XILINX

Sparse Deep Neural Network Acceleration on
HBM-Enabled FPGA Platform

Abhishek K Jain, Sharan Kumar, Aashish Tripathi, Dinesh Gaitonde
Xilinx Inc., San Jose, CA, United States

September 23, 2021
Graph Challenge Special, IEEE High Performance Extreme Computing (HPEC) Virtual Conference 2021

Sparse Deep Neural Network (SDNN) Challenge

» Bunch of sequential Layers
each layer has a weight matrix with very high sparsity (> 97%)

multiply input feature vector with weight matrix, followed by bias addition and ReLU
- example:y; =y, X Wy + by

- or compose as Sparse Matrix by Vector (SpMV) product: y," = W,T x y,"+ b,"

- neurons per layer ranges from 1K to 64K

- number of layers (L) ranges from 120 to 1920

- challenge contains 60,000 input feature vectors

» Mainly two approaches in previous submissions:

<)

3

_ Sparse Matrix by Matrix (SpMM) Sparse Matrix by Vector (SpMV) 3
Inputs Use all input feature vectors at once One feature vector processing at a D
- large matrix (batch size of 60000) time > one vector (batch size of 1) =

E

For 120-layer 120 x 1 =120 SpMM calls 120 x 60K = 7.2 million SpMV calls §
network]
e!

S

>

Z

1 © Copyright 2021 Xilinx

Input Output
Features Classification
yo ‘ ' \\‘t :. y4
5 \wﬁ,.‘;w; :
5N\ @ 5N @ 252
\
Number of Layers, L (120, 480 or 1920)
A

- N

& XILINX.

Sparse Deep Neural Network (SDNN) Challenge

) Input Output
» Bunch of sequential Layers Features \\\'/,/g Classification
- each layer has a weight matrix with very high sparsity (> 97%) Yo ;?:5.’515 BB Vs

» Mainly two approaches in previous submissions:

_ Sparse Matrix by Matrix (SpMM) Sparse Matrix by Vector (SpMV)

Inputs

multiply input feature vector with weight matrix, followed by bias addition and ReLU

example: y; =y, X Wy + by

or compose as Sparse Matrix by Vector (SpMV) product: y,;T =W " x y," + b,"

neurons per layer ranges from 1K to 64K

T, RenN S
e %
ZrAn O XS
//'“\\ \.:OY‘\‘\\
PO el
£ //“}

number of layers (L) ranges from 120 to 1920

challenge contains 60,000 input feature vectors

Use all input feature vectors at once
- large matrix (batch size of 60000)

For 120-layer 120 x 1 =120 SpMM calls

network

One feature vector processing at a
time - one vector (batch size of 1)

120 x 60K = 7.2 million SpMV calls

HNEEENEN .- EEEEEEEN
& XILINX.

Number of Images (60000)

© Copyright 2021 Xilinx

Sparse Matrix Vector Multiplication (SpMV)

» Key primitive for a wide range of ML, HPC and Graph problems
examples: sparse neural nets, conjugate gradient, pagerank etc.

» Traditional CPU/GPU platforms do not perform well for SpMV workload:

due to highly irregular and random memory access pattern (very high cache miss rate)

1.0 --1.0 -- 1.0 (1.0) (1.0) + (1.0)(1.0)
* 1.0 - 0.0
-- =1 1 1.0 1 (1.0) + (1. (1.0)
1.0 1.0 1.0 1.0 1.0 (1.0)(1.0) + (1.0)(1.0) + (1.0)(12.0) +(1.0)(1.0)
sparse matrix dense vector dense vector
A X y

2 © Copyright 2021 Xilinx

Table: Matrix A encoded in COO format
row 0 0 2 2 3 3 3 3
col 0 2 2 3 0 1 2 3

for(i = 0; 1 < NNZs; i++){
y[row[i]] += data[i] * x[col[i1]];

}

Note: NNZs = Number of non-zeros

& XILINX.

Sparse Matrix Vector Multiplication (SpMV)

v

Key primitive for a wide range of ML, HPC and Graph problems

examples: sparse neural nets, conjugate gradient, pagerank etc.

