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Abstract

Reconfigurable platforms for hardware acceleration have gained prominence as they

deliver higher perfomance with lower power consumption. Such platfoms combine one

or more general purpose processors with high speed computing fabrics like FPGA.

The applications are accelerated by running control-intensive part on the processor

and offloading compute intensive part to the programmable fabric. Due to lack of

suitable abstractions, they have poor design productivity restricting their efficient use

to hardware design experts. Overlay architectures provide an attractive solution for

accelerated computing due to their improved design productivity through fast com-

pilation, high-level design abstraction, and software-like programmability. Booting

an OS on these platforms helps in co-ordinating multiple hardware tasks, efficient

memory management and managing shared resources across the applications. In our

work, we use one such overlay, the Vectorblox MXP Matrix processor, instantiated

on the programmable fabric of Xilinx Zynq Zedboard for acceleration and analyzing

the speedup obtained. It is programmed entirely in C/C++ by making use of vector-

oriented data parallel programming model. We also setup Linux for using MXP to

support processing data from files. Runtimes of benchmarks for applications using

MXP APIs on Linux as well as in bare-metal mode were compared for getting the

overheads due to Linux. Further we moved onto setup an asymmetric multiprocessing

where bare metal application MXP application run on one CPU core and Linux is

booted on another core. Apart from this, we also developed a system level driver

which makes use of CDMA engine device driver for DMA transfers from DDR-DDR

and DDR-BRAM. This helped in abstracting communication interface for memory

subsystem using an OS.
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Chapter 1

Introduction

1.1 Motivation

Modern embedded systems often require extensive computing resources. In such

systems, hardware acceleration has attained prominence due to the availability of

embedded reconfigurable platforms which use high speed computing fabrics like Field

Programmable Gate Array (FPGA). These platforms are scalable, consume low power

and support isolated execution of tasks. For accelerating computations using pro-

grammable fabric, designing and debugging using RTL is required while waiting for

slow place-and-route cycles as changes are made in the design. Non-availability of

suitable abstractions prohibit commercial use of such platforms and restricts their

effective use to hardware design experts. Overlay architectures have evolved as an

attractive solution to this problem by providing software-like programmability and

fast compilation. With the complexity of FPGA platforms growing exponentially

the use of such overlay architectures might become mainstream practice [2]. Various

levels of abstraction are possible from computation, programming, to communication

interfaces and management. Furthermore using an Operating system (OS) in recon-

figurable platforms helps in co-ordinating multiple hardware tasks, efficient memory

management and managing shared resources across the applications. Also, integrat-

ing overlays with memory subsystem and processor is important to enable sharing and

management of limited overlay resources. As communication interfaces and memory

2
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subsystem heavily affect the performance of such systems, these components need to

be designed very carefully while providing abstraction for them using OS.

1.2 Contribution

The main contributions can be summarized as follows:

� Setting up Linux and accessing MXP overlay through it. Analyzing speedups

obtained for MXP applications on Linux as well as in bare-metal mode and

accelerating kernels.

� Setting up an Asymmetric Multiprocessing (AMP) System with Linux booted

on one core and bare-metal MXP application running on another.

� Development of device driver for abstracting communication interface for DMA

transfers from PS-PL

1.3 Organization

The remainder of the report is organized as follows:

Chapter 2 gives background information on acceleration computing, the platform

used, FPGA overlays and OS abstraction. In chapter 3, we describe our experi-

mentations with MXP vector processor. In chapter 4, we discuss the concept and

methodology for setting up an AMP System. Chapter 5, describes the design and

development of system level driver on top of AXI-CDMA device driver. We conclude

in chapter 6 and discuss future work.



Chapter 2

Background

2.1 Accelerated Computing

For past several decades, there was reliance on Moores Law for getting better perfor-

mance. Each year more transistors were added that were faster and consumed less

power. But in recent years Moores Law has slowed down by a considerable amount.

As frequency stopped scaling, it became much more difficult to squeeze out perfor-

mance from a single sequential processor (CPU). So adding more CPU cores was seen

as a solution. However with more CPU cores it became more challenging to gain

performance out of these chips. This was due to the challenges in writing code that

can assign computations across these different cores. Furthermore, some computa-

tions can’t run in parallel at all. So the computing world ended up with multicore

CPUs that could not accelerate all types of code. This made the designer’s job even

harder. Simply adding cores resulted into waste of transistors and also raised the

cost to manufacture the processor without much benefit. Failure to improve per-

formance of CPU, without affecting power budgets or using extremely complicated

design methods resulted in the industry hitting a brick wall.

For gaining further performance, the processor design perspective had to change

which led to development of heterogeneous computing systems. Heterogenous com-

puting refers to systems that make use of more than one kind of processor. Per-

formance gain or energy efficiency is achieved in these systems by adding dissimilar

4



2.2. USING FPGA OVERLAYS FOR ACCELERATION 5

co-processors that integrate specialized processing capabilities for handling particular

types of tasks. Accelerated computing is a computing model used for accelerating

applications in the engineering and scientific domains wherein the computations are

performed on specialized processors(a.k.a accelerators). It involves use of heteroge-

neous computing systems for enhancing performance for data parallel applications.

The idea is to run code that is ideal for a particular kind of processor and is suitable

for executing on it. For instance, serial code with lot of conditions and branches

would be well suited to run on the CPU because thats most efficient for this type of

code, whereas code that is massively parallel, and has less conditions would be well

suited for execution on the accelerator.

2.2 Using FPGA Overlays for acceleration

FPGAs hold a special position when it comes to taking advantage of Moore’s Law

improvements in semiconductor technology [3]. The major FPGA vendors, Xilinx

and Altera, have introduced reconfigurable platforms consisting of general purpose

processors coupled with programmable logic. FPGAs have seen to be suitable for

accelerating computations in a wide variety of applications. However developing

an accelerator design using a hardware description language like Verilog is difficult,

particularly requiring an expert in hardware design to perform the implementation,

debugging and testing for developing real hardware. Due to difficulty of hardware

design, long compilation times, and design productivity issues, FPGAs are restricted

to niche applications which prevents their adoption for acceleration in general purpose

computing. There is growing demand from software developers who are used to fast

development cycles to make FPGAs more accessible to them by providing abstractions

in the form of software Application Programming Interface (API).

Overlay architectures provide an attractive solution for accelerated computing due

to their improved design productivity through fast compilation, high-level design ab-

straction, software-like programmability and run-time management [4],[5],[6],[7],[8],[9].

Other benefits include better design reuse, application portability across platforms
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and rapid reconfiguration that is much faster than partial reconfiguration on fine-

grained FPGAs.

We use one such vector overlay known as MXP matrix processor for accelera-

tion computing in our experimentations. It is a soft-core scalable vector processor

developed by Vectorblox Computing Inc . It is provided as an IP core which when in-

stantiated on the FPGA, enables us to accelerate data-parallel operations. Vectorblox

provides rich C/C++ API support to overcome cumbersome hardware programming.

The hardware design flow for using accelerator on FPGA goes through long design

cycle(taking up hours to weeks) whereas using MXP, for a given configuration all

we need to do is change the software code and the effects can be tested within min-

utes. MXPs parameterized design allows the user to specify the amount of parallelism

needed, which can range from 1 to 128 or more parallel ALUs. It includes a parallel-

access scratchpad memory to hold vector data and high-throughput Direct Memory

Access (DMA) and scatter/gather engines. To provide maximum performance, the

processor is expandable with custom vector instructions and DMA filters [10]. MXP

seamlessly ties into existing Xilinx and Altera development procedures, simplifying

system creation and deployment.

We have used Xilinx Zynq SoC [11] as a heterogeneous computing platform wherein

the MXP soft-processor is instantiated on its programmable fabric. Next, we describe

the platform in more detail.

