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Abstract

While reconfigurable computing architectures have shown better performance over
processor based systems, they are not widely used beyond specialist application do-
mains such as digital signal processing and communications. It is mainly due to the
poor design productivity, which limits their effective use to experts in hardware design.
Coarse grained overlay architectures (CGRAs) have emerged as an attractive solu-
tion for improving design productivity by offering fast compilation and software-like
programmability. These architectures enable general purpose hardware accelerators,
allowing hardware design at a higher level of abstraction, but at the cost of area and
performance overheads. To deal with these overheads, one innovative method is to
present a many-core processor array, which adopts the DSP blocks as functional units
(FUs) in the CGRA-based architectures. Moreover, the interconnect between differ-
ent FUs also needs to be carefully designed as it may cost massive area for routing
resources.

This report presents a potential direction to optimize our previous work, TMFU
overlay, a linear array of time multiplexed FUs. It is an area efficient FPGA overlay
which processes data in a streaming manner, consuming minimum interconnect re-
sources. In addition, the requirement of look-up tables (LUTs) and flip-flops (FFs)
decreases by implementing DSP48E1 primitive as the processing core. However, it
suffers from throughput penalty due to a high value of initial interval (II). We then
propose an improved overlay architecture with two time multiplexed FUs working in
parallel at one stage. It comprises of two different structures: fully parallelism and
first stage parallelism. Simulation results show that the II can be reduced almost
half value as the No. of FUs is doubled. We also investigate the internal architecture
of floating point operators and selects the most suitable structure according to the
TMFU overlay. Finally, we evaluate the performance of TMFU overlay integrated
with ARM processor on Zynq platform for a set of benchmarks, and then the result

is compared with that of Vectorbox MXP and draw a conclusion.



Chapter 1

Introduction

1.1 Motivation

Coarse grained overlay architectures have emerged as an attractive solution for im-
proving design productivity by offering fast compilation and software-like programma-
bility. Other advantages include application portability across devices, better design
reuse, and rapid reconfiguration that is orders of magnitude faster than partial recon-
figuration on fine-grained FPGAs. Although research in the area of coarse grained
overlay architectures has increased recently, the field is still in its infancy with only
a few FPGA overlay architectures demonstrated in prototype form [4, [5, [6]. Area
and performance overheads have prevented the realistic use of overlays in practical
FPGA-based systems, limiting their use to very small compute kernels [7]. One of the
main reasons for this poor performance is that many of the early overlay architectures
are designed without serious consideration of the underlying FPGA architecture. To
better target the FPGA fabric, an overlay architecture with FUs based on Xilinx
DSP hard macros was proposed in [8]. This resulted in a highly pipelined overlay
which maps multiple compute kernel operations to a single DSP block with a signifi-
cant reduction in the number of FUs required, and hence the routing overhead. Even
though a data throughput better than the direct FPGA implementation using Xilinx
Vivado HLS was reported, the overlay is still relatively small due to the very high

area overheads associated with the programmable routing network between the FUs,
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and consumes almost all of the fabric resources while supporting only small compute
kernels.

In the previous work [9], we developed a novel overlay architecture which at-
tempts to significantly reduce the area overheads associated with the inter-FU rout-
ing network while still maintaining fast compilation and software-like programmabil-
ity characteristics. Instead of an array of tiles, where a tile consists of an FU and
programmable interconnect (usually as island style or nearest neighbour (NN) con-
nections), we utilized a linear array of FUs where the FU is shared among compute
operations and the interconnect reduces to a time multiplexed single point-to-point
link. We tried to maximize the use of embedded hard macros, specifically DSP48E1
and RAM32M primitives, in the design of the tile architecture to minimize the use
of fine grained FPGA resources. The results presented show a significant reduction
in area requirement for a set of compute kernels, with a reduction of up to 85% in
the FPGA resource compared to existing throughput oriented overlay architectures,
an operating frequency in excess of 300 MHz on the Xilinx Zynq, but at the cost of
reduced throughput. To further improve the computational density of this overlay,
we explore new structures for the time multiplexed FU (TMFU) and interconnection
between the upper and lower TMFUs. We also aim to develop an efficient inter-
face between the accelerator and an ARM processor on Zyng-7000 platform, which

demonstrates the benefit of overlay architecture in a systematic view.

1.2 Contribution

Our project is mainly based on the proposed TMFU overlay. We exploit the microar-
chitecture of this overlay and improve the throughput with twice resources of FUs.
The TMFU overlay is successfully integrated with Zynq via Xillybus to form a more

systematic design. The main contributions is summarized as follows:

e II reduction by doubling the ALUs, register files, and instruction memories at
each stage.

e Feasibility test for implementing floating-point FUs on the proposed overlay.
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e Integration with ARM processor on Zynq platform using Xillybus, and perfor-
mance evaluation is provided in comparison with commercial soft vector pro-

cessors, MXP.

1.3 Organization

The remainder of the report is organized as follows: Chapter [2| presents background
information and a general literature survey on overlay architectures for the coarse-
grained many-core overlay architectures. In Chapter[3| we present a time multiplexed
functional unit and a linear array of these units as an Overlay architecture. Chapter
analyses architecture in three types of floating point operators. Based on the char-
acteristics of operators, we select one structure to optimize TMFU overlay. Chapter
investigates the principle of Xillybus, and uses Xillybus to integrate TMFU overlay
with an ARM processor on Zynq. Performance results of our system are compared

with Vectorbox MXP. We conclude in Chapter [6] and discuss future work.



Chapter 2
Background and Literature Survey

Many coarse grained overlay architectures have been proposed to implement on top
of an FPGA. They are generalized to 4 species in terms of interconnects: spatially
configured, time multiplexed, packet switched, and circuit switched. Among these
overlays, SCFU-SCN [9] and TMFU-TMN [9] are the main overlays on our investiga-
tion. While SCFU-SCN performs the same operation over the time by computing logic
routing with spatially configuring, TMFU-TMN loops over a short list of instructions
for kernel operations with time-multiplexed execution. SCFU-SCN overlays suffer
from significant area overhead, as each FU has a fixed functionality at run time.
With the benefit of time multiplexed FUs, TMFU-TMN can dramatically reduce the
utilization of FUs and interconnection resources. However, TMFU-TMN overlay is
generally facing the problem of high memory requirement for storing instructions and
higher initial interval (II). Recently, several implementations of TMFU-TMN have
been investigated and can be summarized into 2 categories: processor-based overlays,
and CGRA-based overlays.

