
NANYANG TECHNOLOGICAL UNIVERSITY

EMBEDDING FPGA OVERLAYS INTO THE XILINX ZYNQ FOR

RUNTIME MANAGEMENT USING RTOS

by

SYED ALI ASGHAR

(G1402228G)

A Dissertation Submitted in partial fulfillment of

the requirements for the degree of

Master of Science in Embedded Systems

Supervised by

Assoc. Prof. Douglas L. Maskell

July 2015

Contents

1 Introduction 2

1.1 Motivation . 2

1.2 Contribution . 3

1.3 Organization . 3

2 Background and Literature Survey 4

2.1 Zynq as a hybrid computing platform 4

2.2 FPGA Overlay Architectures . 6

2.3 Operating System for Run time management 10

3 RTOS as a run time manager 12

3.1 Introduction . 12

3.2 Performance Metrics of an RTOS . 12

3.3 Experimental Evaluation . 15

3.4 Summary . 20

4 Embedding Overlay into the Zynq 21

4.1 Introduction . 21

4.2 System Architecture . 22

4.3 Run time Management . 26

4.4 Overlay sharing among multiple HW tasks 27

4.5 Summary . 28

i

ii CONTENTS

5 Runtime management of Overlay using RTOS 29

5.1 Introduction . 29

5.2 Resource Management . 30

5.3 Context Switch Overheads . 32

5.4 Summary . 34

6 Conclusions and Future Work 35

6.1 Conclusions . 35

6.2 Future work . 36

Bibliography 37

List of Figures

2.1 Block Diagram of the Hybrid Platform. 5

2.2 DySER Interfacing with Host Processor 7

2.3 Intermediate Fabric (IF) Interfacing with Host Processor 7

2.4 Intermediate Fabrics as Island-style Overlay. 8

2.5 Nearest-neighbor connected Mesh of Functional units. 9

2.6 DySER functional unit. 9

3.1 Context Switching Time. 13

3.2 Pre-emption Time. 14

3.3 Message Queue. [1] . 14

3.4 Message passing latency. 15

3.5 Context Switching Experiment Flow Chart. 16

3.6 Pre-emption Time Experiment Flow Chart. 16

3.7 Message Passing Time Experiment Flow Chart. 17

3.8 Experimental Setup Zed Board. 18

3.9 Experimental Setup STM32. 19

4.1 Intermediate Fabric (IF) Interfacing with Host Processor 22

4.2 Block Diagram of the IF overlay. 23

4.3 Block Diagram of the Data Plane. 24

4.4 Internal architecture of processing element. 24

4.5 State-machine based Context Sequencer. 25

4.6 Overlay Sharing among multiple HW tasks 27

iii

iv LIST OF FIGURES

5.1 Overlay Sharing among multiple HW tasks 30

5.2 Critical Section by diabling Interrupts. 31

5.3 Resource protection by schedular locking. 32

5.4 Resource protection by mutex/semaphore. 32

List of Tables

3.1 uCOS-III: Benchmarks On Xilinx Zynq (ARM Cortex-A9) 18

3.2 uCOS-III: Benchmarks On STM32F107 (ARM Cortex-M3) 19

4.1 Source Code Transformation . 26

5.1 Context Switching Time . 33

v

Abbreviations

ACP Accelerator Coherency Port

AXI Advanced eXtensible Interface

DMA Direct Memory Access

DPR Dynamic Partial Reconfiguration

FPGA Field Programmable gate array

GP General purpose

HLS High Level Synthesis

HP High Performance

HW Hardware

IF Intermediate Fabric

MMU Memory Management Unit

OCM On-Chip Memory

PE Processing Element

PL Programmable Logic

PS Processing system

RTL Register Transfer Level

RTOS Real Time Operating System

vi

Abstract

Coarse-grained FPGA overlay architectures have been shown to be effective when

paired with general purpose processors, offering software-like programmability, fast

compilation, application portability and improved design productivity. Run time

management of overlay architectures can be done using a bare metal software ap-

plication, a general purpose operating system or even using a Real Time Operating

System (RTOS). The factor that dictates the use of runtime manager is the amount

of control desired over the platform response. A platform that must respond rapidly

to many different deadlines and different priorities and takes care of shared resources

will require a more complicated and sophisticated runtime manager. An RTOS such

as uC/OS-III seems to be a better run time manager in scenarios where overlay is used

as a shared resource for executing compute kernels. This report first presents experi-

ments to evaluate the performance of a commercial RTOS (uC/OS-III) on the Xilinx

Zynq by quantifying performance metrics such as context switching time, preemption

time etc. We then describe the process of embedding an FPGA overlay architecture

into the Xilinx Zynq platform. We also demonstrate the runtime management of

software and hardware tasks using uC/OS-III. Finally, we present use-case scenarios

and preferred scheduling mechanisms by considering the overlay as a shared resource

among tasks requiring hardware acceleration.

Acknowledgment

Firstly, I would like to extend my sincere gratitude to the following people who never

ceased to help and support me in every way possible for the completion of this project.

Associate Professor Dr. Douglas Leslie Maskell, the project supervisor, for the

unwavering guidance, insightful comments and encouragement. If not for his support,

I would have not been able to complete this project.

The completion of this project could also not have been possible without the

participation and assistance of Mr. Abhishek Kumar Jain. I really appreciate all the

efforts he has put into this project.

Finally, I would like to thank Mr. Jeremian Chua of CHIPES for the technical ser-

vices and facilities he made available in the Lab which contributed positively toward

my project.

1

Chapter 1

Introduction

1.1 Motivation

Embedded reconfigurable platforms, such as the Xilinx Zynq, couple one or more

general purpose processors with Field Programmable gate array (FPGA). Poor de-

sign productivity for these platforms has been a key limiting factor, restricting their

effective use to experts in hardware design [2]. Coarse-grained FPGA overlay architec-

tures [3, 4, 5, 6, 7, 8, 9, 10] have been shown to be effective when paired with general

purpose processors, offering software-like programmability, fast compilation, applica-

tion portability and improved design productivity. Run time management of overlay

architectures can be done using a bare metal software application, a general purpose

operating system or even using an RTOS. The factor that dictates the use of runtime

manager is the amount of control desired over the platform response. A platform that

must respond rapidly to many different deadlines and different priorities and takes

care of shared resources will require a more complicated and sophisticated runtime

manager. An RTOS such as uC/OS-III seems to be a better run time manager in

scenarios where overlay is used as a shared resource for executing compute kernels. In

our work, we aim to conduct the analysis of a real time operating system (uC/OS-III)

as a run time manager of software and hardware tasks on the Xilinx Zynq Platform

and present use-case scenarios and preferred scheduling mechanisms by considering

the overlay as a shared resource among tasks requiring hardware acceleration.

2

1.2. CONTRIBUTION 3

1.2 Contribution

We first present experiments to evaluate the performance of a commercial RTOS

(uC/OS-III) on the Xilinx Zynq by quantifying performance metrics such as context

switching time, preemption time etc. We then present an approach for embedding

FPGA overlay architecture into the Xilinx Zynq platform. We also demonstrate the

runtime management of software and hardware tasks using uC/OS-III. Finally we

present use-case scenarios and preferred scheduling mechanisms by considering the

overlay as a shared resource among tasks requiring hardware acceleration.