2.3 Xilinx Zynq Zedboard

FPGA was completely the domain of hardware engineers earlier and software develop-

ers had stayed away from it. This reason resulted into Xilinx going beyond the FPGA

and introducing the Extensible Programming Platform. These platforms are parti-

tioned into Processing system (PS) consisting of one or more processors along with

memory interfaces,bus and peripherals and the Programmable Logic (PL) where cus-

tom hardware can be instantiated. These two parts are connected via high through-

put interconnect to maximize communication bandwidth. The principle is letting
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the main processor control an array of reconfigurable hardwares to perform compute-

intensive tasks. FPGA fabric provides the power of reconfigurability alongwith ap-

plication specific acceleration while letting the processor execute control intensive

tasks. Xilinx Zynq Zedboard is a development and evaluation board which is based

on Zynq-7000 All Programmable SoC architecure. It consists of Zynq Z7020-clg484

of speed grade -1(667 MHz) containing dual core ARM-Cortex A9 based processing

system(PS) and programmable logic(PL) fabric in one package. The PS consists of a

double-precision floating point unit, a hard DMA controller (PS-DMA),512 MB DDR

RAM, commonly used peripherals and external memory interfaces. Block diagram

for PS is shown in Figure 2.1. The components of PS are listed as below :

� Two ARM Cortex-A9 cores that are run-time configurable as a single processor,

symmetric or asymmetric multiprocessor and are based on the ARMv7 ISA.

� NEON 128b SIMD coprocessor and VFPv3 per processor.

� 32KB instruction and L1 data caches per processor

� 512KB L2 cache that is shared between the processors

� Snoop Control Unit (SCU) and the ACP for cache coherent accesses.

� On-Chip Memory (OCM) with capacity of 256KB

� DDR controller comprising of AXI memory port interface, digital PHY and

transaction scheduler.

� DMA controller with four channels for PS and PL

The PL is made up of Artix 7 FPGA fabric. It has 6 input LUTs and 36kb Block

RAMs which can be configured as two 18 kb blocks. The processor in the system is

first booted and PL is configured as a part of boot process or can be configured some

time later in the future. PL can be either reconfigured completely or partially by

making use of the partial reconfiguration(PR) feature. The PL configuration data is

referred to as bitstream. PL is useful for real-time applications as it has predictable

latency. Power can be managed by powering down the PL as it has a different power

domain than the PS. The PL has a rich architecture capable of user configuration

which are listed below [11]

� Configurable logic blocks (CLB) with 6-input lookup table (LUT)
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Figure 2.1: Processing System Block Diagram [1]

� 36KB block RAM with capability of dual port

� DSP48E1 Slice with optional pipelining, ALU and dedicated buses for cascading

useful for Digital signal processing

� Low jitter clock distribution and low skew

� High performance I/Os that can be configured

� Dual Analog-to-Digital Converter (ADC) blocks with 12-bit and 1 MSPS rate

The ARM based reconfigurable system on Zedboard, makes use of multiple AXI

interfaces for communication between the PS and the PL. Each interface provides for

multiple AXI channels, which enables high throughput data transfer and eliminates

performance bottlenecks for memory and I/O. There are three types of AXI interfaces

to the fabric mentioned below:

� AXI GP - Two 32-bit AXI master and two 32-bit AXI slave General purpose
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(GP) ports.

� AXI HP - Four 32-bit/64-bit configurable, AXI slave High Performance (HP)

ports which are buffered alongwith direct access to DDR and OCM.

� AXI ACP - One 64-bit AXI Accelerator Coherency Port (ACP) slave interface

ensuring access to memory is coherent.

2.4 OS Abstraction

There has been lot of research on providing OS support for programmable fabric

in order to provide a simple programming model to the user and for efficient run-

time scheduling of software and hardware tasks [12, 13, 14, 15]. A technique for

abstracting co-processors on the FPGA fabric in high performance reconfigurable

computing (HPRC) systems was presented in [16]. ReconOS [17] which is based on

an existing embedded OS (eCos) provides an execution environment by enhancing

a programming model for multi-threading from software to reconfigurable hardware.

RAMPSoCVM [18] provides hardware virtualization and runtime support for an SoC

through APIs built on top of Embedded Linux for providing a standard interface

for message passing.Various extensions of Linux have also been proposed to support

FPGA hardware [19, 20].

Usage of OS in reconfigurable platforms helps in efficient memory management,

co-ordinating multiple hardware tasks and managing shared resources across the ap-

plications [21]. Particularly, the presence of open-source OS like Linux provides better

control over the scheduling of tasks, synchronization, abstracting communication in-

terfaces, interrupt management etc. Due to overheads introduced, Linux applications

will not perform as efficient compared to bare-metal applications, but as they are

heavily abstracted from the underlying hardware it simplifies application develop-

ment for software developers. Bare-metal applications require explicit handling of

resources,communication and synchronization it poses a challenge for the developers

to look into each of these issues. Some examples for OS support on FPGAs include,

RIFFA [22][23], SIRC [24], and Xillybus [25].

Vectorblox provides some hints to setup Linux for using MXP [26] . Using these,
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alongwith the experience gained from booting Linux on Zedboard [27] combined with

our knowledge in using Linux, we come up with the procedure for setting up Linux

for using MXP. This procedure is described in detail in Section 3.3, so that in future

this could be easily replicated and there would be more focus on using this system

rather than dealing with setup issues. Furthermore, we also describe the procedure

required for setting up an AMP system wherein Linux is booted on one CPU and

other core runs bare-metal MXP application as described in chapter 4. We also

created a system level driver which helps in providing communication abstraction for

data transfer between the PS and the PL on Zedboard as described in chapter 5.



Chapter 3

MXP for Accelerated Computing

3.1 Vectorblox MXP

MXP has its local memory bank called as scratchpad and all vector operations are

performed directly upon it which maximizes its performance because unlike tradi-

tional processors which have address and data registers, there are no load-stores of

vector data. The architecture of MXP is composed of vector engine and DMA en-

gine. The primary way to transfer data into or out of the scratchpad is by using

DMA engine. Since MXP implements DMA to access the DDR memory directly, the

cache-hierarchy is bypassed. Vector engine consists of multiple parallel vector lanes,

the number of which can be configured from 1 to 256 and there is some 4 KB of

scratchpad available for each vector lane.

MXP vector processor in instantiated onto the programmable logic of the Zynq

Zedboard SoC as shown in Figure 3.1. The communication with ARM processor

happens via general purpose ports whereas high performance ports are used for com-

munication with the DDR memory. With 64 KB of scratchpad we can put 32 16-bit

lanes/ 16 32-bit lanes / 64 8-bit lanes. The instruction port uses a dedicated AXI

slave interface connecting to master GP port on PS. The scratchpad also connects

its slave interface to PS through one of the master GP ports. The DMA engine is

connected to the DDR memory controller though AXI slave HP ports. Maximum

frequency achievable for the 16-lane MXP soft processor is 110 MHz.

11
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Figure 3.1: MXP Matrix processor on Zedboard

3.2 Programming Methodology

A basic program for MXP can be written by following the procedure below,

1. Allocate vectors on the local scratchpad.

2. DMA transfer from DDR to local scratchpad.

3. Set the vector length which indicates the number of vector elements on which

the vector operations are to be performed.