2.1 Processor-based Overlays

In essence, processor-based overlay is fulfilled by building the soft core or an array of
soft processors on top of the FPGA fabrics. Soft (scalar) processors and soft vector

processor (SVPs) are the two major processor-based overlays. Soft (scalar) processor

4



2.1. PROCESSOR-BASED OVERLAYS 5

is an instruction set architecture and soft vector processor is the design of data-level

parallelism.

2.1.1 Soft Scalar Processors

A soft scalar processor is achieved by implementing FPGA logic primitives as an in-
struction set architecture. Xilinx MicroBlaze and Altera Nios II are the commercial
industrial soft processors, which are the conventional MIPS-like architecture for bet-
ter software portability, and suitable for non-hardware exporter to carry out FPGA
implementation with specific software build tools (Xilinx EDK and Altera Eclipse).
Nevertheless, compared with hardware processors, the FPGA-based soft processor has
inferior performance in the utilization of area and power consumption but better flex-
ibility and portability as it is modifiable for the diverse requirement of applications.
To against the FPGA vendor soft processors, a few soft processors have proposed as
FPGA-centric soft processor families such that the design space is suitable for trade-
offs between area and performance [14} [15, 6] [17, [I8]. Table[2.1]indicates the detailed
characteristics of these processors in frequency, area aspects, operating frequency in-
creases when area utilization reduces, the future tendency is interconnecting multiple

soft cores to gain a better performance.

Table 2.1: Soft Scalar Processors

Year Name of System Word Width Device Max Freq Area

2005 CUSTARD 8/16/32-bit XC2V2000 30MHz 1800-2500 Slices
2005 SPREE 8/16/32-bit Stratix II 90MHz 900-1500 LEs
2012 Octavo 8-72 bits Stratix IV 550MHz 300-3000 ALUTSs
2012 iDEA 32-bit Virtex-6 540MHz 404 FFs and 335 LUTs
2016 GRVI 32-bit Kintex UltraScale 375MHz 320 LUTs

e CUSTARD

CUSTARD stands for Customizable Multi-threaded Processor, which is the first cus-
tomizable multithreaded soft processor [15], [19]. CUSTARD is a fully bypass archi-
tecture with a 4-stage pipeline. It supports the parameterized amount of threads,

threading type, bit-width and custom instructions. In experiment, the CUSTARD
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has 2.41times speedup of average performance for all benchmarks with customized
instructions compared with the performance of Xilinx MicroBlaze. However, the
available frequency range of CUSTARD and all its extend versions is from 30MHz to
50MHz, this is inferior to operating frequency of MicroBlaze (up to 100MHz). Be-
sides, the customized instruction has more area consumption (2times) and less I/O

port available.
e SPREE

The Soft Processor Rapid Exploration Environment (SPREE) automatically creates
synthesizable HDL implementations of soft processor architectures from text-based
ISA and datapath descriptions, which facilitates the microarchitecture of soft proces-
sors and optimizes the RTL description [16]. SPREE is 3-stage pipeline architecture,
which is made up of SPREE RTL Generator and a SPREE Component Library. RTL
generator creates a description of datapath and component library restores the RTL
code and interface description for each component. The performance of the proces-
sor in area consumption has reduced by 9% and increased speed by 11.4% regarding
performance-per-area over the fastest-on-average design [20]. SPREE cannot offer
same design space as CUSTARD but provides efficient synthesis and optimization of
architecture when instruction setting is fixed. Implementation of functional compo-
nent abstraction limits the complexity of SPREE, however, when specific situations

occurs, the functionality and performance of SPREE still be influenced.
e Octavo

The main idea of Octavo is to investigate "How do FPGAs want to compute?” [14].
Octavo operates on the Stratix IV FPGA with maximal frequency of Block RAMs
(550MHz) and a multi-threaded 10-stages architecture. Octavo was further tiled (or
duplicated) in two dimensions, its multi-locality was preserved via logical partition-
ing [21]. In [22], the way to limit overheads of addressing and control-flow via process-
ing the branch trigger module (BTM), address offset module (AOM) and developing
operation efficiency for looping code. Octavo can process on the high frequency as

it is a pipeline and multi-threaded architecture. Furthermore, it offers great design
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space since its parameterizable. As mention before, the processor contains BTM and
AOM which will consume extra clock cycles for execution, this limits performance

result.
e iDEA

iDEA is a lightweight soft processor with Xilinx DSP48E1 primitive to be the com-
puting core, DSP48E1 primitive leads better performance of resource consumption
and speed [17]. LLVM-MIPS compiler is capable of configuring the loopback poten-
tial and modify the assembly instruction, which is integrated with iDEA processor
to extend functionality. Additionally, such as approaches of internal loopback and
external forwarding, they can be performed for diminishing the execution time and
gaining better development up to 25% [23 24]. Nonetheless, the 32-bit multiplica-
tion cannot achieve in iDEA since the DSP48E1 primitive only able to execute 25x18
bits multiplier, and also only one DSP48E1 block is used in the processor, it limits
iDEA implementation. Performance can be improved by operating these resource as

a multi-processor system.

e GRVI

GRVI is an FPGA-based RISC-V RV32I soft processor to improve the computational
density for MIPS and LUT. The GRVI has numerous advantages such as: efficient
area consumption (only 320 LUTs), high operating frequency (375MHz), compact and
fast design. GRVI Phalanx is a multiprocessor accelerator via placing multiple GRVI
processors on the above of the FPGA whose resources is joint into some clusters (8
GRVI PEs, 12 BRAMs and a Hoplite router) [18]. The Hoplite is 2-D torus directional
interconnect Network-on-chip, it has faster performance and good efficiency of area
utilization. Through the performance result from GRVI Phalanx, the BRAMs are
used up to 100%, which is a challenge for the future design of size development.
Compared with hardware processors and accelerators, these soft core processors
cannot gain the same performance and high-speed operation as hardware but good
software programmability. To improve the overall performance of soft core processor,

efficient routing approach is vital for future design.
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2.1.2 Soft Vector Processors