» Traditional CPU/GPU platforms do not perform well for SpMV workload:

due to highly irregular and random memory access pattern (very high cache miss rate)

» FPGA platforms are attractive for SpMV due to:
the use of many block memories (BRAMs/URAMS) to hold x and y vectors on-chip
the ability to avoid off-chip random memory access
streaming multiple non-zeros (NZs) in parallel from off-chip DRAM

1.0 --1.0 -- 1.0 (1.0) (1.0) + (1.0)(1.0)
* 1.0 - 0.0
1.0 (1.0) + (1.0)
1.0 1.0 1.0 1.0 1.0 (1.0)(1.0) + (1.0)(1.0) + (1.0)(12.0) +(1.0)(1.0)
sparse matrix dense vector dense vector
A X y

2 © Copyright 2021 Xilinx

Table: Matrix A encoded in COO format
row 0 0 2 2 3 3 3 3
col 0 2 2 3 0 1 2 3

for(i = 0; 1 < NNZs; i++){
y[row[i]] += data[i] * x[col[i1]];

}

Note: NNZs = Number of non-zeros

& XILINX.

Streaming Dataflow Pipeline

v

Common theme of Streaming Dataflow Pipeline
Two stages: Scatter and Gather

Scatter
a multi-ported buffer for storing x
perform N reads in parallel, multiply with corresponding data

Gather
a multi-ported buffer for storing y
perform N reads in parallel,
add with corresponding data and write back in 'y

for(i = 0; 1 < NNZs; i++){
y[row[i]] += data[i] * x[col[i]l];
}

{ data[i], row]i], col[i] }

for(i =

=)

© Copyright 2021 Xilinx

}

y[row[i]]

y[row[i+1]]
y[row[i+/]]
ylrow[i+3]]
y[row[i+4]]

y[row[i+N—;ii

Scatter

+=
+=
+=
+=
+=

|

X

°
°
°

[

0; i < NNZs; i=i+N) {

datal[il]

data[i+]
datal[i+]
datal[i+]
datal[i+']

data[i+N- 1]

* * % * *

Gather W,

x[col[i]];

X[col[i+1]]1;
X[col[i+]11;
X[col[i+ 11,
X[col[i+7]1]1;

X[col[i+N=-111;

& XILINX.

Streaming Dataflow Pipeline

» Banked Vector Buffer (BVB) based SpMV 1l
- pipeline for streaming 32 non-zeros .
- scatter > 32 banks of block memories + two crossbars Scatter Gather

Output !
Buffer >

1

'

1

L

'

Fused '

DRAM 1 - Accumulator 1 :

slot 1 i '

. '

. - '

slot NIZE 1 Matrix Fetcher Row IDs '
memoi H

Wort '

H= Column IDs Ve :

DRAM 2 Fused '

slot leog i Channel 2 Accumulator pm :

: " LI] '

. '

slotN [! {1177 :

WOr 1 .

i '

' Channel N :

1. Fowers, Jeremy, Kalin Ovtcharov, Karin Strauss, Eric S. Chung, and Greg Stitt. "A high memory bandwidth fpga accelerator for sparse matrix-vector multiplication." FCCM 2014

v
4 © Copyright 2021 Xilinx (A Xl LINX

Sparse DNN Accelerator around FPGA based SpMV

» Sparse DNN accelerator!
- SpMV as a building block
- 15 blocks on the device = 15 parallel SpMV calls
- 5x higher energy efficiency compared to the CPU baseline
- rely on low DRAM bandwidth (30 GB/s) on FPGA board (VC709)

» Scaling limitations and Performance bottlenecks
= require input vector replication (16 buffers)
- limited on-chip memory capacity - only small-scale networks (1K neuron)

FPGA Chip-— - -

Sparse DNN Accelerator

buf_a_1

Acc] buf_a_2
\\ = i 2 E
- — buf 2 Toewo L L LT T T

Sparse
dotprod

Sparse Sparse |
dotprod dotprod

wr b [T T T T T I T I ITLL]

FPGA based Sparse DNN Accelerator from HPEC 2019

1. Huang, Sitao, et al. "Accelerating sparse deep neural networks on fpgas." IEEE High Performance Extreme Computing Conference (HPEC), 2019.

S © Copyright 2021 Xilinx

& XILINX.