4. Perform required vector computations and obtain result.

5. DMA transfer of result from local scratchpad to DDR.

A sample example to explain the methodology is shown in Figure 3.2.
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1
2 int input_data[256] = { 1,2,3, 10, 11, 12, 13, ... ,256 };

3 int multi_factor = 7;

4
5 1. Allocating vectors in the scratchpad

6 vbx_word_t* v_data;

7 v_data = vbx_sp_malloc( 256*4 ); // 256 words allocated in scratchpad

8
9 2. Moving data from DDR to local scratchpad

10 vbx_dcache_flush( input_data, 256*4 ); //Flush cache to ensure data is

11 actually present in DDR

12
13 vbx_dma_to_vector( v_data, input_data, 256*4 );

14
15 3. Setting of vector length to indicate number of elements

16 vbx_set_vl( 256 ); // Number of elements

17
18 4. Performing scalar vector multiplication

19 vbx( SVW, VMUL, v_data, multi_factor, v_data ); //output result written

20 back to v_data in scratchpad

21
22 5. Moving data from local scratchpad to DDR

23 vbx_dma_to_host( data, vdata, 256*4 );

24 vbx_sync(); // wait for all the vector and DMA engine operations

25 to finish

26
27 Example: Multiplication of scalar with Vector

Figure 3.2: Sample program for MXP

The details and syntax for the API’s can be found at [28]. The above bare-

metal program works fine, however, what if we want to perform some processing on

image,audio, video,etc. In that case we will need a filesystem through which we can

extract bytes from the input file without having to manually enter values as in the

example above. Also the results after processing needs to be written to a file in the

appropriate file format depending on the input file type. Vectorblox does provide

sources for Linux containing necessary device drivers alongwith prebuilt bitstreams

and hardware design file generated through Vivado. We further provide detailed steps

for setting up Linux to use MXP so that it is easy to replicate this thing in the future.
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3.3 Setting up Linux for using MXP on Zedboard

We install Vivado along with SDK option so that cross-compiler required for building

the Linux kernel sources is also installed without us needing to separately install

some cross-compiler toolchain for ARM. We plan to use a persistent filesystem rather

than ramdisk as ramdisk will lose changes made to filesystem when the board is

powered off. So we setup Xillybus on Zedboard to have an sdcard ready with a

root filesystem(which is persistent). Next we need to build First Stage Boot Loader

(FSBL), device tree, U-boot, and the Linux kernel for booting up the board with the

required MXP setup for which we need to clone the following sources(repositories) :

1. MXP repo : https://github.com/VectorBlox/mxp.git

2. Linux repo : https://github.com/VectorBlox/linux-xlnx.git

3. U-boot repo : https://github.com/Xilinx/u-boot-xlnx.git

4. Device-tree repo : https://github.com/Xilinx/device-tree-xlnx.git

Inside MXP repo, prebuilt bitstream(named system wrapper.bit to be instantiated

on the FPGA) and hardware design file(named system.hdf) have been provided for 8

and 16 vector lanes. We used the one with 16 vector lanes.

3.3.1 Building FSBL

Inside MXP repo, navigate to folder prebuilt zedboard arm viv v16 and type com-

mands shown next. Once done rename executable.elf inside mxp fsbl to fsbl.elf

1 hsi //This will switch to a TCL shell.

2 hsi% set hw_design [open_hw_design system.hdf]

3 hsi% generate_app -hw $hw_design -os standalone -proc ps7_cortexa9_0 -app

zynq_fsbl -compile -sw fsbl -dir mxp_fsbl

4 hsi% quit
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3.3.2 Building U-boot

1. Navigate to u-boot repo.Since we plan to use persistent filesystem rather than

ramdisk below modification is required in file include/configs/zynq common.h.

Find sdboot entry and edit it to avoid loading ramdisk

1 // change this

2 "sdboot=echo Copying Linux from SD to RAM...;" \

3 "mmcinfo;" \

4 "fatload mmc 0 0x3000000 ${kernel_image};" \

5 "fatload mmc 0 0x2A00000 ${devicetree_image};" \

6 "fatload mmc 0 0x2000000 ${ramdisk_image};" \

7 "bootm 0x3000000 0x2000000 0x2A00000\0" \

8 // to this

9 "sdboot=echo Copying Linux from SD to RAM...;" \

10 "mmcinfo;" \

11 "fatload mmc 0 0x3000000 ${kernel_image};" \

12 "fatload mmc 0 0x2A00000 ${devicetree_image};" \

13 "bootm 0x3000000 - 0x2A00000\0" \

2. Then to compile u-boot give commands as shown below :

1 export CROSS_COMPILE=arm-xilinx-linux-gnueabi-

2 export ARCH=arm

3 make zynq_zed_config

4 make

Rename u-boot to u-boot.elf. While building Linux kernel we need mkimage

utility, so add the tools/ folder to the $PATH variable.

3.3.3 Building Linux kernel

1. Navigate to Linux repo and give following commands

1 export CROSS_COMPILE=arm-xilinx-linux-gnueabi-

2 make ARCH=arm xilinx_zynq_defconfig
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This will generate a .config file

2. For building the kernel alongwith support for MXP we need to find out the

appropriate configuration parameters. To do this, we do some sort of reverse

engineering as described further. If we look at example source codes provided

in the bmark(benchmark) directory of MXP repo, we see the first function to be

called in these sample examples is vbx test init(). For these source codes to run

on Linux, this function calls VectorBlox MXP Initialize(”mxp0”,”cma”). If we

look at the definition of this function, it actually uses device files /dev/mxp0

and /dev/cma to do some memory mapping and other initializations. Since

these device files are used, there must be corresponding device drivers for them

in the Linux source. Sure enough we find files named mxp.c and cma.c in the

drivers/char/ directory which are responsible for creating these device files. We

then look at the Makefile in drivers/char/ directory and find entries for these

files as shown below

1 obj-$(CONFIG_MXP) += mxp.o

2 obj-$(CONFIG_CM_ALLOCATOR) += cma.o

Now we have the configuration parameters and hence we edit the .config file

generated in step 1 and set these parameters as :

1 CONFIG_MXP=m

2 CONFIG_CM_ALLOCATOR=y

3. Compile the kernel :

make ARCH=arm UIMAGE_LOADADDR=0x8000 uImage

This will generate compiled kernel uImage in arch/arm/boot/ directory

4. Compile the kernel modules :

make ARCH=arm modules

5. Insert the sdcard with Xillybus setup into the computer where this kernel is

compiled and give:
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make ARCH=arm modules_install INSTALL_MOD_PATH=/path/to/rootfs(

ext4partition)/in/sdcard/

This will copy all the kernel modules built in step 4 into the path : IN-

STALL MOD PATH/lib/modules/{kernel image name}/

3.3.4 Building device tree

1. Inside Linux repo, compile device tree source(dts) to generate device tree blob(dtb)

1 ./scripts/dtc/dtc -I dts -O dtb arch/arm/boot/dts/zynq-zed.dts -o mxp.

dtb

2 ./scripts/dtc/dtc -I dtb -O dts mxp.dtb -o mxp_linux.dts

To avoid using ramdisk, we replace the contents of bootargs under the chosen

node in mxp linux.dts as shown

1 //change this

2 bootargs = "console=ttyPS0,115200 root=/dev/ram rw earlyprintk";

3 //to this

4 bootargs = "console=ttyPS0,115200 root=/dev/mmcblk0p2 rw earlyprintk

rootfstype=ext4 rootwait devtmpfs.mount=0";

2. Copy folders from drivers/ directory inside MXP repo to the Device tree repo.

Navigate to folder prebuilt zedboard arm viv v16 in MXP repo, and enter fol-

lowing commands

1 hsi

2 hsi% open_hw_design system.hdf

3 hsi% set_repo_path /path/to/Device tree repo/

4 hsi% create_sw_design mxp_device_tree -os device_tree -proc

ps7_cortexa9_0

5 hsi% generate_target -dir mxp_dts

6 hsi% quit

After this we see some dts/dtsi files created inside mxp dts folder. We already

have the device tree entries corresponding to various peripherals in mxp linux.dts

file created in step 1. So we are only interested in pl.dtsi files which will contain
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the device tree node for the MXP soft processor instantiated on programmable

logic. Contents in pl.dtsi is as shown in Figure 3.3. Given the way in which the

1 amba_pl: amba_pl {

2 #address-cells = <1>;

3 #size-cells = <1>;

4 compatible = "simple-bus";

5 ranges ;

6 vectorblox_mxp_arm_0: vectorblox_mxp@b0000000 {

7 compatible = "xlnx,vectorblox-mxp-1.0";

8 reg = <0xb0000000 0x10000 0x40000000 0x100000>;

9 vblx, = <1>;

10 vblx,archical = <0>;

11 vblx,beats_per_burst = <16>;

12 vblx,burstlength_bytes = <128>;

13 vblx,c_instr_port_type = <2>;

14 vblx,c_m_axi_addr_width = <32>;

15 vblx,c_m_axi_data_width = <64>;

16 vblx,c_m_axi_len_width = <4>;

17 vblx,c_m_axi_supports_threads = <0>;

18 vblx,c_s_axi_addr_width = <32>;

19 vblx,c_s_axi_baseaddr = <0xB0000000>;

20 vblx,c_s_axi_data_width = <32>;

21 vblx,c_s_axi_highaddr = <0xB000FFFF>;

22 vblx,c_s_axi_instr_addr_width = <32>;

23 vblx,c_s_axi_instr_baseaddr = <0x40000000>;

24 vblx,c_s_axi_instr_data_width = <32>;

25 vblx,c_s_axi_instr_highaddr = <0x400FFFFF>;

26 vblx,c_s_axi_instr_id_width = <6>;

27 .........................................