Soft Vector Processors (SVPs) is processed via parallelism of data-level, it is capa-
ble of evaluating the tradeoff between performance and area by a hybrid approach.
The architecture of most proposed SVPs is similar and implemented by a scalar
soft-processor. Scalar soft-processor controls the vector lanes executing custom in-
structions on the local vector memory. SVPs have three critical obstacles to restrict
the development for example complexity of centralized vector register file, difficulty
of processing precise exception and higher cost in on-chip vector memory system.
However, the SVPs do achieve acceleration of operation, which are much faster than
the soft processor [25]. VESPA [26], VIPERS [27], VEGAS [2§], VENICE [29]
and MXP [30] are the five types proposed implementations of SVPs. Among these
implementations, VESPA and VIPERS are established in parallel and also the first
generation of FPGA-centric SVPs, VEGAS is the second generation, which is created
based on the on-chip memory of FPGAs, VENICE is processed with high operating
frequency and low area as the newest version. Finally, the first commercial design
VectorBox MXP is created based on VENICE implementation. All implementations
are evaluated on EEMBC application. VESPA, VIPERS and MXP are emphasized

in below.
e VESPA

VESPA is an MIPS-based scalar core with excellent portability, scalability, and
flexibility. It integrates with VIRAM [31] which is compatible vector coprocessor and
able to implement on any FPGA devices. Compared with soft scalar processor, the
VESPA achieves an average speedup from 1.8x (2-lane) to 6.3x (16-lane). Also the
tradeoff between area and flexibility can be adjusted by changing length and width
of vector length. VESPA can be extended and implemented on the Stratix III FPGA

to gain better performance-per-area (up to 34%) compared with the original design.
e VIPERS

VIPERS is composed of a single-threaded (Nios II-compatible) scalar core referred

as UTIle, a memory interface unit and a vector processing unit [25]. The improved
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version VIPERS is presented in [32], it provides double vector registers and some
new instructions with better flexibility than the original design. Under testing on
the same benchmark, 16-lanes VIPERS gets up to 25times better performance and
a modest 14x area compared with performance if Nios II processor, it is probable to

increase saving of 30% area consumption in further via modifying VIPERS.

VESPA and VIPERS are suitable of processing data form 8-bit to 32-bit, but
they are still facing some challenges: 1) Range of width should be large enough in
vector engine when processing mixed-width data. 2) The overhead of instruction is
unavoidable since the processing of byte-sized data requires zero-extended or sign-
extended which are unnecessary in operation. 3) The width of memory and cache
should be large to satisfy the memory requirements of building a connection between
vector register file and on-chip memory (VIPERS) or cache (VESPA), but it is limited
in the range of FPGA devices capacity.

e MXP

The VectorBlox MXP can be connected with Altera or Xilinx FPGAs thought Avalon
or AXI interfaces to be a commercial IP core. The MXP has additional characteris-
tics: fixed-point arithmetic, 2D-DMA support, and a C++ object based application
programming interface (API) for higher level programming [25]. MXP can operate
at the high frequency over 200MHz with fewer vector lanes (<16), the 64-lane MXP
even can reach 918 times faster than a Nios II/f processor for speedup on matrix

multiplication.

In conclusion, the SVPs have better performance result by data parallel applica-
tion, the throughput of SVPs is increased when the vector lanes rise. Nevertheless, the
number of vector lanes should be decided based on the clock frequency as when vector
lanes increase the clock frequency would decrease. Moreover, a suitable compiler also

is vital for the future development.
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2.2 CGRA-based Overlays

CGRA-based FPGA overlays are still in the primary stage, the previous critical ten-
dency of implementation focus on the throughput-oriented which is mapping each
operation to a single FU and acquiring II to one. However, the hardware source is
unavailable, and enough to fit large compute kernel onto FPGA, then design with
efficient area consumption is considered. Recently, time-multiplexed FU (TMFU)
is proposed, it is developed as mapping large kernel onto overlay with decreasing of
throughput. Some critical CGRA-based FPGA TMFU overlays are listed in Table[2.2]

Table 2.2: CGRA-based Overlays

Year Name of System  Granularity Device Arithmetic Max Freq Area

2011 CARBON 32-bit Stratix I1I integer 150MHz 3K ALMs,304 FF's

2012 reMORPH 32-bit Virtex6 integer 400MHz 200 Slice LUTs

2013 TILT 32-bit Stratix V. Floating point 200MHz 2.7K-14K eALMs

2013 SCGRA 32-bit Virtex 7 integer 270MHz 1280 LUTs, 318 FFs
e CARBON

CARBON requires larger resources with slow operation speed, which significantly
limits the scalability of the architecture compared with the other TMFU-overlay.
Moreover, when executing the instruction memory for reading operation, the BRAM
cannot fully operate, which leads the requirement of extra memory storage for saving
bypass data. In the example of CARBON, it operates as a 2x2 array of tiles on FPGA
with maximal 256 instructions and 90MHz operating frequency [33].

e reMORPH

The reMORPH overlay has finest performance when is targeted with FPGA fabric,
the resource consumption of one FU is made up of 1 DSP block, 3 BRAMs, 196
LUTs and 41 registers. The reMORPH can operate on high operating frequency
(400MHz) and implement about 40 tiles, each title is consist of 5-stage pipeline ALU

and a BRAM to store instruction, it requires little resource utilization [34]. During
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the development of reMORPH, reduction of overhead is achieved by the routing and
multiplexers. Hence, the decoder is not required, which leads increasing of instruction
bit and the overuse of BRAM blocks, the size of overlay rises due to these reasons.
Tiles are implemented in the reMORPH overlay, which involves time consumption
of changing between the various application kernels such that the operation will be

accordingly slow.
e TILT

TILT overlay supports 32-bit floating point operation and is a highly configurable
engine for FPGAs. The internal FU can be varied and deeply pipelined such that
TILT cores can scale internal FU. Each core contains data memory, crossbar switches,
and FUs, all cores are sharing a single instance of instruction memory and can be
execute in single-instruction-multiple-data (SIMD) mode 35, 36]. Through evaluation
of TILT performance, compared with Altera OpenCL HLS implementations, the TILT
overlays is suitable to operate on the high frequency (up to 200MHz). It is similar
to the HLS implementation but less area overhead (2times less) when throughputs
for both designs are equal. However, the update of kernels requires recompilation of
TITL system since TITL does not support customized for kernels, which issues extra
time consumption of hardware context (38 seconds on average). Moreover, the TITL
system has less density of computation when executing less design, but this limitation

can be solved by customizing the FU and specific functionality of applications.
¢ SCGRA

