Microscope on Memory: MPSoC-enabled Computer Memory System Assessments

Abhishek Kumar Jain, Scott Lloyd, Maya Gokhale (Center for Applied Scientific Computing, LLNL)

Introduction

- Emerging memories display a wide range of bandwidths, latencies, and capacities
- Potential for logic and compute functions colocated with the memory
- Challenging for the computer architect to navigate the design space of potential memory configurations
- Challenging for the application developer to assess performance implications
- Trace-driven simulation using architecture simulators (such as gem5) – very slow
- Emulation of complete system on FPGAs –
 Fast but labor intensive
- Our approach: Use embedded CPU cores and cache hierarchy in MPSoC as components for developing Logic in Memory Emulator (LiME)

HP0,1

Not Used

Main Switch

Coherent Interconnect

L2 Cache

HP2,3

DDR Memory

Processing System (PS)

Logic in Memory Emulator (LiME)

- Route memory traffic through hardware IP blocks deployed in the programmable logic
- Non-intrusively record memory transactions generated by an application
- Run applications with a slowdown of only 20x from real time
- Configurable memory subsystem latency from 10 ns to 174 us in 0.16 ns increments
- Enable tracing and statistics gathering only in regions of interest. This reduces the amount of data captured during analysis.

Component	Actual	Emulated
Memory Bandwidth (PL)	4.8 GB/s	96 GB/s
Memory Latency (PL)	230 ns	12 ns (too low)
Memory Latency (PL) w/delay	230 ns	12+88 = 100 ns
CPU Frequency	137.5 MHz	2.75 GHz
CPU Bandwidth	2.2 GB/s	44 GB/s
Accelerator Frequency	62.5 MHz	1.25 GHz
Accelerator Bandwidth	Up to 4.8 GB/s	Up to 96 GB/s

Use-Case: Memory trace capture and logging

- Memory traces include the address, length and timestamp for each event
- Time-stamped memory traces can be replayed on a different memory system to study bank conflict, strided access patterns, and dependency chains such as pointer chasing
- C support library provides simple macros to turn a memory trace on and off

Use-Case: Evaluation of near-memory accelerators

CPU •••

CPU

- We evaluate data rearrangement engine (DRE), basically a gather/scatter unit, collocated with a memory subsystem
- CPU: 2.75 GHz single core processor, DRE runs at 1.25 GHz
- We compare performance of CPU-only with CPU+DRE for Random Access (0.5 GB size table and 4M updates)
- Results show substantial speedup using a DRE

- 1. A. K. Jain, G. S. Lloyd, and M. B. Gokhale. "Microscope on Memory: MPSoC-enabled Computer Memory System Assessments." FCCM 2018
- 2. G. S. Lloyd, and M. B. Gokhale. "In-memory data rearrangement for irregular, data-intensive computing." IEEE Computer 2015
- 3. LiME Open Source Release for ZC706 Platform: https://bitbucket.org/PerMA/emulator_st/