28 .........................................

29 .........................................

30 vblx,vector_lanes = <16>;

31 };

32 };

Figure 3.3: DTS entry for MXP

device driver file mxp.c parses this device tree node we need to change contents

of this file for the correct setup Specifically we need to change compatible string

to

compatible = "vectorblox.com,vectorblox-mxp-1.0";
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Also the register entry should contain instruction address first. So,node name

and reg entry should be changed to

1 vectorblox_mxp@40000000{

2 reg = <0x40000000 0x100000 0xb0000000 0x10000>;

Copy the edited amba pl node to the end of mxp linux.dts

3. Finally compiling the device tree

./scripts/dtc/dtc -I dts -O dtb mxp_linux.dts -o devicetree.dtb

3.3.5 Packing into BOOT.BIN

Create a file with name, say bootimage.bif. Paste following contents into it

1 the_ROM_image:

2 {

3 [bootloader] <path to fsbl.elf>

4 <path to bitstream file>

5 <path to u-boot.elf>

6 }

Save the file and generate boot.bin using the command below :

bootgen -image bootimage.bif -o i boot.bin -w on

Copy files boot.bin, devicetree.dtb and uImage into the FAT partition of sdcard.

Plug-in the sdcard and boot Zedboard. While the kernel is getting loaded we should

some message like this

1 ............

2 ............

3 mxp_init

4 mxp_probe

5 ............

6 ............

meaning mxp driver is successfully loaded.
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3.3.6 Sample example on Linux

Further to use MXP API’s, on Linux we need to compile vbxapi library present in

MXP repo.Once built this library needs to be linked while compiling the application

we write on Linux. A sample example for performing the negation of an image is

shown in Figure 3.4. The input and output images obtained after running the sample

program are shown below

3.4 Experimentation and Results

The prebuilt bitstream for 16 vector lanes is used for the experimentations we describe

further. Some configuration parameters available with this setup are as shown below

vector_lanes = 16

core_freq = 100.0e6

scratchpad_size = 65536

dma data width in bytes = 8

fxp_word_frac_bits = 16

fxp_half_frac_bits = 15

fxp_byte_frac_bits = 4

3.4.1 Accelerating PolyBench kernels

PolyBench [29] stands for the Polyhedral Benchmark suite. It consists of several

benchmarks written with the purpose of having a uniform suite for the monitoring
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1 int main(int argc, char *argv[])

2 {

3 pgm_t opgm;

4 pgm_t ipgm;

5 int img_size = 0;

6 unsigned char *v_sub = NULL;

7 unsigned char max_val = 255;

8 //Initialization function to be called for using MXP in Linux

9 VectorBlox_MXP_Initialize("mxp0","cma");

10
11 //Reading image

12 readPGM(&ipgm,"lena_256x256.pgm");

13 img_size = (ipgm.width * ipgm.height);

14
15 //Allocate buffer for output image

16 opgm.width = ipgm.width;

17 opgm.height = ipgm.height;

18 opgm.buf = (unsigned char*)vbx_shared_malloc(img_size * sizeof(unsigned

char));

19
20 //Allocate vector on scratchpad

21 v_sub = (unsigned char *)vbx_sp_malloc(img_size * sizeof(unsigned char ));

22
23 //Transfer input bytes from memory to scratchpad

24 vbx_dma_to_vector(v_sub, ipgm.buf, img_size);

25 vbx_set_vl(img_size);

26
27 //Scalar vector subtraction for taking negative of image

28 vbx(SVBU, VSUB, v_sub, max_val, v_sub);

29
30 //Writing result from scratchpad to memory

31 vbx_dma_to_host(opgm.buf, v_sub, img_size);

32 vbx_sync();

33
34 //Writing output image

35 writePGM(&opgm,"out_lena_negative.pgm");

36
37 //Free allocated pointers

38 vbx_sp_free();

39 vbx_shared_free(ipgm.buf);

40 vbx_shared_free(opgm.buf);

41 }

Figure 3.4: Sample MXP program on Linux
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and execution of kernels. Typical features of Polybench include :

1. Availability of syntactic constructs so that there is no elimination of execution

due to dead code in the kernel

2. For kernel instrumentation there is a single file which can be tuned during

compile time.

3. Support for cache flushing operations which are performed before the kernel

starts executing giving more accurate timings as cache hits and misses can

affect execution times giving unpredictable results.

4. Supports setting of real-time scheduling to prevent interference from OS

We accelerate two kernels viz. atax and bicg present in this suite using MXP.

Since MXP only supports data representation in fixed point format, we change the

default data type which is double to integer for the computations to have proper

comparison and idea about the speedup as ARM on Zedboard does support floating

point operations.

3.4.1.1 ATAX

ATAX is abbreviation for A transpose A times X. It is a linear algebra kernel for

matrix multiplication and vector transpose. We accelerate the kernel for small dataset

with matrix size 500x500 and also for standard dataset size with matrix of 4000x4000.

For small dataset depending upon the available space in scratchpad after allocating

the required vectors we DMA maximum chunk of data to improve performance. The

speedup obtained using MXP is as shown below

Table 3.1: Speedup for ATAX kernel

Dataset Execution time on ARM Execution time using Speedup

alongwith NEON(in ms) MXP(in ms)

Small 6.544 1.272 5.14

Standard 482.941 106.372 4.54
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3.4.1.2 BiCG

BiCG stands for Biconjugate gradient method. In numerical algebra, it is used to

solve system of linear equations of the form

Ax = b

In polybench, this is a sub kernel for the BICGSTAB(Biconjugate Gradient Stabilized

method) which is an the iterative linear solver. We accelerate the kernel for small

dataset with matrix size 500x500 and also for standard dataset size with matrix of

3200X3200. The speedup obtained using MXP is as shown below

Table 3.2: Speedup for BiCG kernel

Dataset Execution time on ARM Execution time using Speedup

alongwith NEON(in ms) MXP(in ms)

Small 5.88 0.867 6.78

Standard 217.278 72.014 3.02

3.4.2 Running benchmarks

We run some benchmark codes present in the MXP repo, these being provided by

VectorBlox itself gives further idea about the kind of speedup that can be obtained

using MXP soft-vector processor. Scalar time is measured for code running on ARM

alongwith SIMD NEON unit and vector time represents time required when MXP is

used for acceleration.
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3.4.2.1 Results on Linux