Sparse DNN Accelerator around FPGA based SpMV

» Scaling limitations and Performance bottlenecks
- multiple blocks share the bandwidth of a DRAM channel

- bandwidth utilization and performance improves when activating up-to 7 Effect of adding more kernels on runtime

blocks
- performance and parallelization is limited by DRAM memory bandwidth

Memory BW Wall 1

%)
°
c
o
o
[}
n
c
)
S
=
c
=
o

4 6 8 10 12
Number of Kernels on FPGA device

1. Huang, Sitao, et al. "Accelerating sparse deep neural networks on fpgas." IEEE High Performance Extreme Computing Conference (HPEC), 2019.

& XILINX.

6 © Copyright 2021 Xilinx

Sparse DNN Accelerator around FPGA based SpMV

» Scaling limitations and Performance bottlenecks
- multiple blocks share the bandwidth of a DRAM channel _)

- bandwidth utilization and performance improves when activating up-to 7 Effect of adding more kernels on runtime
blocks

- performance and parallelization is limited by DRAM memory bandwidth

» Our approach

- avoid replication of input feature vector - implement all networks (1K,
4K, 16K and 64K neurons)

- uses multi-ported multi-banked buffer (based on URAMs and NoC)

- Each block has dedicated HBM channels - No need of sharing
Memory BW Wall [

%)
°
c
o
o
[}
n
c
)
S
=
c
=
o

- memory bandwidth - no longer the performance bottleneck
- supports floating point FP32 arithmetic

- supports completely unstructured sparse matrices (standard encoding Our approach on Alveo HBM
format: COO) 0
2 4 6 8 10 12

Number of Kernels on FPGA device

1. Huang, Sitao, et al. "Accelerating sparse deep neural networks on fpgas." IEEE High Performance Extreme Computing Conference (HPEC), 2019.

& XILINX.

6 © Copyright 2021 Xilinx

Streaming Dataflow Pipeline for SpMV Block

» Load-store adaptor to supply data in and out of compute pipeline
Each HBM PC - 32-Byte (32B) interface - packs 4 non-zeros
Each non-zero - 8B packed tuple - {4B FP32 value, 2B row id, 2B col id}

» Operations for SpMV:
load vector x from 32B memory interface PC1 (8 FP32 entries in parallel)
stream matrix A from PCO and PC1 (8 non-zero in parallel, 4 from PCO and 4 from PC1)
store vector y to PC1 (8 FP32 entries in parallel)

» Streaming dataflow pipeline built using
FPGA-optimized NoC RTL (B and D) and HLS-generated building blocks (A, C and F)

Load-store

adaptor

Scatter p% Gather W,

7 © Copyright 2021 Xilinx (A Xl LINX

Streaming Dataflow Pipeline for SpMV Block

hrb
e | (E)

m00_axi
mOLl_axi

LSU_Control MPM MUL
(+] B — + 5_AXIS
mo0_axi = e + SAXIS 0 —i 4 ins_V
s_axi_control [» ii| 4+ s_axi_control mO1_axi ;mam data in ¥ 4= S AXIS 1 M AXIS O + + ins_v1
+ stream_wide y V.V stream_wide mat0 ¥ V : ream date in y1 | TeSm_dsta outV 4 + SAXISZ M_AXIS_1 4 4 ins_v2
Ll 4 stream_mon_recv V_V stream_wide_mat1 ¥ V. tream data in yp SUTEM_gatanuVL 4 + SAXIS3 M_AXIS 2 4 + ins_v3 |
ap_clk [D—#— ap_clk stream_wide_x_¥_V I _;_ eiroam dat in vy STEAM-Gata out V2 + SAXIS A M_AXIES_3 4 + ins_vd M_AKS
ap_rst_n [—=a— ap_rstn stream_taken_V_V = _rst. | AXIS 5 4 I I iroam data i g SUEAM_dataout V3 4 + SAXISE M_AXIS_4 4 + ins_vs stream_out_mnz_count_¥_V 4=
stream_mon_send_V_V 4 M_AXIS B + = _I: - o B P slnaim_:di_uul_:: ¥ —{ 4 SAXIS & M_AXIS S 4 + ins_V6
M_AXIS 7 ~ " "= - stream_data out) i
gt e vt 4| [k maws.s 4] 4. e e count
+ stream_data_in_V7 - - - - - - -

ey
HLS / RTL Cr—) (E,F) Scatter

Load-store

adaptor

& XILINX.