1.3 Organization

The remainder of the report is organized as follows: Chapter 2 presents background

information on the Xilinx Zynq platform, overlay architectures and run time man-

agement systems. In chapter 3, we present experiments to evaluate the performance

of a commercial RTOS (uC/OS-III) on the Xilinx Zynq by quantifying performance

metrics. In chapter 4, we present our approach for embedding FPGA overlay archi-

tecture into Zynq. Chapter 5, demonstrates the runtime management of software

and hardware tasks on the platform using uC/OS-III by considering the overlay as a

shared resource for the tasks requiring hardware acceleration.

Chapter 2

Background and Literature Survey

2.1 Zynq as a hybrid computing platform

Both major FPGA vendors have recently introduced hybrid platforms consisting of

high performance processors coupled with programmable logic. These architectures

partition the hardware into a Processing system (PS), containing one or more pro-

cessors along with peripherals, bus and memory interfaces, and other infrastructure,

and the Programmable Logic (PL) where custom hardware can be implemented. In

this report, we focus on the Xilinx Zynq-7000. The Zynq-7000 contains a dual-core

ARM Cortex A9 processor equipped with a double-precision floating point unit, com-

monly used peripherals, a dedicated hard Direct Memory Access (DMA) controller

(PS-DMA), L1 and L2 cache, On-Chip Memory (OCM) and external memory inter-

faces. It also contains several Advanced eXtensible Interface (AXI) based interfaces

to the programmable logic (PL). The AXI interfaces to the fabric include:

� AXI ACP – One 64-bit AXI Accelerator Coherency Port (ACP) slave interface

for coherent access to CPU memory

� AXI HP – four 64-bit/32-bit configurable, buffered AXI High Performance (HP)

slave interfaces with direct access to DDR memory and OCM

� AXI GP – two 32-bit master and two 32-bit AXI General purpose (GP) slave

interfaces

4

2.1. ZYNQ AS A HYBRID COMPUTING PLATFORM 5

Figure 2.1: Block Diagram of the Hybrid Platform.

For more than a decade, researchers have shown that FPGAs can accelerate a

wide variety of software, in some cases by several orders of magnitude compared to

state-of-the-art general purpose processors [11, 12]. FPGA accelerators are normally

designed at a low level of abstraction (typically Register Transfer Level (RTL)) in

order to obtain an efficient implementation, and this can consume more time and

make reuse difficult when compared with a similar software design. As such, design

productivity remains a major challenge, restricting the effective use of FPGA accel-

erators to niche disciplines involving highly skilled hardware engineers. High Level

Synthesis (HLS) has been proposed as a way of addressing the limited design produc-

tivity and manpower capabilities associated with hardware design [13, 14]. However,

achieving desired performance often still requires detailed low-level design engineer-

ing effort that is hard for non-experts. Even as HLS tools improve in efficiency,

prohibitive compilation times (specifically the place and route times in the backend

flow) still limit productivity and mainstream adoption [2]. Hence, there is a growing

need to make FPGAs more accessible to application developers who are accustomed

to software API abstractions and fast development cycles [15].

6 CHAPTER 2. BACKGROUND AND LITERATURE SURVEY

Coarse grained configurable overlay architectures have been proposed as a method

to overcome some of these issues [3, 4, 5, 6, 7, 10]. Overlays can be used for reducing

the prohibitive compilation time required to map an application to the conventional

fine-grained FPGA fabric. Overlays have also been shown to be effective when paired

with general purpose processors [16, 4] as this allows the hardware fabric to be viewed

as a software-managed hardware task, enabling more shared use. We describe FPGA

Overlay architectures in the next section.

2.2 FPGA Overlay Architectures

Overlay architectures consist of a regular arrangement of coarse grained routing and

compute resources. The key attraction of overlay architectures is software-like pro-

grammability through mapping from high level descriptions, application portability

across devices, design reuse, fast compilation by avoiding the complex FPGA im-

plementation flow, and hence, improved design productivity. Accelerators can be

described at a higher level of abstraction and compiling it for overlays is several or-

ders of magnitude faster than for the fine grained FPGAs.. An overlay provides a

leaner mechanism for hardware task management at runtime as there is no need to

prepare distinct bitstreams in advance using vendor-specific compilation (synthesis,

map, place and route) tools. Instead, the behaviour of the overlay can be modified

using software defined overlay configurations.

Despite having the implementation of the overlay architecture and its performance

gain, there is no guarantee that it will surely provide reduction in kernel execution

time. It depends heavily on how the overlay is interfaced to the host processor,

communication mechanism between overlay, host processor and the external memory,

communication bandwidth and latencies etc. Researchers have shown the effective

use of coarse grained overlay architectures by pairing them with host processors as a

coprocessor [17, 16] or as a part of the processor’s pipeline [18]. Fig. 2.2 shows the

integration of DySER [18, 19] overlay into the pipeline of a processor. Integrating an

overlay within a processor pipeline can provide huge performance and energy efficiency

at the expense of complete redesign of processor micro-architecture. Another possible

2.2. FPGA OVERLAY ARCHITECTURES 7

Figure 2.2: DySER Interfacing with Host Processor

DDR

ARM Processor

DDR
Controller

Hard DMA

HP PortGP Port

Central
Interconnect

M M S S S S S S

PS

PL

BRAM BRAM BRAM BRAM...

IF Region
Static

Region

AXI4

AXI-Lite

Figure 2.3: Intermediate Fabric (IF) Interfacing with Host Processor

approach is to interface the overlay (as a co-processor) with the host processor via

standard communication interfaces. One example of pairing the overlay (Intermediate

Fabric (IF) Overlay [5]) with a high performance ARM processor via an AXI interface

in a commercial computing platform (the Xilinx Zynq[20]) is shown in Fig. 4.1.

An overlay architecture, referred to as an intermediate fabric (IF) [5], [21] was

proposed to support near-instantaneous placement and routing. Standard VPR [22]

algorithms were used for placement and routing of compute kernels. Unlike a physical

device, whose architecture must support many applications, IFs have been specialized

8 CHAPTER 2. BACKGROUND AND LITERATURE SURVEY

for particular domains or even individual applications. Such specialization hides the

complexity of fine-grained COTS devices, thus enabling fast place and route (700x

speedup over vendor tools) at the cost of significant area (34% - 44%) and performance

(7%) overhead when implemented on an Altera Stratix III FPGA [21]. It consists

of 192 heterogeneous functional units comprising 64 multipliers, 64 subtracters, 63

adders, one square root unit, and five delay elements with a 16-bit datapath and

supported the fully parallel, pipelined implementation of compute kernels.

Figure 2.4: Intermediate Fabrics as Island-style Overlay.

Mesh of FU based Overlay executes a given DFG by mapping the graph nodes

to the FUs and by configuring the routing logic to establish inter-FU connections

that reflect the graph edges. Multiple instances of the DFGs are then executed in

a pipelined fashion on the overlay to achieve high performance. It consisted of a

24×16 overlay with a nearest-neighbor-connected mesh of 214 routing cells and 170

heterogeneous functional units (FU) comprising 51 multipliers, 103 adders and 16

shift units.