The jumper settings on Zedboard are made so that it boots up Linux through the

sdcard. The results obtained are shown in Table 3.3

Table 3.3: Speedup for benchmarks on Linux

Benchmark Scalar time in seconds Vector time in seconds Speedup

vbw mtx fir t 10.62e-3 1.751e-3 6.063

vbw mtx median t 123.4e-3 4.885e-3 25.26

vbw mtx sobel 187.4e-3 24.94e-3 7.513

vbw mtx mm t 276.5e-6 18.43e-6 15.00

vbw vec fir t 847.9e-6 55.3e-6 25.33

imgblend 737.3e-6 313.3e-6 2.353

3.4.2.2 Bare-metal results

The jumper settings on Zedboard are made so that it boots in JTAG mode. Results

obtained are shown in Table 3.4

Table 3.4: Speedup for bare-metal execution of benchmarks

Benchmark Scalar time in seconds Vector time in seconds Speedup

vbw mtx fir t 10.73e-3 889.0e-6 12.07

vbw mtx median t 90.55e-3 4.826e-3 18.76

vbw mtx sobel 185.7e-3 24.72e-3 7.514

vbw mtx mm t 76.00e-6 17.92e-6 4.242

vbw vec fir t 836.0e-6 48.15e-6 17.36

imgblend 571.2e-6 298.0e-6 1.917

3.4.2.3 Overheads due to Linux on MXP

The overheads can be calculated by taking the difference between vector time taken

on Linux versus bare-metal execution as shown in Table 3.5
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Table 3.5: Overheads for benchmarks due to Linux

Benchmark Vector time on Linux Vector time for baremetal Overhead in

in seconds execution in seconds microsecs

vbw mtx fir t 1.751e-3 889.0e-6 862

vbw mtx median t 4.885e-3 4.826e-3 59

vbw mtx sobel 24.94e-3 24.72e-3 220

vbw mtx mm t 18.43e-6 17.92e-6 0.5

vbw vec fir t 55.30e-6 48.15e-6 7.15

imgblend 313.3e-6 298.0e-6 15.3

In the next chapter, we propose a possible solution to avoid the overheads incurred

due to use of an OS, without losing the benefits it provides such as support for a

filesystem.



Chapter 4

Asymmetric Multiprocessing on

Zedboard

The processing system on Zynq Zedboard has two ARM Cortex-A9 cores that can be

configured during run time as single processor, symmetric or asymmetric multiproces-

sor. Asymmetric Multiprocessing is a mechanism which provides us the opportunity

to boot different operating system on each processor, boot operating system on one

core and other can run bare metal application, or both cores can be running inde-

pendent bare-metal applications. It allows us to assign different roles to each core so

that we have separate cores,each performing different job within a cluster. Also, the

processors may communicate with each other through shared resources if there is a

need to do so.

In the current design, we boot Linux on one processor(CPU0) and other proces-

sor(CPU1) will be running bare-metal application. Xilinx provides an application

note XAPP1078 [30] demonstrating a sample design for AMP on ZC702 board. Ini-

tially, we modified this sample design to get it working for Zedboard and implemented

it to become conversant with the concepts and terminology involved for developing an

AMP system. Further we moved on to develop a similar system alongwith the neces-

sary modifications required for the setup, now with bare-metal application on CPU1

using MXP programming API’s for acceleration. As seen further in this chapter we

describe how one might write applications for CPU0 and CPU1 and their interaction.

26
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The reading and writing of the image happens in Linux running on CPU0 whereas

the necessary image processing using MXP is done in bare-metal application running

on CPU1.This might provide a way to avoid overheads incurred due to use of an

operating system while still being able to use its features. Also the executable file

for the application to be run on CPU1 will actually be loaded by CPU0. This paves

the way for dynamically changing the executable loaded on CPU1 during runtime

depending on system requirement which we desribe as part of the future work.

4.1 Methodology

The processing system on Zynq SoC includes resources that are private to each CPU

such as L1 cache, private timers, memory management unit(MMU), etc. Also there

are resources shared by both CPUs such as L2 cache, RAM, On chip memory(OCM),

Snoop control unit(SCU), Interrupt control Distributor(ICD). When running the sys-

tem for AMP configuration we need to consider proper synchronization while accessing

these shared resources and also prevent the processors from contending for them. The

processors communicate through OCM as it provides low latency access as compared

to DDR.

To avoid problems related to access of shared resources, following things are done,

1. Out of the 512 MB DDR memory available on Zedboard, Linux is assigned initial

384 MB and remaining 128 MB is assigned for running bare-metal application.

2. At any point in time, only one CPU will be writing or reading a location in the

OCM to prevent contention.

3. Access to L2 cache from CPU1 is disabled because if CPU1 decides to flush L2,

L2 cache being a shared resource, it could flush out the part of L2 that contains

CPU0 code.
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4.2 Setup on CPU0

Clone following sources :

1. Linux repo : https://github.com/Xilinx/linux-xlnx.git

2. U-boot repo : https://github.com/Xilinx/u-boot-xlnx.git

3. MXP repo : https://github.com/VectorBlox/mxp.git

Similar to setup on MXP 3.3 we make use of the root filesystem available on SD card

through Xillybus setup.

4.2.1 FSBL

When the board is booted the on chip ROM code will be loaded, this code will look

for the FSBL executable and load into memory. FSBL will handle the following tasks,

1. Configuring the bitstream onto the FPGA.

2. Loading DDR controller.

3. Loading U-boot executable from SD card into DDR and further execute it. U-

boot in turn acts as a second stage boot loader by loading and executing the

Linux kernel onto the RAM.

4. Initialization of the phase locked loop.

First FSBL will look for bit file and if found will program the PL with it. Next

it will look for all the executables that are available and load them into RAM. Once

loaded it will start executing the first executable which was loaded. Using Xilinx SDK,

FSBL can be generated by navigating the menu as File >Create >New >Application

Project and selecting Zynq FSBL from template applications as shown in Figure 4.1
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Figure 4.1: Build FSBL through SDK

4.2.2 U-boot

Inside U-boot sources, changes required to prevent loading of ramdisk must be done

similar to that described previously in Section 3.3.2. Further as the amount of RAM

that is available to Linux running on CPU0 has to be limited to 384 MB, we need to

edit the file include/configs/zynq zed.h as described,

#define PHYS_SDRAM_1_SIZE (384 * 1024 * 1024)
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The U-boot executable can then be obtained by following the steps described in

Section 3.3.2.

4.2.3 Linux kernel

A simple way to implement an AMP system is to configure Linux as Symmetric

Multiprocessing(SMP) but limit the number of CPUs seen by it to one. Doing so

ensures that Linux takes care of correctly configuring the SCU and ICD for a multi-

CPU environment. The linux sources can be compiled similar to the steps described

in Section 3.3.3 with one caveat, unlike the setup on MXP, we don’t have to enable

any kernel configuration parameters here. Also symmetric multiprocessing is already

enabled in the default configuration xilinx zynq defconfig.

4.2.4 Device-tree

Inside Linux sources, we make changes to bootargs entry in the device tree source(dts)

file arch/arm/boot/dts/zynq-zed.dts to make use of persitent filesystem present in

the ext4 partition of SD card (/dev/mmcblk0p2) as described in previous chapter.

Further we add maxcpus=1 to bootargs so that Linux boots only on one core. So the

bootargs entry should look something like this,

bootargs = "console=ttyPS0,115200n8 consoleblank=0 root=/dev/mmcblk0p2 rw

rootwait earlyprintk maxcpus=1";

Also to limit the RAM available to Linux the memory node needs to be changed as

1 \\change this

2 ps7_ddr_0: memory@0 {

3 device_type = "memory";

4 reg = < 0x0 0x20000000 >;

5 } ;

6 \\to this

7 ps7_ddr_0: memory@0 {

8 device_type = "memory";

9 reg = < 0x0 0x18000000 >;

10 } ;
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4.3 Setup on CPU1

1. For using the MXP APIs in our bare-metal application, we need to include the

drivers/ folders present inside MXP repository and also if the use of vbxware

library is required the sw services/ folder should be added to the repository path

in case these paths aren’t already included. Using SDK, the repositories can

be included by navigating the menu as Xilinx Tools >Repositories and adding

required paths as shown in Figure 4.2. This will cause the drivers to be included

as part of the Board Support Package (BSP) which we create next.

