feature vectors

 Mainly two approaches in previous submissions:

Number of Layers, L (120, 480 or 1920)

N
u
m

b
e

r
o

f
Im

a
g
e

s
 (

6
0

0
0

0
)

Sparse Matrix by Matrix (SpMM) Sparse Matrix by Vector (SpMV)

Inputs Use all input feature vectors at once

→ large matrix (batch size of 60000)

One feature vector processing at a

time → one vector (batch size of 1)

For 120-layer

network

120 x 1 = 120 SpMM calls 120 x 60K = 7.2 million SpMV calls

© Copyright 2021 Xilinx

Sparse Deep Neural Network (SDNN) Challenge

1

 Bunch of sequential Layers

 each layer has a weight matrix with very high sparsity (> 97%)

 multiply input feature vector with weight matrix, followed by bias addition and ReLU

 example: y1 = y0 x W0 + b0

 or compose as Sparse Matrix by Vector (SpMV) product: y1
T = W0

T x y0
T + b0

T

 neurons per layer ranges from 1K to 64K

 number of layers (L) ranges from 120 to 1920

 challenge contains 60,000 input feature vectors

 Mainly two approaches in previous submissions:

Number of Layers, L (120, 480 or 1920)

N
u
m

b
e

r
o

f
Im

a
g
e

s
 (

6
0

0
0

0
)

Sparse Matrix by Matrix (SpMM) Sparse Matrix by Vector (SpMV)

Inputs Use all input feature vectors at once

→ large matrix (batch size of 60000)

One feature vector processing at a

time → one vector (batch size of 1)

For 120-layer

network

120 x 1 = 120 SpMM calls 120 x 60K = 7.2 million SpMV calls

© Copyright 2021 Xilinx

Sparse Matrix Vector Multiplication (SpMV)

2

 Key primitive for a wide range of ML, HPC and Graph problems

 examples: sparse neural nets, conjugate gradient, pagerank etc.

 Traditional CPU/GPU platforms do not perform well for SpMV workload:

 due to highly irregular and random memory access pattern (very high cache miss rate)

data 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

row 0 0 2 2 3 3 3 3

col 0 2 2 3 0 1 2 3

Note: NNZs → Number of non-zeros

Table: Matrix A encoded in COO format

© Copyright 2021 Xilinx

Sparse Matrix Vector Multiplication (SpMV)

2

 Key primitive for a wide range of ML, HPC and Graph problems

 examples: sparse neural nets, conjugate gradient, pagerank etc.

 Traditional CPU/GPU platforms do not perform well for SpMV workload:

 due to highly irregular and random memory access pattern (very high cache miss rate)

 FPGA platforms are attractive for SpMV due to:

 the use of many block memories (BRAMs/URAMs) to hold x and y vectors on-chip

 the ability to avoid off-chip random memory access

 streaming multiple non-zeros (NZs) in parallel from off-chip DRAM

data 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

row 0 0 2 2 3 3 3 3

col 0 2 2 3 0 1 2 3

Note: NNZs → Number of non-zeros

Table: Matrix A encoded in COO format

© Copyright 2021 Xilinx

Streaming Dataflow Pipeline

3

 Common theme of Streaming Dataflow Pipeline

 Two stages: Scatter and Gather

 Scatter

 a multi-ported buffer for storing x

 perform N reads in parallel, multiply with corresponding data

 Gather

 a multi-ported buffer for storing y

 perform N reads in parallel,

 add with corresponding data and write back in y

Off-chip

DRAM
Scatter x Gather y

A

{ data[i], row[i], col[i] }

© Copyright 2021 Xilinx

Streaming Dataflow Pipeline

4

 Banked Vector Buffer (BVB) based SpMV [1]

 pipeline for streaming 32 non-zeros

 scatter → 32 banks of block memories + two crossbars

1. Fowers, Jeremy, Kalin Ovtcharov, Karin Strauss, Eric S. Chung, and Greg Stitt. "A high memory bandwidth fpga accelerator for sparse matrix-vector multiplication." FCCM 2014

Off-chip

DRAM
Scatter x Gather y

A

© Copyright 2021 Xilinx

Sparse DNN Accelerator around FPGA based SpMV

5

 Sparse DNN accelerator[1]

 SpMV as a building block

 15 blocks on the device → 15 parallel SpMV calls

 5x higher energy efficiency compared to the CPU baseline

 rely on low DRAM bandwidth (30 GB/s) on FPGA board (VC709)

 Scaling limitations and Performance bottlenecks

 require input vector replication (16 buffers)

 limited on-chip memory capacity → only small-scale networks (1K neuron)

1. Huang, Sitao, et al. "Accelerating sparse deep neural networks on fpgas." IEEE High Performance Extreme Computing Conference (HPEC), 2019.