DySER [7, 19] was proposed as a coarse grained overlay architecture for improving

the performance of general purpose processors. It was originally designed as a het-

erogeneous array of 64 functional units interconnected with a circuit-switched mesh

network and implemented on ASIC. The DySER architecture was then improved

and prototyped, along with the OpenSPARC T1 RTL, on a Xilinx XC5VLX110T

FPGA [18]. However, due to excessive LUT consumption, it was only possible to fit

a 2x2 32-bit DySER, a 4x4 8-bit DySER or an 8x8 2-bit DySER on the FPGA. An

adapted version of a 6x6 16-bit DySER was implemented on a Xilinx Zynq-7020 [9].

2.2. FPGA OVERLAY ARCHITECTURES 9

Figure 2.5: Nearest-neighbor connected Mesh of Functional units.

The larger DySER array was achieved by using a DSP block as the compute logic,

thus better targeting the architecture to the FPGA.

c_in

done

v_in

d_in

Credit
Generator

c_out_SW

Conf[15:0]

d_in_SW [17:2]
d_in_NW[17:2]
d_in_NE [17:2]
d_in_SE [17:2]

d_in_SW [1:0]
d_in_NW[1:0]
d_in_NE [1:0]
d_in_SE [1:0]

c_out_NW
c_out_NE
c_out_SE

d_out_SE

c_in_SE

Conf[2:1]

Conf[6:5]

Conf[4:3]

Conf[12:5]

Conf[13]

c_out

d_out

v_out

c_in

done

v_in

d_in

c_out

d_out

v_out

Conf[15:14]

MUL

MUX

B

A

16

16

16

Done Signal
Generator

c_in

done

v_in

d_in

c_out

d_out

v_out

c_in

done

v_in

d_in

c_out

d_out

v_out

ADD

SUB

OR

Figure 2.6: DySER functional unit.

10 CHAPTER 2. BACKGROUND AND LITERATURE SURVEY

Switch Switch Switch Switch

Sw
it
ch

Sw
it
ch

Sw
it
ch

Sw
it
ch

Tile Tile Tile Tile

Tile Tile Tile Tile

Tile Tile Tile Tile

Tile Tile Tile Tile

Switch

(a) DySER block diagram.

FU

Switch

FU

Switch

FU

Switch

FU

Switch

Switch

Switch

Switch SwitchSwitch

(b) Architecture of a 2×2 DySER.

Functional
Unit

Switch

(c) Tile architecture.

Figure 2.7: DySER architecture as Island-style overlay.

2.3 Operating System for Run time management

The abstraction provided by operating system for reconfigurable computing helps

in coordinating multiple Hardware (HW) tasks, managing shared reconfigurable re-

sources among tasks and providing methods for communication and synchronization

among HW and SW tasks. Scheduling is one of the most important functionality en-

capsulated in an OS, because which resource has to be used when by a task has to be

decided by the OS. The simplest reconfiguration scheduling is to run a queue and re-

configure on demand. Scheduler must also have the feature of preemption to allocate

hardware resources to a task of higher priority. various preemption schemes for re-

configurable devices were compared in [23], while mechanisms for context-saving and

restoring were discussed in [24] and [25]. Communication between tasks is another

important abstraction provided by the OS. Shared memory model is the common

communication style used in multi-core systems but in reconfigurable computing sys-

tems several models have been proposed for effective communication such as Message

passing interfaces (MPI) and Remote procedure calls (RPC).

Virtual memory is another important abstraction provided by the OS. When re-

configurable hardware is tightly coupled with a processor with Memory Management

Unit (MMU) support, reconfigurable hardware can share processor’s MMU. The pro-

cessor can now be used by the OS to perform memory accesses and then it can feed

data to reconfigurable HW for computation. This model brings good control but

2.3. OPERATING SYSTEM FOR RUN TIME MANAGEMENT 11

reduces the ability of the processor to act as a compute unit as is kept busy in mem-

ory transactions. DMA controllers are normally used in such cases to counter this

issue of handling memory transactions. Synchronization using threads is an impor-

tant functionality encapsulated in the OS. Reconfigurable HW based computations

are inherently concurrent where more than one hardware tasks occur in parallel with

software tasks, in such scenarios synchronization between tasks is a critical issue. The

simplest method is thread style synchronization on hardware tasks.

A number of researchers have focused on providing system support for recon-

figurable hardware so as to provide a simple programming model to the user and

effective run-time scheduling of hardware and software tasks [26, 27, 28, 29]. Several

operating systems have been developed for reconfigurable hardware[27, 30, 31, 26,

32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42]. Several Linux extensions have also been

proposed to support reconfigurable hardware [33, 36, 39, 37]. A real time operating

system [38] was proposed to provide management abstraction by exploiting Dynamic

Partial Reconfiguration (DPR) capability of FPGAs. Since the reconfiguration time

in a dynamically reconfigurable system has an impact on overall application perfor-

mance as shown in [43], in our work, we propose to use RTOS (uC/OS-III) as a run

time manager for overlay architectures by demonstrating fast context switching.

Chapter 3

RTOS as a run time manager

3.1 Introduction

In order to use an RTOS as a run time manger we need to measure and compare the

performance parameters of commercial RTOS. In order to quantify the performance

of an RTOS, we benchmark its most crucial parameters. To evaluate the amount of

overheads introduced due to services provided by the RTOS, we measure parameters

such as Context switching time, Pre-emption time and message passing latency. While

most of the available real time operating systems provide performance close to each

other, we choose uC/OS-III because of its low memory footprint, well documented

code and popularity.

3.2 Performance Metrics of an RTOS

A real time operating system provides many services to embedded system developers.

Facilities such as mutex, scheduling, message passing, context switching and priority

based pre-emption are few among many. The cost of these facilities is the overhead

of these services and depends upon the way real time operating system has been

implemented. Therefore, it is necessary to find out the cost incurred due to the

overhead of implementation.

12

3.2. PERFORMANCE METRICS OF AN RTOS 13

Context Switching Time: It is the time the system takes to switch the program

flow control between two independent and active tasks so that the execution can

be carried on from the same point at a later time. This time includes storing and

restoring the context of the task. It is an important metric of any multitasking

system. The time it takes for a context switch is dependent upon many factors such

as host processing system and efficiency of the software implementation of Real-time

operating system.

Figure 3.1: Context Switching Time.

A pictorial demonstration of this performance parameter is shown in Figure 3.1.

Pre-emption Time: It is the average time a higher-priority task takes to stop a

lower priority task during its execution and take control of the processor. The pre-

emption usually occurs when the higher priority task moves from an idle to ready state

in response of an external event or when the higher priority task has been waiting

for some internal event such as an expiration of a delay. Pre-emption time is another

important parameter since multitasking system quiet often uses pre-emption.

Figure 3.2 illustrates pre-emption between tasks.

Pre-emption happens when a higher priority task waiting for an event becomes ready.

When the event occurs and preempt the lower priority task, in our case we use message

queue for that event. A message queue is a kernel object allocated by the application.

It is used to pass messages from one task to another and also can be used to signal

14 CHAPTER 3. RTOS AS A RUN TIME MANAGER

Figure 3.2: Pre-emption Time.

one task to another or from ISR to a task.

Figure 3.3: Message Queue. [1]

Figure 3.3 shows how queue can be used and shared by multiple task and Interrupt

service routine.

Message Passing latency: This facility is provided in order to enable tasks/pro-

cesses/threads to communicate and synchronize with each other. Inter-task message

latency is the time from the point when a nonzero-length data message is sent from

one task to another. In order to measure it properly, the sending task should stop

executing immediately after sending the message and the receiving task should be sus-

pended while waiting for it. The Figure3.4 illustrates the messgae passing between

3.3. EXPERIMENTAL EVALUATION 15

Figure 3.4: Message passing latency.

two task and the time taken for the procedure.