SCGRA overlays as a method to address productivity issue of FPGA design, it
presents a reduction from 10 times to 100 times in compilation time compared with
AutoESL HLS tool [37]. Some SCGRA overlay are implemented on Xilinx Zynq,
which can gain a speedup (up to 9 times) and faster implemented on Xilinxk ARM
processor. Changing of compute kernel is fully processed by reconfiguring FPGA
bitstream, then the context switching of applications is faster. Zyng-based SCGRA
overlay operates at 2560MHz, and FU includes ALU, multiport data memory (256x32
bits) and variable depth instruction ROM. Conversely, large size design of SCGRA
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overlay implementation has several challenges: 1) Requirement of BRAM is high for
instruction memory, and it is a tradeoff between utilization of BRAM and I/O bulffer,
these characteristics influence the data reuse. 2) The cost of routing design between
PEs gets higher as increasing of size, which causes the performance of computation.
3) As the size of overlay growing, the operation frequency has to decrease, which
causes the deteriorative overall performance result.

Despite CGRA-based overlays are the latest proposed design product of FPGAsS,
in particular for the TMFU overlays which are proposed within last 5 years. According
to the present situations, many CGRA-based overlays have significant performance
in speed and area efficiency. The abundant potential is discovered when more coarse-
grained modules (DSP, BRAM) are implemented onto FPGAs, which has important

meaning for accelerating computation loop.

2.3 Summary

In general, the overlay architectures are divided into SCFU-SCN overlays and TMFN-
TMN overlays, the particular and comprehensive characteristics of existing TMFU-
TMN overlays are emphasized. These overlays are portable for implementation of
processor-based and CGRA-based overlays. Nonetheless, TMFU-TMN overlays are
facing the issues of large area overhead and requirements of memory based on its
design demand. Therefore, a better and efficient interconnect structure is vital for
the future development, linear topology as a good solution to reduce the routing cost
with intelligent scheduling method and fulfill better location of memory utilization.
TMFU overlay has potential benefit and solves the problem with development and

optimization of internal architecture.



Chapter 3

Analysis of TMFU and Linear
Overlay

In the previous chapter, we emphasized the various coarse grained FPGA overlay
architectures, which have emerged to be a good method for improving design produc-
tivity and software like programmability. The time-multiplexed FU (TMFU) overlay
can dramatically decrease the amount of functional unit (FU) and the resource de-
mand of interconnection. Although highly pipeline FU overlay can handle the high
operating frequency, and requires less kernel context switch time. It still suffers the
higher value of initial interval (IT), which causes a lessened throughput of the system.
Hence, the new architecture Linear overlay is proposed to reduce the II by paralleling
FUs. In this chapter, we give an introduction to the TMFU architecture, explana-
tion and overview of new Linear overlay architecture. The main contributions of this

chapter can be summarized as follows:

e Introduction of operation for diverse benchmarks on the original TMFU overlay,
and the proposed Linear overlays which reduce II by paralleling two FUs at one
stage.

e Specification and method of the Linear overlay architecture, it has two manners
for paralleling stages: 1) Fully Parallel, each stage has two FUs to process the
instructions. 2) First-stage Parallel, only the first stage has two FUs and the

rest of stages keep same with original overlay architecture (one FU).

13
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e Simulation result of the new linear overlay compared with the original TMFU
overlay. In addition, the limitation of this Linear overlays and the future work

are presented.

3.1 The TMFU Architecture

The architecture implements a linear connection of FUs to form a processing pipeline,
which follows the execution of feed-forward data flow graphs (DFGs) for diverse
benchmarks. The 32-bit pipeline TMFU overlay architecture is shown in Fig [3.1]
which is composed of two FIFOs and FUs. The architecture of TMFU overlay is
same as that of proposed Linear overlay, which also is made up of two FIFOs and a

cascade of FUs.

( N\
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7 Memory
Time-multiplexed
Functional Unit

~ (
N . . »| Programmable
AN —*[ Register File | gALU ]~->

Time-multiplexed
Functional Unit

Time-multiplexed
Functional Unit

FIFO channel

DSP Block

\. J

Figure 3.1: TMFU Programmable Processing Pipeline diagram.

3.1.1 Distributed RAM

In Fig , FIFO channel is Distributed RAM (DRAM) in implementation, the data
in DRAM-based FIFO (Top FIFO) feeds into a cascade of FUs, with another DRAM-
based FIFO (End FIFO) at the pipeline output. In TMFU overlay implementation,
the bit width of data is 32-bit and write depth is 32 in FIFO.
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3.1.2 Structure of Function Unit

As the Fig showing, the FU is made up of instruction memory, register file and

programmable ALU, the detailed information was summarized:

e Instruction Memory (IM): A function of storing input instruction data. IM
block is able to offer the corresponding instructions, which are the block output
and used by the other functions. In IM block, it also generates the valid output
signal via control generator. RAM32M (32 X 6 Simple Dual Port DRAM) is
used as the memory of instructions.

e Register File (RF): A function of storing operands for ALU, RAM32M is the
storage memory. In RF block, the output operand is obtained from RAM32M
through reading the specific address, which is acquired from the instruction of
previous IM output.

e Arithmetic and Logic Unit (ALU): DSP48E1 primitive, it is charged with ex-
ecuting arithmetic operations addition, subtraction and multiplication. The
execution requires three clock cycles to finish.

e RAM32M primitives: Memory locates in IM and RF, which is implemented in
LUTRAMs. It can be configured as a 32-deep 2-bit wide quad port (3 read,
1 read/write), 32 deep 4-bit wide dual port (1 read, 1 read/write) or an 8-bit

wide single port (1 read/write) memory.

The FU is mapped to a Xilinx Zynq XC7Z020-1CLG484C using Xilinx ISE 14.7, the
synthesized diagram of FU is shown in Fig Except the above main blocks, the

FU structure also contains some particular blocks to achieve the operation fully.

e Tag Matching: Instruction is 40-bit to be the input of FU, which includes 32-bit
FU control instruction and 8-bit tag. ‘Tag ' is used to compare with the tag
of each stage, and distinguish which stage the instruction belongs. Inner FU
stores instructions with matched tag number.

e Counter: Three distinct counters are used in IM and RF.