FPGA based Sparse DNN Accelerator from HPEC 2019[1]

© Copyright 2021 Xilinx

Sparse DNN Accelerator around FPGA based SpMV

6

0

100

200

300

400

500

600

700

800

900

1000

0 2 4 6 8 10 12 14 16

R
u

n
ti

m
e

 i
n

 S
e

c
o

n
d

s

Number of Kernels on FPGA device

Effect of adding more kernels on runtime

Memory BW Wall [1]

 Scaling limitations and Performance bottlenecks

 multiple blocks share the bandwidth of a DRAM channel

 bandwidth utilization and performance improves when activating up-to 7
blocks

 performance and parallelization is limited by DRAM memory bandwidth

1. Huang, Sitao, et al. "Accelerating sparse deep neural networks on fpgas." IEEE High Performance Extreme Computing Conference (HPEC), 2019.

© Copyright 2021 Xilinx

Sparse DNN Accelerator around FPGA based SpMV

6

0

100

200

300

400

500

600

700

800

900

1000

0 2 4 6 8 10 12 14 16

R
u

n
ti

m
e

 i
n

 S
e

c
o

n
d

s

Number of Kernels on FPGA device

Effect of adding more kernels on runtime

Our approach on Alveo HBM

Memory BW Wall [1]

 Scaling limitations and Performance bottlenecks

 multiple blocks share the bandwidth of a DRAM channel

 bandwidth utilization and performance improves when activating up-to 7
blocks

 performance and parallelization is limited by DRAM memory bandwidth

 Our approach

 avoid replication of input feature vector → implement all networks (1K,
4K, 16K and 64K neurons)

 uses multi-ported multi-banked buffer (based on URAMs and NoC)

 Each block has dedicated HBM channels → No need of sharing

 memory bandwidth → no longer the performance bottleneck

 supports floating point FP32 arithmetic

 supports completely unstructured sparse matrices (standard encoding
format: COO)

1. Huang, Sitao, et al. "Accelerating sparse deep neural networks on fpgas." IEEE High Performance Extreme Computing Conference (HPEC), 2019.

© Copyright 2021 Xilinx

Streaming Dataflow Pipeline for SpMV Block

7

 Load-store adaptor to supply data in and out of compute pipeline

 Each HBM PC → 32-Byte (32B) interface → packs 4 non-zeros

 Each non-zero → 8B packed tuple → {4B FP32 value, 2B row id, 2B col id}

 Operations for SpMV:

 load vector x from 32B memory interface PC1 (8 FP32 entries in parallel)

 stream matrix A from PC0 and PC1 (8 non-zero in parallel, 4 from PC0 and 4 from PC1)

 store vector y to PC1 (8 FP32 entries in parallel)

 Streaming dataflow pipeline built using

 FPGA-optimized NoC RTL (B and D) and HLS-generated building blocks (A, C and F)

Load-store

adaptor

(A)

M M

noc_1

(B)

mul

(C)

noc_2

(D)

hrb

(E)

acc

(F)

Off-chip

DRAM
Scatter x Gather y

A

HBM

PC0

HBM

PC1

S S

Scatter

Gather

x y

A

© Copyright 2021 Xilinx

Streaming Dataflow Pipeline for SpMV Block

7

Load-store

adaptor

(A)

M M

noc_1

(B)

mul

(C)

noc_2

(D)

hrb

(E)

acc

(F)

Off-chip

DRAM
Scatter x Gather y

A

HBM

PC0

HBM

PC1

S S

Scatter

Gather

(A) (B)
(C) (D) (E,F)