Figure 4.2: Adding repository paths in SDK

2. We create a new standalone BSP for CPU1(ps7 cortexa9 1) with name amp cpu1 bsp

required for our bare-metal application as shown in Figure 4.3. To disable L2

cache access for CPU1, the assembly file boot.S contained in this standalone

BSP should be modified. This change was already available with our version of
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BSP in the form of preprocessor constant definition with name USE AMP. So we

modify the settings of this BSP to add the extra compiler flag -DUSE AMP=1

to compile it for our desired setting.

Figure 4.3: AMP setting for BSP

3. Next we create a new empty application project for CPU1(ps7 cortexa9 1) with

name amp cpu1 and make it use our existing BSP which we just created and

compiled above as shown in Figure 4.4. After creating the project, we add a

new source file for our bare-metal application code, the structure of which we

will describe further in this chapter. The bare metal application should use the

upper 128 MB of the DDR and also the FSBL should place its executable at

0x1800000 which is the starting address for the upper 128 MB.
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Figure 4.4: Using existing BSP for application

To do this, we change the address range in the MEMORY section of the linker

script file lscript.ld as shown,

1 \\change this

2 ps7_ddr_0_S_AXI_BASEADDR : ORIGIN = 0x100000, LENGTH = 0x1FF00000

3 \\to this

4 ps7_ddr_0_S_AXI_BASEADDR : ORIGIN = 0x18000000, LENGTH = 0x8000000
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Also, depending on the number of bytes we might allocate in this baremetal ap-

plication or the amount of stack the code might use during runtime, the heap and

stack size should be changed in the linker script. If not done so, it might lead to

undesirable results. Typically errors such as these can be difficult to track if there is

proper error reporting available.

4.4 Booting the system

We create a file with name say boot.bif whose contents are described as follows

1 the_ROM_image:

2 {

3 [bootloader] <path to zynq fsbl executable>

4 <path to bitstream file>

5 <path to u-boot executable>

6 <path to bare metal CPU1 executable>

7 }

Note that the bare metal application executable will also be part of binary file

boot.bin. This implies CPU0 will be responsible for loading bare metal executable.

Save the file and generate boot.bin using the command below

bootgen -image boot.bif -o i boot.bin -w on

Copy files boot.bin, devicetree.dtb and uImage into the FAT partition of sdcard.

Setting jumpers on Zedboard to boot from SD card, the board is booted. After

booting once the prompt hits the Linux shell, reading the contents of /proc/iomem

and /proc/cpuinfo/ shows system RAM limited to 384 MB and only one CPU to
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Linux as seen in the screenshots below,

4.5 Structure of applications

After the Zedboard is turned on, the processing system powers up and starts executing

the initial bootROM code. Once finished, CPU1 will be placed in a WFE (Wait for

event) state and executes code at address 0xFFFFFE00. This code basically waits for

an event and then checks if address 0xFFFFFFF0 has a non-zero value in a continuous

loop. Once some non-zero address is written to 0xFFFFFFF0, CPU1 will jump to the

written address and start executing. In our design FSBL will place the executable for

CPU1 at address 0x18000000. The application for CPU0(running Linux) should write

the value 0x18000000 to location 0xFFFFFFF0. This will cause CPU1 to wakeup,

jump to specified address and start executing the application placed at that location

by the FSBL. The OCM can be accessed by both the processors and can be used
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for sharing data between them. The bare-metal application on CPU1 should avoid

creation of conflicts with regards to shared resources. The default standalone BSP of

CPU1 will enable cache access for OCM whereas Linux will disable the same causing a

shared resource conflict. The system level address map in Zynq TRM [11] shows that

addresses ranging from 0xFFFC0000-0xFFFFFFFF belongs to OCM. Using above

information, we describe how the applications are written for each processor so that

the AMP configuration is successful and resulting interaction between the processors.

4.5.1 Application running on CPU0

1. Memory map the OCM address range through the mmap() system call using

the file descriptor for /dev/mem. This provides us a way to access the OCM in

Linux for writing data to it or reading data from it.

2. Write the data bytes from the input image to OCM by writing to successive

addresses from the base address returned by mmap().

3. Write 0 to next immediate address in the OCM after filling in the input image

data. This address acts as a flag to know whether CPU1 application is done

with the image processing.

4. Write the address 0x18000000 to the location 0xFFFFFFF0 of the OCM. This

will cause CPU1 to start executing the bare metal application, which performs

the necessary image processing and writes the results back to OCM.

5. Assuming the output image size is same as that of input image, the bare metal

application will write 1 to the immediate address after writing the output image.

Meanwhile CPU0 will be polling for the value at this address to be true.

6. Once the value is found to be set, the output bytes are read from the OCM and

the output image file is created using this data.
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4.5.2 Application running on CPU1

1. To avoid shared resource conflict, configure the memory management unit(MMU)

by appropriately setting the Translation Lookaside Buffer(TLB) attributes to

disable cache access for OCM over its address range.

2. Allocate input and output buffers on the DRAM using malloc().

3. Copy data from the OCM to the input buffer. This is required because DMA

transfer will occur from DRAM to MXP scratcpad.

4. DMA data from input buffer in DDR to scratchpad. Perform necessary vector

computations for image processing and write results back to scratchpad. DMA

output results from scratchpad to output buffer in DDR.

5. Copy results to OCM from the output buffer.

6. Indicate to CPU0 that processing is finished by writing 1 to the next immediate

address after the output results are written.



Chapter 5

System level driver for

AXI-CDMA

5.1 Introduction

FPGAs consist of one or more general purpose processors combined with the pro-

grammable fabric, where the fabric is used to accelerate the compute intensive tasks

in the application. An important consideration in such a system is the integration of

the accelerator with the processor and how efficiently can the software-hardware com-

munication take place. Alongwith this, ability to abstract the communication while

performing data transfers between the processor and the programmable logic using

a system-level driver or so is also important. Communication abstraction provides a

way to depict the memory-subsystem and the communication interfaces in a logical

way by providing some sort of software API. With development of such system level

driver, the developer only needs to understand the abstract functions and can use the

system without any concern about underlying hardware. In the case of MXP, which

we saw in earlier chapter, Vectorblox provides high level C/C++ APIs for using the

vector processor for acceleration. This reduces development time. Also as per its

programming methodology there were DMA transfers done from DDR to its local

scratchpad and reverse once results are processed. Advantage of doing this, is the

input data being closer to the processing elements of the accelerator results into lesser

38
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computation time as its available in the local memory for processing. Furthermore

when the communication(DMA transfer) and computation times are similar, these

operations if overlapped can in effect hide the communication latency.

Both Xilinx and Altera embed hard memory blocks(Block random access memory

(BRAM)) iniside the fine grained programmable fabric which act as local memory

space within PL region and is accessible by both, the PL region and processor. Xilinx

provides three soft DMA IP cores [31] to be instantiated on the PL which can be used

to enhance transactions between DDR-DDR and DDR-BRAM. These can provide

high performance as they make use of the AXI HP ports available with the Zynq

architecture. They are listed as below :

� AXI-CDMA - Central Direct Memory Access which does transactions between

memory mapped source and destination regions using AXI4 protocol.

� AXI-DMA - Direct Memory Access which does transactions memory and AXI4-

Stream type target peripherals.

� AXI-VDMA - Video Direct Memory Accesss which does transactions between

memory and AXI4-Stream type video target peripherals.

Our focus in this chapter will be developing a driver for making use of the Xilinx

AXI-CDMA engine [32] device driver to do DMA transfers.

5.2 Hardware design

The Central Direct Memory Access (CDMA) engine is configured with 32-bit data

width and burst length of 256 for the DMA transfers. The hardware design is created

using Vivado, the block design of which is shown in Figure 5.1. The transfer path of

the main signals is highlighted in red. The master port M AXI on CDMA engine is

connected to slave interface S AXI of the BRAM controller and slave high performance

port S AXI HP0 of the Zynq processing system. This S AXI HP0 port will be used
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to access the DDR controller and is used for the data transfers from DDR-DDR or

DDR-BRAM or BRAM-DDR.