1. Instruction Counter (IC): 5-bit counter, which is used to keep counting of

how many instructions are stored into the FU.
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2. Program Counter (PC): Counter counts how many instructions in the FU,

and controls the execution of instruction while the ‘control’ signal is high.

3. Data Counter (DC): It is sequential data counter and counts following the

sequence, the number of counts is used when writing data into RF.

e Input Map Logic: The input operands of ALU have diverse bit numbers (a-30bit,
b-18bit, c-48bit). Hence, the input map logic is responsible for determining the
correct bit and data for ALU input according to the execution of data flow
graph (DFG). Moreover, two-bit of instruction is used to check whether the

operand is constant or the previous output data from another stage.
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Figure 3.2: Time-multiplexed Functional Unit.

The FU working process roughly summarizes: Data is streamed into the FU and
written into RF using a DC when valid signal is high. After all the data is sent into
RF, the valid signal is taken low. Then IM starts sending the addresses of operands to
the RF, and configuration data is forwarded to the ALU block when the control signal
is asserted by control generator. When ‘control signal’ is high, PC starts counting and
controls the sequences of instructions execution by adding one. After implementing all
the instructions to scheduling stages, data output sends to the next stage and output
FIFO. The DSP block flushes its internal pipeline, and the PC resets allowing the
matching sequence of instructions to be reissued. Consequently, only few instructions

are executed on each FU, which results in the less logic resource of IM and RF.
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3.1.3 Standard of Instruction Format on TMFU

TMFEU overlay is 32-bit pipeline architecture, which is capable of executing two 32-bit
operands arithmetic calculation in ALU block. ALU operates arithmetic calculation
by DSP48E1 primitive. Instruction is 40-bit and includes the address of two operands,
constant operand, DSP48E1 setting inputs, tag and determine statements. Instruc-
tion of Linear overlay contains similar information as that of TMFU overlay, except
the number of instruction bit is distinct. The inputs of DSP48E1 primitive setting:
ALUMODE (4-bit), OPMODE (7-bit) and INMODE (5-bit), which are able to decide
what operator is executed in DSP48E1 by configuring various number of inputs. Four
types of operators are listed in Table [3.1] Accordingly, the ALU block can execute
addition, multiplication and subtraction following the DFG (Fig , ALU data is

acquired from instruction. Table [3.2 indicates the meaning of instructions.

Table 3.1: DSP48E1 configuration for each operation

Operation ‘ ALUMODE ‘ OPMODE ‘ INMODE

ADD 0000 011 0011 00000
SUB 0011 011 0011 00000
MUL 0000 000 0101 00000
OR 1100 011 1011 00000

Table 3.2: Meaning of TMFU Instruction

No.of Bit [ Function

39-32(8bit) Tag

31-28(4bit) ALUMODE
27-23(5bit) INMODE

22-16(7bit) OPMODE

15,14(2bit) Clock Enable of A,B
13(1bit) multiplex of ALU
12,11(2bit) input map selection
10-6(5bit) sourcel address
5-0(6bit) constant (5-1bit: source2 address)

It is noteworthy that the ‘input map selection’ bit (12-bit to 11-bit) is used to
decide the input operands of DSP48E1 primitive (a, b and c). 11-bit is constant
selection bit, which is 1 then one of the operand is constant, if it is 0 then the operand

is by pass data in Chebyshev benchmark. 12-bit is ‘split’ bit, when the operation is
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multiplication then it is assigned to 1, if the operation is addition or subtraction, then
it is 0.

There are two types of instruction: arithmetic and data bypass (used to feed input
data to the next scheduling stage). Data bypass is necessary when input data is the
operand of after stage. Bypass instruction is implemented by multiplying one with
input data. For example, Fig is DFG of Chebyshev benchmark, the output data
of the first stage needs to multiply with input data on the second stage. Chebyshev
benchmark has seven stages, and each FU stores two instructions (one bypass and

one arithmetic).

add_Imm_5_N8

Figure 3.3: Data Flow Graph of Chebyshev.

Table 3.3: Instruction of Chebyshev

TAG ALU | INMODE | OPMODE | CE | MUX | IMM | SRC1 | SRC1/IMM Function
00000000 | 0000 10001 0000101 00 1 01 00000 000001 bypass x1
00000000 | 0000 10001 0000101 00 1 01 00000 010000 i/px16=o0/pl
00000001 | 0000 10001 0000101 00 1 01 00000 000001 bypass x1
00000001 | 0000 10001 0000101 00 1 00 00001 000000 o/plxi/p=o0/p2
00000010 | 0000 10001 0000101 00 1 01 00000 000001 bypass x1
00000010 | 0011 00000 0110011 11 0 11 00001 010100 0/p2-20=0/p3
00000011 | 0000 10001 0000101 00 1 01 00000 000001 bypass x1
00000011 | 0000 10001 0000101 00 1 00 00001 000000 o/p3xi/p=o0/p4
00000100 | 0000 10001 0000101 00 1 01 00000 000001 bypass x1
00000100 | 0000 10001 0000101 00 1 00 00001 000000 o/p4xi/p=0/p5
00000101 | 0000 10001 0000101 00 1 01 00000 000001 bypass x1
00000101 | 0000 00000 0110011 11 0 11 00001 000101 0/p5+5=0/p6
00000110 | 0000 10001 0000101 00 1 00 00001 000000 o/pbxi/p=0/p
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According to the arithmetic operation, the instructions are formatted and listed
detailed information in Table 3.3

3.1.4 Simulation Result of TMFU Overlay

To verify the performance of TMFU overlay whether is correct, ISE Verilog test fixture
is used by writing test bench file.