7 © Copyright 2021 Xilinx

Streaming Dataflow Pipeline for SpMV Block

roid example (wide_mat_dt *matrix, wide_vec_dt *x, wide_wvec_dt *y, l -

stream wide mat dt &stream wide mat, stream wide wvec dt &stream wide x,
stream token_dt &stream token, stream wide vec_dt &stream wide_y,
int mat_size, int vec_size)

Load-store

lGather
adaptor
w:de vec_ dr_ temp x;

(A)

noc_1
;1< vec _size; i++) { N
-agma HLS PIPELINE II=1 (B)
temp x = x[i]; Load vector x
stream wide x.write(temp_x);
}
wide mat_dt temp;
forﬁ_ ;1 < mat_size; i++) {

#pr
#pr IFELINE II

temp = matrix[i]; Stream matrix A
stream wide mat.write(temp); Load'Store

adaptor

(A)

S
HBM
PCO

7 © Copyright 2021 Xilinx (A Xl LINX

}

token_dt token = vec_size*2 +
stream_token.write (token) ;

wide wec dt temp_y:

fort"'- i=20; i< vec_size; i++) {

$pragma HLS PIPELINE IT= Store vector y
t=rr[: y = rtrﬂarr L wide y.read():
yI[i]l = temp_y;

Butterfly Fat Tree (BFT) NoC

» FPGA-optimized 2x2 switches (S) built around dataflow units (split, merge and elastic buffers)
» Flow-control using ready-valid handshake

» 8x8 BFT NoC using multi-stage switching network (12 switches)

2x2 Switch (S) - 2 Split, 2 Merge _
and 4 Elastic Buffers (EBs) 8x8 BFT NoC using 8 URAM
12 Switches (S) Banks (B)

— B
S
— B
A B
\

Load-store

| i1 18 adaptor
(A)

-~
~

: 2-way Split \\‘\\\\
: 2-way Merge 1

—
=P : Elastic Buffer (EB)
—_—

8 © Copyright 2021 Xilinx (A Xl LINX

SpMV appliance on HBM-enabled FPGA

S
HBM

v
9 © Copyright 2021 Xilinx (A Xl LINX

SpMV appliance on HBM-enabled FPGA

HYDRA HYDRA
0] 1

HBM
PC2

v
9 © Copyright 2021 Xilinx (A Xl LINX

SpMV appliance on HBM-enabled FPGA

» SpMV appliance using HYDRA:

- One block is able to saturate two HBM
channels

- AXI master 32B interface:
- AXI slave 32B interface:

- AXIl stream interfaces connecting six sub-
blocks (A,B,C,D,E and F) via AXI stream
channels (1,2,3,4,5,6 and 7)

0 and eare 8B wide 8 parallel channels
4B wide 8 parallel channels

- 9163”‘3'6 are 6B wide 8 parallel

channels
- 0 32B wide single channel
_ _ Load-store
= Our implementation for SDNN challenge adaptor

uses 12 HYDRA blocks and 24 HBM PCs

HBM
PC2

& XILINX.

9 © Copyright 2021 Xilinx

SpMV appliance on HBM-enabled FPGA

| « 0 1
i 48

pblocks

Pipes in
HMSS IP

HBM

v
9 © Copyright 2021 Xilinx iA Xl LINX

Implementation on HBM-enabled FPGA sblocks

» SpMV appliance implemented on Alveo U280 (Vivado 2020.1)
- host app (OpenCL) for managing the entire appliance and data movement between host and appliance
- host communicates with U280 using PCle Gen 3x16 (matrix A and vectors x,y)
- sparse matrix: COO-encoded, with FP32 data and 2-Byte indexes
» Timing closed at 275 MHz for 12 block design ﬁ'&eSSS'TP
- manual floorplan of each HYDRA block
- each block uses < 3.33% of device resources
- bias and ReLU adds extra eight FP32 adders and ReLU operators
- throughput of each block is up-to 8 non-zero (or edges) every cycle @ 275 MHz

HYDRA block 50K (2%) 25K (2%) 40 (0.5%) 24 (1.2%) 32 (3.33%)

10 & XILINX.