Figure 5.1: Vivado block design for PL-CDMA

The BRAM controller is required so that the AXI signals are converted to a form

that can be used for accessing the BRAM. Also the master general purpose port

M AXI GP0 on the PS is connected to slave interface S AXI LITE on the CDMA

engine. This connection is used by the PS to program the CDMA engine registers

with the appropriate parameters such as source address, destination address, number

of bytes to be transferred, etc. The cdma introut signal is interrupt output from the

CDMA engine which is connected to IRQ F2P on the Zynq processing system. This

output is generated to indicate to the PS that the CDMA engine has finished a DMA

transaction. After creating the design we can generate the hardware design file and

the bitstream. The hardware design file can then be used for getting the device tree

entry for the CDMA engine being instantiated through the bitstream.
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5.3 Software design

For the CDMA engine instantiated on the PL, its device driver will read the device

tree entry and set it up with the appropriate configuration parameters used for the

hardware design. A sample device tree node to be added in the dts file for the same

is shown in Figure 5.2

1 dma@7e200000 {

2 #dma-cells = <0x1>;

3 compatible = "xlnx,axi-cdma";

4 interrupt-parent = <0x2>;

5 interrupts = <0x0 0x1d 0x4>;

6 reg = <0x7e200000 0x10000>;

7
8 dma-channel@7e200000 {

9 compatible = "xlnx,axi-cdma-channel";

10 interrupts = <0x0 0x1d 0x4>;

11 xlnx,datawidth = <0x20>;

12 xlnx,device-id = <0x0>;

13 xlnx,max-burst-len = <0x100>;

14 };

15 };

Figure 5.2: DTS entry for CDMA

For a character driver, there can be many file operations that can be used for

providing abstraction to the application by APIs(system calls). These file operations

mapped to corresponding functions in our driver are as shown in Figure 5.3

1 struct file_operations memory_fops = {

2 .open = memory_open,

3 .read = memory_read,

4 .write = memory_write,

5 .release = memory_release,

6 };

Figure 5.3: File operations structure for driver

In case of DDR-PL transactions memory write performs transfer of data from

DDR to BRAM, and memory read will perform transfers from BRAM to DDR. In

Linux, DMA is designed to be used by a higher level device driver in the kernel space.
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There is a framework in Linux that allows access to DMA controller drivers(in our

case AXI CDMA) in an abstract manner known as the DMA engine. Xilinx provides

device drivers for the AXI CDMA, AXI DMA and AXI VDMA engines that plug into

this DMA engine framework. We create such higher level device driver by making

use of the DMA APIs provided by this framework. The software detailed design for

the driver is shown in Figure 5.4

Figure 5.4: CDMA Software Detailed Design
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5.4 Programming Flow

We perform a loopback in case of DDR-PL transfers i.e we transfer data from DDR-

BRAM and again transfer the same data from BRAM-DDR to verify functionality

of our driver. In this section we describe the procedure used in the different file

operations functions of the driver.

5.4.1 Opening the device file

1. Request for a channel using dma request channel(). As there can be multiple

PL-DMA drivers in use in the kernel depending upon what is instantiated on the

fabric or even PS-DMA hard IP driver may be currently in use. To get channel

specifically from the CDMA engine driver we need to provide the correct match

value as shown :

1 direction = DMA_MEM_TO_MEM;

2
3 match = (direction & 0xFF) | XILINX_DMA_IP_CDMA | (device_id <<

XILINX_DMA_DEVICE_ID_SHIFT);

2. Allocate source and destination buffers on the DDR using dma alloc coherent().

This function allocates cache coherent memory and returns the virtual and

physical addresses of the allocated buffers.

5.4.2 Writing to the device file

1. Copy data from the user space into the allocated source buffer.

2. Call device prep dma memcpy() providing source address as the physical ad-

dress of the source buffer allocated in previous step. The destination address

will be the starting address of the BRAM in case of DDR-PL transfers or phys-

ical address of the destination buffer allocated in previous step in case of DDR-

DDR transfers. Also provide the number of bytes to be sent alongwith the

channel to this function. This will return a channel descriptor.
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3. Register a callback with the channel descriptor so that when DMA tranfer

finishes an interrupt is received from the CDMA engine and the callback will

get called.

4. Submit the channnel descriptor using dma engine submit(). This will return a

cookie used for checking the transfer status.

5. Initiate transfer using dma async issue pending(). Wait for completion of the

DMA providing a timeout value to function wait for completion timeout() so

that it exits in case the interrupt is not received and timeout occurs. If the

callback registered with the channel descriptor gets called, it means interrupt

was received.

6. Get the status of the transfer done using dma async is tx complete() by pro-

viding it the cookie. The status should be returned as DMA SUCCESS so as

to verify that the operation was done successfully.

5.4.3 Reading from the device file

1. In case of DDR-PL transfers perform steps 2 to 6, similar to writing operation

with the caveat that in step 2 the source address will be the starting address of

BRAM and destination address is the physical address of the destination buffer

allocated on DDR. For DDR-DDR no need to do these steps as the transfer was

already done in the writing operation.

2. Copy data from the allocated destination buffer to user space.

5.4.4 Closing the device file

1. Deallocate the source and destination buffers of DDR using dma free coherent().

2. Terminate all the DMA operations that are making use of the channel by calling

dma engine terminate all().

3. Release the acquired channel using dma release channel().
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5.5 Results

The profiling in user space was performed using clock gettime() function while pro-

viding parameter as CLOCK MONOTONIC RAW which uses hardware-based time

and is not subject to NTP(Network Time Protocol) adjustments [33]. Similarly,

for profiling in kernel space,the kernel mode function for clock gettime() i.e getraw-

monotonic() was used. The timings are measured by averaging over 1024 trans-

fers. DMA transfer latency indicates time measured only for the transfer function

dma async issue pending() which actually initiates the transfer and corresponding

wait for completion. The kernel space latency indicates total time taken in the kernel

space. The user space latency indicates time taken for the transfer as seen by the

application which will include kernel space latency, system call overheads and call to

profiling functions in the kernel space. Bandwidth is measured with respect to the

DMA transfer latency. All the timings measured are in microseconds. In all cases, we

observe bandwidth increases as number of samples tranferred becomes higher. Typ-

ically we observe that the overhead from user space with respect to kernel space is

≈ 2 microseconds.

5.5.1 DDR-DDR Communication

Table 5.1: Latency and bandwidth for DDR-DDR transfers

Number of DMA transfer Kernel space User space Bandwidth

Samples latency latency latency in MB/s

32 13.338 16.092 18.45 2.29

64 13.374 16.488 18.702 4.56

128 16.128 18.396 20.718 7.57

256 20.628 23.112 25.722 11.84

512 19.944 23.184 26.082 24.48

1K 19.926 23.778 26.352 49.01

2K 22.626 28.134 30.906 86.32

4K 27.648 33.714 35.91 141.29

8K 38.322 46.008 48.60 203.86
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5.5.2 DDR-PL Communication

We observe that transfers from DDR to BRAM are slower than that from BRAM to

DDR indicating that writing to BRAM is typically slower than writing to DDR.