3.3 Experimental Evaluation

This section provides the details about the experiments that have been devised to

perform measurements of the real time metrics on the hardware platform.

Context Switching TimeMeasurement: For the measurement of context switch-

ing time, we create two tasks (task A and task B) with equal priority. Task A starts

the timer, stores the initial timer values and suspends itself. As soon as it suspends

itself, it makes a context switch to task B. When Task B starts it stores the value of

the timer started by task A and stops the timer. Task B now subtracts the initial

value of the timer from the final value and then resumes Task A and suspends itself

so that Task A can run. This is repeated 50000 times. In every iteration the context

switching time is stored in variable named SUM so that at the end of the 50000 cy-

cles,the average of the context switching time can be calculated. The maximum and

minimum values are also saved for context switching.

The Figure 3.5 shows the program flow of the experiment condcuted.

Pre-emption Time Measurement: For pre-emption time we again create two

tasks. Task A with higher priority and task B with lower priority. Task A runs and

pends on an empty queue and blocks. Task B starts and enables the timer and stores

16 CHAPTER 3. RTOS AS A RUN TIME MANAGER

Figure 3.5: Context Switching Experiment Flow Chart.

the initial time value. Task B has now posted into the queue and hence is pre-empted

by the higher priority task A which now stores the final value and subtracts the two

values of timer to get the pre-emption time.

Figure 3.6: Pre-emption Time Experiment Flow Chart.

This is carried out 50000 times and maximum, minimum and average values of

pre-emption time are calculated. Finally, the context switching time, which was

calculated in the first experiment is subtracted to get the pre-emption time only.The

Figure 3.6 shows the program flow of the experiment condcuted for pre-emption time.

Message Passing Latency Measurement For this experiment, again two tasks

are created. Task A has a higher priority than task B. Task A starts and pends on

3.3. EXPERIMENTAL EVALUATION 17

the empty Queue. Since the queue is empty, task A blocks instantaneously and task

B starts running. Task B starts the timer and posts a message into the queue. As

soon as task B posts a message in the queue, the higher priority task pending on

the message becomes ready again and starts running i.e Task A. It consumes the

message and the queue becomes empty again. Now task A starts pending on the

message again, it blocks again and a context switch happens from task A and task B.

Now task B stores the final timer value and subtracts the initial timer value from the

final timer value after stopping the timer. Similar to context switching we store the

maximum, minimum and calculate average after 50000 iterations. The only difference

is that we subtract the context switching time from the message passing time.

Figure 3.7: Message Passing Time Experiment Flow Chart.

Fig. 3.7 shows the program flow of the experiment condcuted for message passing

time. We use Zedboard for the experiments. Experimental Setup Zed Board:

� Xilinx Zed board(ZYNQ 7020)

� Workstation/Laptop

� Xilinx Tool chain

� uC/OS-III Zynq-7020 port

� Compiler Optimization Flag O3

18 CHAPTER 3. RTOS AS A RUN TIME MANAGER

Figure 3.8: Experimental Setup Zed Board.

Table 3.1: uCOS-III: Benchmarks On Xilinx Zynq (ARM Cortex-A9)

No. Metric Compiler Average Maximum Minimum

Optimization Time Time Time

1. Context Switching Time Disabled 1uS 1uS 1uS

Enabled 0.65uS 0.71uS 0.66uS

2. Pre-emption Time Disabled 2uS 2uS 2uS

Enabled 1.26uS 1.36uS 1.26uS

3. Messaging Latency Disabled 1uS 1uS 1uS

Enabled 0.66uS 0.68uS 0.66uS

4. Task Resume Time Disabled 0.312uS 0.375uS 0.25uS

Enabled 0.221uS 0.273uS 0.18 uS

5. Task Suspend Time Disabled 0.25uS 0.25uS 0.25uS

Enabled 0.19uS 0.21uS 0.19 uS

6. Semaphore Post Time Disabled 0.183uS 0.72uS 0.18uS

Enabled 0.116uS 0.61uS 0.11 uS

7. Semaphore Pend Time Disabled 0.17uS 0.715uS 0.166uS

Enabled 0.11uS 0.63uS 0.11 uS

Table 3.1 shows the results produced while running the experiments on the Xilinx

Zynq platform. A similar set of experiments were conducted using STM32F107 plat-

form. This platform in contrast to zed board is a low end platform. It gives us the

perspective to compare the performance of a real time operating system on multiple

platforms and how the underlying hardware affects the performance parameters.

Experimental Setup STM32:

� STM32F107(ARM CORTEX M3)

3.3. EXPERIMENTAL EVALUATION 19

� Workstation/Laptop

� IAR Tool Chain

� uC/OS-III ARM CORTEX M3 port

� Compiler Optimization Flag O3

Figure 3.9: Experimental Setup STM32.

Table 3.2: uCOS-III: Benchmarks On STM32F107 (ARM Cortex-M3)

No. Metric Compiler Average Maximum Minimum

Optimization Time Time Time

1. Context Switching Time Disabled 19.69uS 63.72uS 19.11uS

Enabled 12.83uS 45uS 12.5uS

2. Pre-emption Time Disabled 30.16uS 66.8uS 29.47uS

Enabled 19.02uS 45.94uS 18.72uS

3. Messaging Latency Disabled 51.13uS 95.6uS 49.94uS

Enabled 33.72uS 65.5uS 33.16uS

4. Task Resume Time Disabled 4.97uS 9.24uS 4.78uS

Enabled 3.51uS 6.72uS 3.47 uS

5. Task Suspend Time Disabled 1.38uS 5.06uS 1.37uS

Enabled 1.07uS 4.42uS 1.08 uS

6. Semaphore Post Time Disabled 1.1uS 4.32uS 1.08uS

Enabled 0.7uS 3.7uS 0.66 uS

7. Semaphore Pend Time Disabled 1.02uS 4.29uS 1uS

Enabled 0.717uS 3.83uS 0.7 uS

Table 3.2 shows the results produced while running the experiments on the STM32

ARM CORTEX M3 platform.

20 CHAPTER 3. RTOS AS A RUN TIME MANAGER

3.4 Summary

In order to access real time operating system as a run time manager for FPGA

overlay architecture, we needed to analyze the performance of the operating system

by measuring the key performance parameters.

This chapter highlights the significance of each of the experiments conducted and

the performance measurements made followed by the explanation of the experiments

devised and conducted. The chapter is concluded with the illustration of the experi-

mental setup which can be utilized if there is a need of mimicking these experiments.

Finally, we present the results obtained by running these experiments.

The experiments are performed on multiple hardware to give us a perspective on

the impact different hardware make on the performance of the run time manager.

The high end hardware platform Zynq-7020 had the worst time of 2 us whereas we

saw 95 us as the worst time when running the experiments on the ARM CORTEX

M3.