© Copyright 2021 Xilinx

Challenge Results: 120-layer network (1024 neurons)

» Previous FPGA implementation! hits a wall at 7 blocks - low memory bandwidth available on the platform (only 30 GB/s)

» In our case: run time is scaling linearly by providing more blocks and more HBM channels

Previous FPGA Ours on Alveo U280 with 12
Implementation [1] HYDRA blocks

Effect of adding more kernels on runtime

Best run time 252 seconds 63 seconds (4x faster)
n
Feature vector Replicate input vectors to No need to replicate (multi- e
storage expose more read ports ported multi-banked buffer) §
Neurons allowed Only 1K neurons (due to All the neurons in the challenge UC)
replication on vectors) (1K, 4K, 16K, 64K) ‘©
S
Flexibility Require different bitstream for Single bitstream for all networks =
each network in SDNN challenge = Memory BW Wall (1]
Arithmetic 16-bit Fixed point Floating point FP32
Implementation Memory bound on VC709 FPGA No longer memory bound on
Board Alveo U280 HBM platform Our approach on Alveo HBM

2 4 6 8 10 12
Number of Kernels on FPGA device

1. Huang, Sitao, et al. "Accelerating sparse deep neural networks on fpgas." IEEE High Performance Extreme Computing Conference (HPEC), 2019.

1 © Copyright 2021 Xilinx (A Xl LINX

Challenge Results: 120-layer networks for all neuron size

Comparison of inference throughput between Alveo U280 and CPU Baseline!s!

3763

%
A
o
o
=
I—
LU
Z
I—
z
L
x
LLj
LL
LL
&)
x
)
O
LL

2000 3000 4000 5000 6000 7000 8000 9000
INFERENCE THROUGHPUT IN MTEPS

[3] Kepner, Jeremy, et al. "Sparse deep neural network graph challenge.” IEEE High Performance Extreme Computing Conference (HPEC) 2019.
[9] Huang, Sitao, et al. "Accelerating sparse deep neural networks on fpgas." IEEE High Performance Extreme Computing Conference (HPEC), 2019.

v
© Copyright 2021 Xilinx (A Xl LINX

Challenge Results: 10x speedup over CPU baseline

13

Neurons Layers Connections Time Inference Time Inference Time Inference
per Layer (edges) | (Seconds) Rate | (seconds) Rate | (seconds) Rate
CPU baseline [3] [9] Ours
1024 120 3932160 626 376x10° 251 940x10° 63.5 3715x10°
1024 480 15728640 2440 386x10° — — 251 3759x10°
1024 1920 62914560 9760 386x10° - - 997 3786 x10°
4096 120 15728640 2446 385x10° - — 255 3701x10°
4096 480 62914560 10229 369x10° - — 985 3832x10°
4096 1920 251658240 40245 375x10° - — 3917 3854 x10°
16384 120 62914560 10956 344 x10° — — 1030 3664 x10°
16384 480 251658240 45268 333 x10° - — 3916 3855x10°
16384 1920 1006632960 179401 336x10° - - 15664 3856x10°
65536 120 251658240 45813 329x10° - - 4012 3763x10°
65536 480 1006632960 202393 299x10° - — 16327 3699 x10°
65536 1920 4026531840 - - - - 63478 3699 x10°
[3] Kepner, Jeremy, et al. "Sparse deep neural network graph challenge." IEEE High Performance Extreme Computing Conference (HPEC) 2019.
[9] Huang, Sitao, et al. "Accelerating sparse deep neural networks on fpgas." IEEE High Performance Extreme Computing Conference (HPEC), 2019.
& XILINX.

© Copyright 2021 Xilinx

Conclusions and Future Work oblocks

» Presented a high-performance SpMV block, HYDRA, which supports

- completely unstructured sparse matrices
- floating point FP32 arithmetic

» Used HYDRA for constructing an appliance which can be

- used for sparse data processing Pipes in

HMSS IP
- adopted in both edge and data center (cloud) scenarios

» Demonstrated that the SpMV appliance can be used for DNN workloads
- by running a variety of sparse neural net workloads given as part of the SDNN challenge
- linear scaling in inference throughput performance as we activate up-to 12 blocks
- 3.7 billion edges per second inference throughput on Alveo U280 platform

- 10x faster execution compared to challenge CPU baseline

v

Planning to extend this work
- to support Sparse Matrix by Sparse Matrix (SpMSpM) multiplication in HYDRA block
- to support reuse of streaming weight matrix across multiple feature vectors instead of just one

& XILINX.

14 © Copyright 2021 Xilinx

XILINX

Thank You