In this scenario, Chebyshev benchmark (shown in Fig is used in the sim-
ulation, and the inputs of that is set to 1, 2, 3, 4, 5 and 6. After global system
resetting, assigning the high signal to write enable bit for loading instructions into
the system and delaying 500ns to make sure loading is finished. Then enabling the
FIFO inputs to start working, providing input data every 20ns into the input pipe
(shown in Fig[3.4). According to the arithmetic expression of Chebyshev benchmark:
Y = z[z?(162* — 20) — 5] the arithmetic calculation result is listed in Table
[ S S

R00000004 ;

#20;user_w_write_32_data = 32
h00000006 ;

DU W N

Figure 3.4: Snapshot of Test Bench for TMFU Simulation

Table 3.4: Arithmetic Result of Chebyshev

Inputx‘1‘2‘ 3 ‘ 4 ‘ 5 ‘ 6

Output Y | 1 | 362 | 3363 | 15124 | 47525 | 120126

In contrast, the simulation result (shown in Fig match the calculation result,
which means the TMFU overlay works successfully. Moreover, the II consumes 6

clock cycles for generating one output data in Chebyshev benchmark.

T R

ez [ [V3%3
LT [— L

Figure 3.5: Test bench of Chebyshev on TMFU Overlay.
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3.2 Fully Parallel Linear Overlay

In the previous section, TMFU overlay is introduced and has a significant reduction in
the number of FUs, but at the expense of an increase in the II. Hence, Linear overlay
is proposed to solve the problem of higher II. In this section, it is mainly about the
architecture and implementation of fully parallel Linear overlay. Compared with the
architecture of TMFU overlay (is shown in Fig , the structure of fully parallel
Linear overlay consists of two FIFO channels and a cascade of two FUs, as shown in
Fig |3.60l Each stage in fully parallel Linear overlay has two FU, which executes in
parallel such that the time consumption of instruction execution decreases and II is
lower. The proposed fully parallel Linear overlay still keeps using the same blocks as
TMFU overlay. Since the overlay is parallel, then the input bit is changed to 64-bit

and some blocks have to use twice for achieving parallelism in FUs.

FIFO channel

S N S—

Time-multiplexed Time-multiplexed
Function Unit Function Unit
T s T ~ |Stage 1
¥ ¥
Time-multiplexed Time-multiplexed
Function Unit Function Unit
o ol o ~# |Stage 2
[ 4 [ 4
E— ] | I——
Time-multiplexed Time-multiplexed
Funection Unit Funection Unit
r'y <~ T < |Stage N

FIFO channel

Figure 3.6: Architecture of Fully Parallel Linear Overlay.

3.2.1 Instruction of Fully Parallel Linear Overlay

The Fig indicates the detailed function of 40-bit instruction in TMFU overlay,
8-bit starts from the most significant bit (MSB) is tag, the rest of 32-bit is FU control

instruction which manages one FU execution. Since fully parallel Linear overlay has
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2 FUs in each stage, not only the input bit is doubled, but also the instruction bit is
increased to support 2 FUs parallel by combining two FUs control instructions into
one instruction. Therefore, the instruction of fully parallel Linear overlay is 73-bit,
which consists of tag, selection, and 2 FU control instructions. Compared with the

previous instruction of TMFU overlay, there are some differences about:

e Tag: Tag in fully parallel Linear overlay is reduced to 3-bit in compared with
TMFU overlay. However, the size of the tag is able to be customized.

e Selection bit: Linear overlay is parallelism of two FUs, which means each stage
contains two ALU and RF blocks, then the system must have the ability to
choose the corresponded data from one instruction, and feeds into the correct
block. Therefore, an extra 4-bit are added into instruction, every 2-bit is im-
plemented to select one FU data.

e F'U control instruction: The rest of bits are two FU control instructions, and
include information which is same as TMFU overlay. The least 33-bit (srcl

address is 6-bit in Linear overlay) belongs to least input.

In summarized, the instruction of Linear overlay is generalized in Fig (3.7}

Operand 2l(i11p11t [63:33])
72-70 69-68 6766 65-50 49-48 47 46-45 44-39 38-33‘(Bit)
TAG IN S2,IN S1 |DSP4S8E1 /O, CE1/2, MUX, IMM, SRC1, SRC2

32-17 16-15__14__13-12_11-6 50 (Bit)
DSP4SE1 I/O, CE1/2, MUX, IMM, SRC1, SRC2

L J
)l
Operand 1 (input [32:0])

Figure 3.7: Instruction of Linear overlay

Through this regulation, one instruction can control the execution of two FUs at
the equivalent time and achieve parallelism. One thing to be noted is the address of
operands in instruction, since there are 2 FUs in one stage, which means one extra
register can store the data. In TMFU overlay, for the first data series, the addresses

of inputs are added one in sequence, but in fully parallel Linear overlay, one stage
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contains two registers. Therefore, one instruction includes two same addresses of
operands, but these addresses are used for two registers separately. This is the reason

why one instruction contains two same addresses of operands.(as shown in Fig|3.8)).

One Input data Two Input data
TMFU |Qdinear overlay
4 AV ™\
0x03 0x03 0x03
0x02 0x02 0x02
0x01 0x01 0x01
0x00 0x00 0x00
\ J/ . AN J/
L J
B —— -
4 Data 8 Data

Figure 3.8: Comparison of Address in Instructions

3.2.2 Architecture of Fully Parallel FUs

In the fully parallel Linear overlay architecture, the input and output data is 64-bit
(two 32-bit data parallel), the instruction is 73-bit as mention before. In ISE design
suite, a full benchmark architecture is made up of ‘top_overlay.v 'and ‘top_cpu.v’ (stage).
Chebyshev benchmark has 7 stages (shown in Fig , then ‘top_overlay.v’ includes

7 ‘top_cpu.v’ wrapper files to achieve the functionality of 7 stages in the benchmark.

e Top_overlay.v: This file controls overall processing of system, which contains not
only FIFOs and the functions of each stage, but also the ‘valid’ signal which
is used to judge when the internal blocks (IM, RF) can start processing. The
‘valid’ signal is generated according to the clock cycles of II.

e Top_cpu.v: In fully parallel Linear overlay, this file contains one 73-bit IM block,
two 32-bit RF blocks, and two ALU blocks. Moreover, the input map logic is

divided into two parts for selection of parallel input data as the ALU operands.