Chapter 4

Embedding Overlay into the Zynq

4.1 Introduction

While the Zynq platform provides high speed AXI interfaces for communication, the

limited size of the reconfigurable fabric means that it is ideally suited to applications

with often used and reconfigured accelerators, rather than static accelerators. Hence,

integration of overlay architecture with an embedded processor(s) and the associated

memory subsystem is crucial to enable efficient management and sharing of limited

reconfigurable hardware resources among multiple tasks. One example [16] of pairing

the overlay (Intermediate Fabric (IF) Overlay [5]) with a high performance ARM pro-

cessor via an AXI interface in a commercial computing platform (the Xilinx Zynq[20])

is shown in Fig. 4.1. We use the same example here for the explanation of embedding

process. Zynq platform partition the hardware into a processor system (PS), contain-

ing one or more processors along with peripherals, bus and memory interfaces, and

other infrastructure, and the programmable logic (PL) where custom hardware can be

implemented. The two parts are coupled together with high throughput interconnect

to maximize communication bandwidth. We explain the system architecture, run

time management of the system and concept of sharing the overlay in the following

sections.

21

22 CHAPTER 4. EMBEDDING OVERLAY INTO THE ZYNQ

DDR

ARM Processor

DDR
Controller

Hard DMA

HP PortGP Port

Central
Interconnect

M M S S S S S S

PS

PL

BRAM BRAM BRAM BRAM...

IF Region
Static

Region

AXI4

AXI-Lite

Figure 4.1: Intermediate Fabric (IF) Interfacing with Host Processor

4.2 System Architecture

The Overlay architecture described in this report is aimed at streaming signal pro-

cessing circuits and consists of a data plane and a control plane as shown in Fig. 4.2.

The data plane (shown in Fig. 4.3) contains programmable Processing Element (PE)

and programmable interconnections, whose behaviour is defined by the contents of

the configuration registers referred to as context frame registers. The control plane

controls the movement of data between the data plane and the Block RAMs, and pro-

vides a streaming interface between them. The control plane consists of the context

frame registers and a context sequencer (finite state machine) which is responsible for

loading the context frame registers from the context frame buffer (CFB). The context

frame buffer (CFB) can hold multiple sets of context frame registers for multi-context

execution.

4.2. SYSTEM ARCHITECTURE 23

Control
Plane

BRAM BRAM BRAM...

Data Plane

BRAM BRAM BRAM...

Figure 4.2: Block Diagram of the IF overlay.

The data plane consists of programmable PEs distributed across the fabric in a

grid as shown in Fig. 4.3. A PE is connected to all of its 8 immediate neighbours using

programmable crossbar (CB) switches. The operation of the PEs and CBs is set by PE

and CB configuration registers, respectively. Fig. 4.4 shows the internal architecture

of the DSP block based PE, which consists of a DSP block and a routing wrapper. The

DSP block can be dynamically configured using the information contained in the PE

configuration register. One of the key benefits of using DSP blocks in modern Xilinx

devices is their dynamic programmability and wide range of possible configurations

that can be set at runtime using control inputs. By building often used functions into

optimised compact primitives, area, performance, and power advantages are achieved

over equivalent “soft” implementations in the logic fabric.

24 CHAPTER 4. EMBEDDING OVERLAY INTO THE ZYNQ

CB PE CB

PE CB PE

CB PE CB

BRAM

BRAM

BRAM

BRAM

BRAM BRAM

BRAM BRAM

...

...

...

...

... ...

...

...

...

Figure 4.3: Block Diagram of the Data Plane.

16
/

48
/

16
/

16
/

48
/

48
/

48
/

48
/

16
/

16
/

16
/

48
/

w_in

s_in

e_in

n_in

w_out

e_out

s_out

n_out

b_im

d_im

p_im

A

B

D

P

Figure 4.4: Internal architecture of processing element.

4.2. SYSTEM ARCHITECTURE 25

The control plane consists of a state machine based context sequencer and a

context frame in the form of configuration registers. A context sequencer (CS) is

needed to load context frame registers into the configurable regions and to control

and monitor the execution, including context switching and data-flow. The control

register is used by the PS to instruct the CS to start a HW task by checking the

start bit of the control register. The status register is used to indicate the HW

task status, such as the completion of a context or of the whole HW task. In the

IDLE state, the CS waits for the control register’s start bit to be asserted before

moving to the CONTEXT START state. In this state, it generates an interrupt

interrupt start context, and then activates a context counter before moving to the

CONFIGURE state. In this state, the CS loads the corresponding context frame from

the CFB to the control plane of the Overlay to configure the context’s behaviour.

Once finished, the CS moves to the EXECUTE state and starts execution of the

context. Once execution finishes, the CS moves to the CONTEXT FINISH stage and

generates an interrupt finish context interrupt. The CS then moves to the RESET

state which releases the hardware fabric and sets the status register completion bit

for the context. This behaviour is shown in Fig. 4.5.

IDLE

CONTEXT_START

Start_bit=1

CONFIGURE

Start_bit=0

EXECUTE

CONTEXT_FINISHRESET IF/DPR

DONE

Counter=Num_Context

Counter != Num_Context

Task Start

Task finished

Context Start

Context Finish

Figure 4.5: State-machine based Context Sequencer.

26 CHAPTER 4. EMBEDDING OVERLAY INTO THE ZYNQ

4.3 Run time Management

When paired as a coprocessor, run-time management, including overlay configura-

tion loading, data communication, can be carried out using an operating system

(Linux) [17] and also using a commercial hypervisor [44]. Firstly, user needs to iden-

tify a kernel, as described in code listing 4.1, to be implemented on top of overlay.

Then data flow graph (DFG) can be extracted after compiling this code using com-

piler front-end. After that a place and route tool can be used to map the DFG on

top of overlay. After generating configurations based on the placement and routing,

kernel code can be transformed in the code containing overlay APIs as shown in code

listing 4.1. The working of modified C description is pretty straight-forward as shown

in code listing 4.1. First it allocates input and output BRAMs as overlay memory.

Then it loads the overlay configuration for the task. After that it transfers the input

data to input BRAM and triggers the overlay. Finally, the Overlay starts process-

ing the input data in a streaming fashion and transfer the processed data to output

BRAMs.

Table 4.1: Source Code Transformation

(a) Original C description (b) Modified C description
1 #include <math.h>

2 #define SIZE 1000

3
4 #ifdef KERNEL

5 int kernel(int x)

6 {

7 int temp = 16*x;

8 return (x*(x*(temp*x-20)*x+5));

9 }

10 #endif

11
12 #ifndef KERNEL

13 int main(void)

14 {

15 int i;

16 int in[SIZE];

17 int out[SIZE];

18 for (i=0; i<SIZE; i++){

19 out[i] = kernel(in[i]);

20 }

21 return 0;

22 }

23 #endif

1 #include <overlay.h>

2 #include <math.h>

3 #define SIZE 1000

4
5 void kernel(int *a, int *b, int length){

6 // allocate BRAM as overlay memory

7 memory_a = overlay_malloc(size_a);

8 memory_b = overlay_malloc(size_b);

9 //load overlay configuration for the task

10 load_configuration ();

11 //copy inputs

12 overlay_transfer_data(a, memory_a , size_a);

13 // Trigger overlay to process data

14 overlay_trigger_and_wait ();

15 // copy_outputs

16 overlay_transfer_data(memory_b , b, size_b);

17 }

18 int main(void){

19 int in[SIZE];

20 int out[SIZE];

21 kernel(in, out , SIZE);

22 return 0;

23 }

4.4. OVERLAY SHARING AMONG MULTIPLE HW TASKS 27

4.4 Overlay sharing among multiple HW tasks

In the previous section, run time management of overlay was described for a single

task using a set of APIs. Since the overlay can be used as a shared resource, multiple

tasks can use it in a time-multiplexed manner for accelerated execution. Fig. 4.6

presents a scenario where streaming input devices, such as audio source, are attached

to the platform (requiring accelerated processing on streaming data). Input buffers

can accept data from the devices which then needs to go to the overlay local memory

for execution (using overlay transfer data API mentioned in the previous section).