HLSHLS
HLS RTL

RTL

© Copyright 2021 Xilinx

Streaming Dataflow Pipeline for SpMV Block

7

Load-store

adaptor

(A)

M M

noc_1

(B)

mul

(C)

noc_2

(D)

hrb

(E)

acc

(F)

HBM

PC0

HBM

PC1

S S

Scatter

Gather

Load-store

adaptor

(A)

Load vector x

Stream matrix A

Store vector y

© Copyright 2021 Xilinx

Butterfly Fat Tree (BFT) NoC

8

Load-store

adaptor

(A)

M M

noc_1

(B)

mul

(C)

noc_2

(D)

hrb

(E)

acc

(F)

HBM

PC0

HBM

PC1

S S

Scatter

Gather

B

B

B

B

B

B

B

B

S

S

S

S

S

S

S

S

S

S

S

S

M
2

S
2

M
2

S
2

8x8 BFT NoC using

12 Switches (S)

8 URAM

Banks (B)

2x2 Switch (S) → 2 Split, 2 Merge

and 4 Elastic Buffers (EBs)

: 2-way Split

: 2-way Merge

: Elastic Buffer (EB)

S2

M2

 FPGA-optimized 2x2 switches (S) built around dataflow units (split, merge and elastic buffers)

 Flow-control using ready-valid handshake

 8x8 BFT NoC using multi-stage switching network (12 switches)

© Copyright 2021 Xilinx

SpMV appliance on HBM-enabled FPGA

9

HBM

PC0

HYDRA

0

M

HMSS IP

M

HBM

PC1

HBM

PC31

HBM

PC2

S S S S

Load-store

adaptor

(A)

M M

noc_1

(B)

mul

(C)

noc_2

(D)

hrb

(E)

acc

(F)

1

2

4

5

6

73

© Copyright 2021 Xilinx

SpMV appliance on HBM-enabled FPGA

9

HBM

PC0

HYDRA

0

M

HMSS IP

M

HBM

PC1

HBM

PC23

HBM

PC2

HYDRA

1

M M

S S S S

Load-store

adaptor

(A)

M M

noc_1

(B)

mul

(C)

noc_2

(D)

hrb

(E)

acc

(F)

1

2

4

5

6

73

© Copyright 2021 Xilinx

SpMV appliance on HBM-enabled FPGA

9

HBM

PC0

HYDRA

0

M

HMSS IP

M

HBM

PC1

HBM

PC23

HBM

PC2

HYDRA

11

M M

HYDRA

1

M M

S S S S

 SpMV appliance using HYDRA:

 One block is able to saturate two HBM
channels

 AXI master 32B interface:

 AXI slave 32B interface:

 AXI stream interfaces connecting six sub-
blocks (A,B,C,D,E and F) via AXI stream
channels (1,2,3,4,5,6 and 7)

 (1) and (2) are 8B wide 8 parallel channels

 (3) 4B wide 8 parallel channels

 (4), (5) and (6) are 6B wide 8 parallel
channels

 (7) 32B wide single channel

 Our implementation for SDNN challenge
uses 12 HYDRA blocks and 24 HBM PCs

M

S

1 2

3

4 5 6

7
Load-store

adaptor

(A)

M M

noc_1

(B)

mul

(C)

noc_2

(D)

hrb

(E)

acc

(F)

1

2

4

5

6

73

© Copyright 2021 Xilinx

SpMV appliance on HBM-enabled FPGA

9

pblocks

Pipes in

HMSS IP

HBM

PC0

HYDRA

0

M

HMSS IP

M

HBM

PC1

HBM

PC23

HBM

PC2

HYDRA

11

M M

HYDRA

1

M M

S S S S

Load-store

adaptor

(A)

M M

noc_1

(B)

mul

(C)

noc_2

(D)

hrb

(E)

acc

(F)