1. IM: The input of IM block is 73-bit instruction, and the function of IM is
to store the corresponding instructions, acquire the FU control instruction
and send it out. Block RAM memory is used to stored data in IM block.
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2. RF: Two 33-bit RF blocks execute data at the same time to fulfill paral-
lelism. Thr structure of RF block in fully parallel Linear overlay is same
as TMFU overlay. The RF block captures the corresponding bit from in-
struction and input data. For instance, when RF executes operand 1, the
32-bit input data is acquired from least significant bit (LSB 0-bit) to 31-bit
of ‘Din’ and the 33-bit instruction is gained from LSB (0-bit) to 32-bit of
‘Inst’ (output of IM). The outputs of RF are four data sources (operandl:
srcl /sre2 oprand2:src3/srcd). Wrapper file is shown in Fig (3.9

3. ALU: Two DSP48E1 primitives are processed to achieve arithmetic opera-
tion. The corresponding input data is earned from ‘Inst’ according to the

standard of Linear overlay instruction (shown in Fig|3.7).

1 /% kkkokkkokkkkkkkkkk INST MEMORY * ok k% ok k ok ok k ok ok k % /

2 inst_mem my_inst_mem(.clk(clk),

3 .rst(rst),

4 .valid(valid),

5 .tag(tag),

6 .ins (ins),

7 .inst (inst),

8 .control_d7 (control_d7));

9 /xkxkkkkkkkkkkkkkk REGISTER FILE * % % % % % % % % % % % % % % /

10 regfile my_regfile_1(.clk(clk), regfile my_regfile_2(.clk(clk),

11 .en(en), .en(en),

12 .valid(valid), .valid(valid),
13 .din(din[31:0]), .din(din[63:32]),
14 .inst (inst [32:0]), .inst (inst [65:33]),
15 .srcl(srcl), .srcl(src3),
16 .src2(src2)); .src2(src4d));
17 /o kkkokkkokkkkkkkkkkx EXECUTION UNTT *k %ok kkokkokokkokkk %/

18 alu_core uut_1 (.clk(clk), alu_core uut_2 (.clk(clk),

19 .rst(rst), .rst(rst),

20 .a_i(a_i_1), .a_i(a_i_2),

21 .b_i(b_i_1), .b_i(b_i_2), //

22 .c_i(c_i_1), .c_i(c_i_2), //

23 .alumode_i(inst_d2[32:29]), .alumode_i(inst_d2[65:62]),
24 .inmode_i (inst_d2[28:24]), .inmode_i(inst_d2[61:57]),

25 .opmode_i (inst_d2[23:17]), .opmode_i (inst_d2[56:50]),

26 .cea2_i(inst_d2[16]), .cea2_i(inst_d2[49]),

27 .ceb2_i(inst_d2[15]), .ceb2_i(inst_d2[48]),

28 .usemult_i(inst_d2[14]), .usemult_i(inst_d2[47]),

29 .p_o(p_o_1) ); .p_o(p_o_2) );

Figure 3.9: Wrapper File in Top_cpu.v

Furthermore, in ‘top_cpu.v’ file, the input map block is modified to adapt the

fully parallel Linear overlay, which has two ALU blocks, and system requires two



24 CHAPTER 3. ANALYSIS OF TMFU AND LINEAR OVERLAY

set of operands to fill into the ALU blocks. Therefore, the ‘selection bits’ (68-bit
to 66-bit) in instruction decides the selection of operand source for ALU block, and
‘Imm bit” (13-bit to 12-bit) determines the input of ALU from benchmark arithmetic
operation. Since the ‘selection bit’is 2-bit, there will be four options to choose for the
wanted operands. The detailed information of ‘selection bit’ in Chebyshev benchmark
is listed in Table 3.5

Table 3.5: Instruction of Chebyshev

In_s1 [69:68] | Data Source Function
11 Src3/Srcd Operand is constant
01 Srcl/Src4 Operand is bypass data
In_s2 [67:66]
00 Srcl/src2 Operand is constant
10 Src3/src2 Operand is bypass data

At the end of one stage, the two outputs ([31:0]) of ALU blocks are combined
as a 64-bit data, which is sent to FIFO and stored for next stage input. The FU is
mapped to a Xilinx Zynq XC7Z020-1CLG484C using Xilinx ISE 14.7, the processing
diagram of fully parallel FU is shown in Fig

Instruct | pa
nstructhon %3 t 713 Tnstruction
Valid <& Instruction Ao
1 33~ L 19
Memory 7] /14 FIFO
FIFO Register 5"31// . DSBT:ka 745
. ] rd
E ) 32ps10f File e Input .
54 7 133 Map 764
32[63:3.’? v Register //SI'C3 Block —| , DSP48E1 Py
File /lsrc4 b Block 48
c
| Z
LI 1 Valid

Figure 3.10: Fully Parallel Linear Overlay Process.

3.2.3 Simulation of Fully Parallel Linear Overlay

For the verifying validity of fully parallel Linear overlay, using ISE suit 14.7 Verilog

test fixture to write test bench for system verification. The simulation test file of fully
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parallel Linear overlay is almost same as that of TMFU overlay, except the input data
is changed from 32-bit to 64-bit (a parallel input data) as shown in Fig|3.11}

user_w_write_32_data = 64
h00000002_00000002;

#20;user_w_write_32_data = 64
h00000004_00000004 ;

#20;user_w_write_32_data = 64
h00000006_00000006;

Ul WN =

Figure 3.11: Test Bench of Fully Parallel Linear Overlay.

The simulation result is shown in Fig[3.12l Compared with the arithmetic cal-
culation (Table [3.4), the simulation is precise, and the II is reduced from six clock

cycles to four clock cycles in Chebyshev benchmark.

1 361 3363 1514 41585 120126
T G I VD 5 W 2 7 7 0 O 6 I v I 13[|;

Ll Ll L] . Ll
Figure 3.12: Test Bench of Fully Parallel Linear Overlay.

In conclusion, the fully parallel Linear overlay is suitable to reduce the II. However,
this system is suffering challenge of higher area utilization as it requires a lot of

memory storages to support the functionality of FIFO.

3.3 First Stage Parallel Linear Overlay

In the previous section, fully parallel Linear overlay is introduced for reducing the
clock cycles of 11, whereas this overlay comes with the limitation of high area require-
ments. For solving the high utilization of area, a new Linear overlay with first stage
parallelism is proposed. The first stage parallel Linear overlay includes parallelism
of two FUs in the first stage and the rest of stages which are in a cascade of FUs
(as shown in Fig . This system reduces the area utilization by decreasing the
parallelism FUs stage, hence, several memories is unnecessary in this new overlay,
such as the FIFO between each stage in the fully parallel linear overlay. In addition,
because the rest of stages are not parallelism, the logic utilization of implementing
two ALU and RF blocks is no longer needed.
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Figure 3.13: Linear Overlay of First Stage Prallel.