Device A: Input Buffer

Device D: Input Buffer

Device B: Input Buffer

Device C: Input Buffer

Overlay

FPGA

Device A: Output Buffer

Device D: Output Buffer

Device B: Output Buffer

Device C: Output Buffer

Figure 4.6: Overlay Sharing among multiple HW tasks

If only one device is active, then the kernel function (mentioned in the previous

section) can be used (having same input buffer and output buffer as function ar-

guments) within a while loop. In this way, the device will keep sending data in the

input buffer and the overlay will keep processing the data available in the input buffer.

However, if all the attached devices are active, the while loop should invoke multiple

kernel calls in a round robin fashion having separate input buffer and output buffer

as function arguments. Using bare metal software application, it is very difficult to

manage the overlay as a shared resource in a scenario where multiple tasks need to

access the same overlay resources.

28 CHAPTER 4. EMBEDDING OVERLAY INTO THE ZYNQ

4.5 Summary

In this chapter, we presented an approach of embedding an overlay withing a hybrid

computing platform. We described the system architecture and run time management

process. In a scenario, where multiple hardware tasks need to use the same resource,

it is very difficult to manage the resource using bare metal software application. In

the next chapter, we explain the concept of RTOS for run time management of the

overlay architecture.

Chapter 5

Runtime management of Overlay

using RTOS

5.1 Introduction

Runtime management of overlay using bare metal programming is not the most ef-

ficient method available. Bare metal programming has no service available for pro-

tection of a shared resource and since it runs through the programs in a sequential

manner it is not able to do anything else other than kill time when in delay or waiting

state. These problems can be taken care of by using a multi-tasking run time manager

such as a real time operating system. Real time operating system provides facilities

for resource management, such as a semaphore/mutex, they are also equipped with

services of critical section and scheduler locking to avoid any interruption in execution

of a process. Moreover; no time is wasted while any delay or wait state is encountered

and instead of just killing time other processes are made to run. This way the exe-

cution is more efficient and shared resources, such as overlay, are protected. We use

uC/OS-III as an RTOS for managing SW and HW tasks on the platform as shown in

Fig. 5.1. The following sections shed light on the benefits gained by using an RTOS

instead of bare metal programming method. Also, we discuss the methods in details

which are used to protect hardware calls and functionalities.

29

30 CHAPTER 5. RUNTIME MANAGEMENT OF OVERLAY USING RTOS

Figure 5.1: Overlay Sharing among multiple HW tasks

5.2 Resource Management

One of the major features of RTOS is the management of resources between multiple

tasks. RTOS uses various methods to share resources between the tasks such as

semaphore, mutex and critical sections. The purpose is to avoid contention for the

resource and to make sure the resource is not corrupted. It is therefore important to

ensure that each task can access the resource exclusively. The shared resource could

be a register, a variable, a data structure, some memory location or an I/O device.

In our case it is an overlay which is shared between multiple tasks. It has to be taken

care that when one task is communicating with the overlay no other task should take

control between the processes and corrupt the data. This can be accomplished by

different methods.

5.2. RESOURCE MANAGEMENT 31

The most standard methods of getting complete access to shared resources and

to create critical sections are:

� Critical Section

� Locking Schedular

� Using semaphores/Mutex

Disabling interrupts Interrupts have higher priority than the task code present

in main program, hence disabling them should be the last resort and should be done

in only certain scenarios. Interrupts should only be disabled when the part of the

task for which the interrupt are disabled very short, or else it would lead to high

interrupt latency which could be disastrous. uC/OS-III provides facilities in the form

of APIs for this purpose. The code enclosed between these function calls will be

atomic and cannot be interrupted by any interrupt or other tasks. Fig. 5.2 shows the

code segment which protects the shared resource by containing it in a critical section.

Figure 5.2: Critical Section by diabling Interrupts.

Locking the scheduler Another method to avoid any conflict between tasks is

to lock the scheduler. The scheduler is responsible for giving the control of the

microprocessor from one task to another and locking the scheduler would let the task

handling shared resource go undisturbed. But unlike critical sections the task could

be interrupted by I/O devices. Locking the scheduler essentially means that the task

which is locking the scheduler has the highest priority. This method is better than

Interrupt disabling in the respect that it does increase the interrupt latency. Fig. 5.3

shows the code segment which protects the shared resource by containing it in a piece

of code that locks and unlocks schedular.

32 CHAPTER 5. RUNTIME MANAGEMENT OF OVERLAY USING RTOS

Figure 5.3: Resource protection by schedular locking.

Resource protection using Mutex Mutex/Semaphore are a mechanism which

is used to govern access to shared resources in a multithreaded environment. A

semaphore or mutex is a kind of an access key which is taken by the process running

to protect some part of the code which is a shared resource. Unless the key is released

by that process no other process can access or alter the shared resource. Once the

key is released the other process will now take the key and in turn access the shared

resource. Fig. 5.4 shows the code segment which protects the shared resource by

containing it in a piece of code that locks and unlocks schedular.

Figure 5.4: Resource protection by mutex/semaphore.

5.3 Context Switch Overheads

It is often the case that the hardware is being utilized by multiple processes and the

shared resource is accessed by more than one process/thread. When the hardware

functionality is spread across multiple tasks one parameter becomes significantly im-

portant i.e. context switching time. When a function is divided in chunks and each

part is completed by different task the context switching time between one task to

5.3. CONTEXT SWITCH OVERHEADS 33

another takes great prominence. The greater the context switching time the greater

the overhead and in turn slower response time. We ran experiments in order to quan-

tize the context switching time. Since context switching can happen due to multiple

reason we tested out the context switching for few common scenarios such as task

suspension, switching due to mutex held by a task and switching due to an empty

queue. The results are shown in a figure below. These experiments are devised to

measure the context switching time in different scenarios. Brief description of these

scenarios are described below.

Task Suspension The experiment is devised so that a timer measures the time

of switching from one task to another by using task suspension. These achieved by

calling the task suspension API. It is repeated significant number of times and then

averaged to get the context switching time.

Mutex Access The second experiment measures the context switching time by

also using a timer.The timer records the time a task asks for a mutex and doesn’t get

it and the switch is made to the other ready task.This time is saved multiple number

of times and averaged out to give us the overhead.

Queue Empty This experiment measures context switching time when the switch

happens due access to an empty queue. When a task tries to read from an empty

queue the control is transferred from one task to another.This transfer fo control is

measured by the timer and similar to the other experimients averaged out. Table 5.1

shows the context switching time measured using various experiments.

Table 5.1: Context Switching Time

No. Metric Average

Time

1. Task Suspension 1.72uS

2. Mutex Access 4.38uS

3. Empty Queue 2.08 uS

34 CHAPTER 5. RUNTIME MANAGEMENT OF OVERLAY USING RTOS

5.4 Summary

This chapter highlight the contrasting factor between bare metal programing and real

time operating system for run time management of overlay architecture. The chapter

points out the downside of using bare metal programming for run time management

of overlay and sheds light upon the benefits attained by using real time operating

system.