1

2

4

5

6

73

© Copyright 2021 Xilinx

Implementation on HBM-enabled FPGA

10

 SpMV appliance implemented on Alveo U280 (Vivado 2020.1)

 host app (OpenCL) for managing the entire appliance and data movement between host and appliance

 host communicates with U280 using PCIe Gen 3x16 (matrix A and vectors x,y)

 sparse matrix: COO-encoded, with FP32 data and 2-Byte indexes

 Timing closed at 275 MHz for 12 block design

 manual floorplan of each HYDRA block

 each block uses < 3.33% of device resources

 bias and ReLU adds extra eight FP32 adders and ReLU operators

 throughput of each block is up-to 8 non-zero (or edges) every cycle @ 275 MHz

Resources FFs LUTs DSPs BRAMs URAMs

HYDRA block 50K (2%) 25K (2%) 40 (0.5%) 24 (1.2%) 32 (3.33%)

pblocks

Pipes in

HMSS IP

S

H

E

L

L

© Copyright 2021 Xilinx

Challenge Results: 120-layer network (1024 neurons)

11

0

100

200

300

400

500

600

700

800

900

1000

0 2 4 6 8 10 12 14 16

R
u

n
ti

m
e

 i
n

 S
e

c
o

n
d

s

Number of Kernels on FPGA device

Effect of adding more kernels on runtime

Our approach on Alveo HBM

Memory BW Wall [1]

1. Huang, Sitao, et al. "Accelerating sparse deep neural networks on fpgas." IEEE High Performance Extreme Computing Conference (HPEC), 2019.

 Previous FPGA implementation[1] hits a wall at 7 blocks → low memory bandwidth available on the platform (only 30 GB/s)

 In our case: run time is scaling linearly by providing more blocks and more HBM channels

Previous FPGA

Implementation [1]

Ours on Alveo U280 with 12

HYDRA blocks

Best run time 252 seconds 63 seconds (4x faster)

Feature vector

storage

Replicate input vectors to

expose more read ports

No need to replicate (multi-

ported multi-banked buffer)

Neurons allowed Only 1K neurons (due to

replication on vectors)

All the neurons in the challenge

(1K, 4K, 16K, 64K)

Flexibility Require different bitstream for

each network

Single bitstream for all networks

in SDNN challenge

Arithmetic 16-bit Fixed point Floating point FP32

Implementation Memory bound on VC709 FPGA

Board

No longer memory bound on

Alveo U280 HBM platform

© Copyright 2021 Xilinx

Challenge Results: 120-layer networks for all neuron size

12

[3] Kepner, Jeremy, et al. "Sparse deep neural network graph challenge." IEEE High Performance Extreme Computing Conference (HPEC) 2019.

[9] Huang, Sitao, et al. "Accelerating sparse deep neural networks on fpgas." IEEE High Performance Extreme Computing Conference (HPEC), 2019.

376

385

344

329

3715

3701

3664

3763

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

1K

4K

16K

64K

INFERENCE THROUGHPUT IN MTEPS

F
O

U
R

 D
IF

F
E

R
E

N
T

 N
E

T
W

O
R

K
S

Comparison of inference throughput between Alveo U280 and CPU Baseline [3]

© Copyright 2021 Xilinx

Challenge Results: 10x speedup over CPU baseline

13

[3] Kepner, Jeremy, et al. "Sparse deep neural network graph challenge." IEEE High Performance Extreme Computing Conference (HPEC) 2019.

[9] Huang, Sitao, et al. "Accelerating sparse deep neural networks on fpgas." IEEE High Performance Extreme Computing Conference (HPEC), 2019.

© Copyright 2021 Xilinx

Conclusions and Future Work

14

pblocks

Pipes in

HMSS IP

S

H

E

L

L

 Presented a high-performance SpMV block, HYDRA, which supports

 completely unstructured sparse matrices

 floating point FP32 arithmetic

 Used HYDRA for constructing an appliance which can be

 used for sparse data processing

 adopted in both edge and data center (cloud) scenarios

 Demonstrated that the SpMV appliance can be used for DNN workloads

 by running a variety of sparse neural net workloads given as part of the SDNN challenge

 linear scaling in inference throughput performance as we activate up-to 12 blocks

 3.7 billion edges per second inference throughput on Alveo U280 platform

 10x faster execution compared to challenge CPU baseline

 Planning to extend this work

 to support Sparse Matrix by Sparse Matrix (SpMSpM) multiplication in HYDRA block

 to support reuse of streaming weight matrix across multiple feature vectors instead of just one

© Copyright 2021 Xilinx

Thank You