Table 5.2: Latency and bandwidth for DDR-BRAM transfers

Number of DMA transfer Kernel space User space Bandwidth

Samples latency latency latency in MB/s

32 13.176 16.29 18.45 2.32

64 13.338 16.11 18.594 4.58

128 16.686 18.558 20.916 7.32

256 20.34 23.31 25.884 12.00

512 19.926 23.436 25.902 24.50

1K 20.772 21.978 25.992 47.01

2K 25.776 29.268 31.878 75.77

4K 33.192 38.142 40.914 117.69

8K 48.33 56.106 58.95 161.65

Table 5.3: Latency and bandwidth for BRAM-DDR transfers

Number of DMA transfer Kernel space User space Bandwidth

Samples latency latency latency in MB/s

32 12.942 16.074 18.18 2.36

64 12.834 16.488 18.414 4.76

128 13.23 16.704 18.792 9.23

256 19.728 24.03 26.37 12.38

512 19.764 25.236 27.396 24.71

1K 20.034 27.09 29.358 48.75

2K 21.834 35.46 36.72 89.45

4K 27.504 47.502 49.914 142.02

8K 38.052 75.096 77.598 205.31
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Conclusions and Future Work

6.1 Conclusions

This report focussed on the use of FPGA overlays as accelerators and providing OS

support on them for abstracting the hardware details to the end user. We described

in detail the necessary steps for configuring and booting Linux and accessing the

MXP overlay through it. Polybench kernels, ATAX and BiCG were accelerated using

MXP. For ATAX we were able to get ≈ 5× speedup and for small dataset size on

BiCG kernel 6.7× speedup. For standard dataset size in BiCG we got a speedup

of ≈ 3. Further standard benchmarks provided by MXP were run on Linux as well

as in bare-metal mode. The overheads due to use of OS on the MXP overlay were

calculated for these benchmarks.

In the quest for avoiding the overheads due to Linux on MXP, while still using the

filesystem on an OS, we developed an AMP system, wherein Linux was booted on

one CPU core and bare-metal application using MXP APIs was run on another. We

described a way to structure the applications on each CPU for using the developed

system and corresponding interaction between the cores.

We also developed a system-level driver on top of CDMA engine driver with the

goal of abstracting the communication interface between the PS and PL. Using the

driver we were able to do DMA transfers from DDR-DDR and DDR-PL by just

writing or reading to the device file for the driver. The bandwidths for these transfers
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were measured. For 8K samples, we were able to achieve a bandwidth of 203 MB/s

for writes to DDR. For writes to BRAM, we observed the bandwidth to be around

162 MB/s.

6.2 Future work

In this section we describe the future directions for the work described in Chapters 3,

4 and 5 .

6.2.1 For MXP

More kernels from polybench suite should be accelerated using MXP and the speedup

obtained can be compared with other kinds of accelerator such as GPU. This will help

to make an informed decision about the platform to use based on the performance re-

quirements of the application. Also power measurement for these accelerators should

be done to gain information about the energy consumption on each of these platforms.

6.2.2 For AMP

� The HP ports on Zynq have direct access to OCM alongwith DDR. So while

using AMP for MXP, instead of copying data from OCM to DDR and back

further exploration should be done to see if the DMA transfers can occur directly

from OCM to scratchpad.

� The ability of changing the bare metal executable during run-time can be added

to the existing setup. This will particularly require resetting the CPU1 and

replacing with new executable before starting it again.

� In the current system, the two processors signal each other through polling for

a particular memory location. This polling mechanism should be replaced with

interrupt based signalling and checked for better performance.
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6.2.3 For CDMA driver

� Instead of copying data between user space and kernel space buffers, the allo-

cated coherent memory in the kernel space must be mapped to the user space

by adding memory mapping call to the driver file operations. Furthermore, it is

also possible to directly program the CDMA engine through user space without

any requirement for kernel drivers. Bandwidths obtained with these approaches

should be measured and checked if its better than current implementation.

� The hardware design and the driver should be modified further to add support

for more channels thereby utilizing all the available HP ports for doing transfers

in parallel which will further improve the bandwidth for the DMA transfers.

This will require that the driver code be re-entrant to avoid conflicts and the

number of channels should be scaled accordingly.

� In the current design, with the loopback, only the communication part for an

accelerator is done. For accelerating computations, processing elements(PEs)

should be attached to the BRAM so that once DMA transfer is done from the

DDR to BRAM, processing can be done by the coprocessor on the data before

transferring the results back to DDR.



Bibliography

[1] ARM Ltd. The ARM Cortex-A9 Processors. http://www.arm.com/files/pdf/

ARMCortexA-9Processors.pdf.

[2] http://olaf.eecs.berkeley.edu.

[3] http://www.eejournal.com/archives/articles/20130305-fpgawars/.

[4] J. Coole and G. Stitt. Intermediate fabrics: Virtual architectures for cir-

cuit portability and fast placement and routing. In Proceedings of the In-

ternational Conference on Hardware/Software Codesign and System Synthesis

(CODES+ISSS), pages 13–22, October 2010.

[5] A. K. Jain, K. D. Pham, J. Cui, S. A. Fahmy, and D. L. Maskell. Virtualized

execution and management of hardware tasks on a hybrid ARM-FPGA platform.

Journal of Signal Processing Systems, 77(1–2):61–76, Oct. 2014.

[6] Jesse Benson, Ryan Cofell, Chris Frericks, Chen-Han Ho, Venkatraman Govin-

daraju, Tony Nowatzki, and Karthikeyan Sankaralingam. Design, integration

and implementation of the dyser hardware accelerator into opensparc. In In-

ternational Symposium on High Performance Computer Architecture (HPCA),

pages 1–12, 2012.

[7] Neil W. Bergmann, Sunil K. Shukla, and Jrgen Becker. QUKU: a dual-layer

reconfigurable architecture. ACM Transactions on Embedded Computing Systems

(TECS), 12:63:1–63:26, March 2013.

50

http://www.arm.com/files/pdf/ARMCortexA-9Processors.pdf
http://www.arm.com/files/pdf/ARMCortexA-9Processors.pdf
http://olaf.eecs.berkeley.edu
http://www.eejournal.com/archives/articles/20130305-fpgawars/


BIBLIOGRAPHY 51

[8] D. Capalija and T.S. Abdelrahman. Towards synthesis-free JIT compilation

to commodity FPGAs. In IEEE Symposium on Field-Programmable Custom

Computing Machines (FCCM), pages 202–205, 2011.

[9] Davor Capalija and Tarek S. Abdelrahman. A high-performance overlay ar-

chitecture for pipelined execution of data flow graphs. In Proceedings of the

International Conference on Field Programmable Logic and Applications (FPL),

pages 1–8, 2013.

[10] A. Severance and G. G. F. Lemieux. Embedded supercomputing in fpgas with the

vectorblox mxp matrix processor. In Hardware/Software Codesign and System

Synthesis (CODES+ISSS), 2013 International Conference on, pages 1–10, 2013.

[11] Xilinx Ltd. Zynq-7000 technical reference manual. http://www.xilinx.com/

support/documentation/user_guides/ug585-Zynq-7000-TRM.pdf, 2013.

[12] Gordon Brebner. A virtual hardware operating system for the Xilinx XC6200. In

Field-Programmable Logic Smart Applications, New Paradigms and Compilers,

pages 327–336. 1996.

[13] C. Steiger, H. Walder, and M. Platzner. Operating systems for reconfigurable

embedded platforms: online scheduling of real-time tasks. IEEE Transactions

on Computers, 53(11):1393–1407, November 2004.

[14] M. Vuletic, L. Righetti, L. Pozzi, and P. Ienne. Operating system support for

interface virtualisation of reconfigurable coprocessors. In Proceedings of the De-

sign, Automation and Test in Europe (DATE), pages 748–749, 2004.

[15] K. Rupnow. Operating system management of reconfigurable hardware com-

puting systems. In Proceedings of the International Conference on Field-

Programmable Technology (FPT), pages 477–478, 2009.

[16] Ivan Gonzalez and Sergio Lopez-Buedo. Virtualization of reconfigurable copro-

cessors in HPRC systems with multicore architecture. Journal of Systems Ar-

chitecture, 58(6–7):247–256, June 2012.

http://www.xilinx.com/support/documentation/user_guides/ug585-Zynq-7000-TRM.pdf
http://www.xilinx.com/support/documentation/user_guides/ug585-Zynq-7000-TRM.pdf


52 BIBLIOGRAPHY
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