This chapter also explains the resource management facilities made available to

the user when using real time operating system as a run time manager. The chapter

is concluded with emphasis on the importance of context switching as a parameter

which can gauge how well a multi-threaded system can perform.

Chapter 6

Conclusions and Future Work

This chapter concludes and summarizes this report. Furthermore, in this chapter we

discuss future research directions in detail.

6.1 Conclusions

This report proposed an approach for embedding FPGA overlay architecture into the

Xilinx Zynq platform and demonstrated the runtime management of overlay using

uC/OS-III. This work included developing an understanding of hardware accelera-

tion concept, overlay architectures and RTOS concepts. Experiments were designed

to evaluate the performance of uC/OS-III on the Xilinx Zynq by quantifying perfor-

mance metrics such as context switching time, preemption time etc. A set of use-case

scenarios and preferred scheduling mechanisms were presented by considering the

overlay as a shared resource among tasks requiring hardware acceleration. Before we

could begin embedding overlay into Zynq, an in-depth knowledge of the current trends

and previous efforts in the field of overlay architectures were studied to compare and

contrast their features.

A performance analysis of uC/OS-III was presented in chapter 3. Observations

and results achieved by measuring standard RTOS metrics in a reliable and unbiased

manner were discussed. We observed that the parameters such as Context Switch-

ing, Pre-emption Time and Message passing Latency introduce significant overheads

35

36 CHAPTER 6. CONCLUSIONS AND FUTURE WORK

(up to 100 us) for a low end device (STM32 Microcontroller). We observed a sig-

nificant reduction in the overheads when employing high end device (Xilinx Zynq

SoC). Overheads of up to 2 us were observed in case of Zynq. An approach for em-

bedding FPGA overlay architecture into the Xilinx Zynq platform was presented in

chapter 4. Use-case scenarios and preferred scheduling mechanisms were presented in

5. Furthermore, the approach presented in this report facilitates high level applica-

tion developers to use uC/OS-III as a run time manager of overlay architectures for

hardware acceleration.

Embedding multiple overlay instances Real life application demonstration

6.2 Future work

Some of the main future research directions are embedding multiple overlay instances

and real life application demonstration. We describe these directions in detail as

follows:

� Embedding multiple overlay instances: Due to single overlay instance in

the platform, hardware tasks need to wait for the release of overlay resources.

We plan to use multiple overlay instances within the system to run multiple

hardware tasks in parallel.

� Real life application demonstration: We plan to demonstrate some real

life applications on the platform where fast context switching is required for the

hardware tasks.

Finally, with these initiatives we hope to demonstrate that overlay architectures

can be used as high performance programmable accelerators within a hybrid comput-

ing platform managed by a real time operating system.

Bibliography

[1] Message queue. https://doc.micrium.com/display/osiiidoc/Message+

Queues.

[2] Greg Stitt. Are field-programmable gate arrays ready for the mainstream? IEEE

Micro, 31(6):58–63, 2011.

[3] C. Plessl and M. Platzner. Zippy - a coarse-grained reconfigurable array with

support for hardware virtualization. In Proceedings of the International Con-

ference on Application-Specific Systems, Architecture Processors (ASAP), pages

213–218, 2005.

[4] Neil W. Bergmann, Sunil K. Shukla, and Jrgen Becker. QUKU: a dual-layer

reconfigurable architecture. ACM Transactions on Embedded Computing Systems

(TECS), 12:63:1–63:26, March 2013.

[5] J. Coole and G. Stitt. Intermediate fabrics: Virtual architectures for cir-

cuit portability and fast placement and routing. In Proceedings of the In-

ternational Conference on Hardware/Software Codesign and System Synthesis

(CODES+ISSS), pages 13–22, October 2010.

[6] Davor Capalija and Tarek S. Abdelrahman. A high-performance overlay ar-

chitecture for pipelined execution of data flow graphs. In Proceedings of the

International Conference on Field Programmable Logic and Applications (FPL),

pages 1–8, 2013.

[7] Venkatraman Govindaraju, Chen-Han Ho, Tony Nowatzki, Jatin Chhugani, Na-

dathur Satish, Karthikeyan Sankaralingam, and Changkyu Kim. Dyser: Unifying

37

https://doc.micrium.com/display/osiiidoc/Message+Queues
https://doc.micrium.com/display/osiiidoc/Message+Queues

38 BIBLIOGRAPHY

functionality and parallelism specialization for energy-efficient computing. IEEE

Micro, 32(5):38–51, 2012.

[8] A. K. Jain, S. A. Fahmy, and D. L. Maskell. Efficient overlay architecture based

on DSP blocks. In IEEE Symposium on FPGAs for Custom Computing Machines

(FCCM), 2015.

[9] A. K. Jain, X. Li, S. A. Fahmy, and D. L. Maskell. Adapting the DySER architec-

ture with DSP blocks as an Overlay for the Xilinx Zynq. In International Sympo-

sium on Highly-Efficient Accelerators and Reconfigurable Technologies (HEART),

2015.

[10] Cheng Liu, C.L. Yu, and H.K.-H. So. A soft coarse-grained reconfigurable array

based high-level synthesis methodology: Promoting design productivity and ex-

ploring extreme FPGA frequency. In IEEE Symposium on Field-Programmable

Custom Computing Machines (FCCM), pages 228–228, 2013.

[11] Katherine Compton and Scott Hauck. Reconfigurable computing: A survey of

systems and software. ACM Computing Surveys, 34(2):171–210, June 2002.

[12] O.T. Albaharna, P. Y K Cheung, and T.J. Clarke. On the viability of FPGA-

based integrated coprocessors. In IEEE Symposium on Field-Programmable Cus-

tom Computing Machines (FCCM), pages 206–215, 1996.

[13] Andrew Canis, Jongsok Choi, Mark Aldham, Victor Zhang, Ahmed Kammoona,

Jason H. Anderson, Stephen Brown, and Tomasz Czajkowski. LegUp: high-level

synthesis for FPGA-based Processor/Accelerator systems. In Proceedings of the

International Symposium on Field Programmable Gate Arrays (FPGA), pages

33–36, 2011.

[14] Yun Liang, Kyle Rupnow, Yinan Li, and et. al. High-level synthesis: productiv-

ity, performance, and software constraints. Journal of Electrical and Computer

Engineering, 2012(649057):1–14, January 2012.

BIBLIOGRAPHY 39

[15] David Bacon, Rodric Rabbah, and Sunil Shukla. FPGA programming for the

masses. Queue, 11(2):40:40–40:52, February 2013.

[16] A. K. Jain, K. D. Pham, J. Cui, S. A. Fahmy, and D. L. Maskell. Virtualized

execution and management of hardware tasks on a hybrid ARM-FPGA platform.

Journal of Signal Processing Systems, 77(1–2):61–76, Oct. 2014.

[17] Jason Cong, Hui Huang, Chiyuan Ma, Bingjun Xiao, and Peipei Zhou. A fully

pipelined and dynamically composable architecture of cgra. In IEEE Symposium

on FPGAs for Custom Computing Machines (FCCM), pages 9–16, 2014.

[18] Jesse Benson, Ryan Cofell, Chris Frericks, Chen-Han Ho, Venkatraman Govin-

daraju, Tony Nowatzki, and Karthikeyan Sankaralingam. Design, integration

and implementation of the dyser hardware accelerator into opensparc. In In-

ternational Symposium on High Performance Computer Architecture (HPCA),

pages 1–12, 2012.

[19] Venkatraman Govindaraju, Chen-Han Ho, and Karthikeyan Sankaralingam. Dy-

namically specialized datapaths for energy efficient computing. In International

Symposium on High Performance Computer Architecture (HPCA), pages 503–

514, 2011.

[20] Xilinx Ltd. Zynq-7000 technical reference manual. http://www.xilinx.com/

support/documentation/user_guides/ug585-Zynq-7000-TRM.pdf, 2013.

[21] G. Stitt and J. Coole. Intermediate fabrics: Virtual architectures for near-instant

FPGA compilation. IEEE Embedded Systems Letters, 3(3):81–84, September

2011.

[22] Vaughn Betz and Jonathan Rose. VPR: A new packing, placement and routing

tool for fpga research. In Field-Programmable Logic and Applications, pages

213–222, 1997.

[23] K. Jozwik, H. Tomiyama, S. Honda, and H. Takada. A novel mechanism for

effective hardware task preemption in dynamically reconfigurable systems. In

http://www.xilinx.com/support/documentation/user_guides/ug585-Zynq-7000-TRM.pdf
http://www.xilinx.com/support/documentation/user_guides/ug585-Zynq-7000-TRM.pdf

40 BIBLIOGRAPHY

Proceedings of the International Conference on Field Programmable Logic and

Applications (FPL), 2010.

[24] H. Kalte and M. Porrmann. Context saving and restoring for multitasking in

reconfigurable systems. In Proceedings of the International Conference on Field

Programmable Logic and Applications (FPL), pages 223–228, 2005.

[25] K. Rupnow, Wenyin Fu, and K. Compton. Block, drop or roll(back): Alterna-

tive preemption methods for RH multi-tasking. In IEEE Symposium on Field-

Programmable Custom Computing Machines (FCCM), pages 63–70, 2009.

[26] Gordon Brebner. A virtual hardware operating system for the Xilinx XC6200. In

Field-Programmable Logic Smart Applications, New Paradigms and Compilers,

pages 327–336. 1996.

[27] C. Steiger, H. Walder, and M. Platzner. Operating systems for reconfigurable

embedded platforms: online scheduling of real-time tasks. IEEE Transactions

on Computers, 53(11):1393–1407, November 2004.

[28] M. Vuletic, L. Righetti, L. Pozzi, and P. Ienne. Operating system support for

interface virtualisation of reconfigurable coprocessors. In Proceedings of the De-

sign, Automation and Test in Europe (DATE), pages 748–749, 2004.

[29] K. Rupnow. Operating system management of reconfigurable hardware com-

puting systems. In Proceedings of the International Conference on Field-

Programmable Technology (FPT), pages 477–478, 2009.

[30] Herbert Walder and Marco Platzner. Reconfigurable hardware operating sys-

tems: From design concepts to realizations. In Proceedings of the International

Conference on Engineering of Reconfigurable Systems and Architectures (ERSA),

pages 284–287, 2003.

[31] Aws Ismail. Operating system abstractions of hardware accelerators on field-

programmable gate arrays. Thesis, August 2011.

BIBLIOGRAPHY 41

[32] Xun Changqing, Wen Mei, Wu Nan, Zhang Chunyuan, and H.K.-H. So. Extend-

ing BORPH for shared memory reconfigurable computers. In Proceedings of the

International Conference on Field Programmable Logic and Applications (FPL),

pages 563 –566, August 2012.

[33] H.K.-H. So, A. Tkachenko, and R. Brodersen. A unified hardware/software

runtime environment for FPGA-based reconfigurable computers using BORPH.

In Proceedings of the International Conference on Hardware/Software Codesign

and System Synthesis (CODES+ISSS), pages 259–264, 2006.

[34] Benjamin Krill, A. Amira, and H. Rabah. Generic virtual filesystems for recon-

figurable devices. In IEEE International Symposium on Circuits and Systems

(ISCAS), pages 1815–1818, 2012.

[35] A. Agne, M. Happe, A. Keller, E. Lubbers, B. Plattner, M. Platzner, and

C. Plessl. ReconOSAn operating system approach for reconfigurable comput-

ing. IEEE Micro, 2013.

[36] Enno Lübbers and Marco Platzner. ReconOS: multithreaded programming for

reconfigurable computers. ACM Transactions on Embedded Computing Systems

(TECS), 9(1):8, October 2009.

[37] John H. Kelm and Steven S. Lumetta. HybridOS: runtime support for recon-

figurable accelerators. In Proceedings of the International Symposium on Field

programmable gate arrays (FPGA), pages 212–221, 2008.

[38] X. Iturbe, K. Benkrid, A.T. Erdogan, T. Arslan, M. Azkarate, I. Martinez,

and A. Perez. R3TOS: a reliable reconfigurable real-time operating system. In

Proceedings of the NASA/ESA Conference on Adaptive Hardware and Systems

(AHS), pages 99–104, 2010.

[39] D. Gohringer, S. Werner, M. Hubner, and J. Becker. RAMPSoCVM: runtime

support and hardware virtualization for a runtime adaptive MPSoC. In Proceed-

ings of the International Conference on Field Programmable Logic and Applica-

tions (FPL), 2011.

42 BIBLIOGRAPHY

[40] Grant B. Wigley, David A. Kearney, and David Warren. Introducing ReCon-

figME: an operating system for reconfigurable computing. In Field-Programmable

Logic and Applications, pages 687–697. January 2002.

[41] A. Hofmann and K. Waldschmidt. SDVMˆR: a scalable firmware for FPGA-

Based multi-core systems-on-chip. In Symposium on VLSI (ISVLSI), pages 387

–392, April 2008.

[42] Andreas Hofmann, Klaus Waldschmidt, and Jan Haase. SDVMˆR - manag-

ing heterogeneity in space and time on multicore SoCs. In Proceedings of the

NASA/ESA Conference on Adaptive Hardware and Systems (AHS), pages 142–

148, June 2010.

[43] K. Vipin and S. A. Fahmy. ZyCAP: Efficient partial reconfiguration management

on the Xilinx Zynq. IEEE Embedded Systems Letters, 6(3):41–44, September

2014.

[44] Khoa Dang Pham, Abhishek Kumar Jain, Jin Cui, Suhaib A Fahmy, and Dou-

glas L Maskell. Microkernel hypervisor for a hybrid ARM-FPGA platform. In

Proceedings of the International Conference on Application-Specific Systems, Ar-

chitecture Processors (ASAP), 2013.

	Introduction
	Motivation
	Contribution
	Organization

	Background and Literature Survey
	Zynq as a hybrid computing platform
	FPGA Overlay Architectures
	Operating System for Run time management

	RTOS as a run time manager
	Introduction
	Performance Metrics of an RTOS
	Experimental Evaluation
	Summary

	Embedding Overlay into the Zynq
	Introduction
	System Architecture
	Run time Management
	Overlay sharing among multiple HW tasks
	Summary

	Runtime management of Overlay using RTOS
	Introduction
	Resource Management
	Context Switch Overheads
	Summary

	Conclusions and Future Work
	Conclusions
	Future work

	Bibliography