In the first stage parallel linear overlay, the input and output are still 64-bit.
Moreover, the output data of each stage also is 64-it. Consequently, the processing
of data transmission for parallelism stage and non-parallelism stages is critical. The

overall main steps can be summarized to:

e Processing of the output data from parallelism stage should be adaptable for
the next non-parallelism stage.

e Implementation of the non-parallelism stage with only one FU can execute
parallel data, and parallel the result (32-bit) back to 64-bit at the end of the

stage.

3.3.1 Challenge of First Stage Parallel Linear Overlay

In the first stage parallel linear overlay, only the first stage has two FUs. The internal
structure of the first stage is approximately similar to that of fully parallel Linear
overlay. The main difference from the original block is the implementation of output
data. In the first stage block, input data keeps being 64-bit, then two FUs process
data in parallel and generate output data in 64-bit. However, the rest of stages are not

2 parallel FUs, which means the rest of blocks cannot operate data at the equivalent
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time, it leads to data loss. Because at one clock cycle, the input frame contains two
data, one FU (non-parallelism) block cannot execute two data simultaneously, then
one data loses on every clock cycle if no extra memory is used to store these data.

[lustrate problem with below example in Fig|3.14

64-bit Input >< 1,2

3,4 5,6 7,8

4 5 8

Non-parallel 1
Input Data

Figure 3.14: Challenge of data loss.

ik
XX

There are two options to solve the problem of input data loss:

1. Modifying non-parallel stage block: Using array stores the incoming parallel
data in non-parallel stage blocks. Thus, the FU input data acquires from the
array on the corresponding sequence. In this method, data is stored in memory
to avoid losing, 32-bit FU can process the 64-bit input data. However, it also
causes higher area utilization which is not an advisable option.

2. Modifying parallel stage block: Problem is about the 32-bit non-parallel FU
cannot execute two data from the output of parallel stage block on one clock
cycle. Besides, new data comes on every clock cycle, then data loss is unavoid-
able in this scenario. Changing problem for another direction, modifying the
parallel stage block by doubling the clock cycle of output and output-valid signal

at the end. Less memory is required in this method which is selected.
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3.3.2 First Stage Block of First Stage Parallel Linear Overlay

As mentioned in the previous section, the way to avoid data loss is by doubling
the clock cycles of output data and output valid signal in parallel 64-bit FU, the
expectation of result is shown in Fig[3.15] Because a set of data lasts for two clock
cycles, the output valid signal also is doubled to two clock cycles, which controls
loading data into RF in the next stage. Then the next stage 32-bit FU can get

completed input data from the parallel input.

Clock Cycle
I I I
| | |
| | |
Original ! 1.2 J 34 J
64-bit Input | ’ | ! |
I I I

|
|
i
Original |
Output-Valid :
|
|

Actual 1,2
64-bit Input '

|

i

Actual J :
Output-Valid |
| |

Figure 3.15: Expectation of Processing Data.

To complete this function, some critical points are overcome:

e How to double ‘valid’ signal — ‘control_d7’ signal is generated from IM block,
which actually is the output valid signal. Hence, using counter to count up
when ‘control_d7’ is high, counter counts down when ‘control_d7’is low. If the
counter is not zero then ‘valid’ signal is high, otherwise is low.

e How to double data — Once ALU blocks have results, combining two values
into one 64-bit data and storing into an array. Following the above ‘valid’ signal,
when it is high then the system starts sending data out. Using a flag to execute
negation, only when flag signal is high, the next data in the array can be sent

out.
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e How to avoid delay — Inappropriate time delay will cause the following ex-
ecution has the wrong result. Hence, another flag is used. As the system is
triggered in rising edge of every clock cycle, once ‘control_d7’ is high, the ALU
also has 64-bit output at the same time. Before the next rising edge coming to
make ‘valid’ signal high, the flag is zero, data output is directly assigned the
ALU result. When ‘valid’ signal is high on the rising edge of the clock, flag also
is high, data output is got from the array.

For better understanding, the process is divided into three parts with flowcharts
introduction.

In Fig flowchart, it indicates how to double the valid signal, and generate
some parameters for using in the other parts: When ‘control_d7’ is high, triggering
counter (count) and number (num) count up, the number is a sequence of sending
data into the array. Moreover, valid signal register (validl) is high and delay-flag
(flagl) also is high. when ‘control_d7’ is low, number (num) clears to stop sending
data into the array. Since the system still requires high valid signal, then counter
counts down, if the counter is not smaller than one, valid register (validl) is high and

the system keeps subtracting, otherwise, counter and valid register clear to zero.

Numt+;

Control_d7 Countt+;
Validl=1;

Flagl=1;

Yes No
Count——; Count=0;
Validl=1; Validl=0;

]

Figure 3.16: Flowchart of Valid signal
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In Fig[3.17/flowchart, it shows how to implement clock cycle of the system without
delay by using flag from the previous flagl: In this part, flagl (generated in previous)
is used to determine the output data. When flagl is low, then data output (dout) is
directly acquired from ALU output data (doutl), and valid signal (dout_v) is from
‘control_d7’. When flagl is high, the output data and valid signal are acquired from
the register (validl) and data array.

Yes No
Assign Dout=dout1; Assign Dout=dout2;
Dout_v=control_d7 Dout_v=valid1;

Figure 3.17: Flowchart of Time flag

In Fig [3.18 flowchart, it explains how to send data out on every two clock cycles:
when the data valid signal (dout_v) is high, system permits to send data out. Thus,
data counter (count_d) is used, when the counter is zero, ‘count_d’ starts counting up,
sending data from the array to data register (Dout2) and setting ‘flag’ to 1. System
reverses flag signal on every clock cycle since counter counts up in every clock cycle,

then data is sent from the array to register (dout2) when the ‘flag’ is high.

Parameters clear

Count_d++;

Flag=1; Count_d++;

//initial
Dout2=array[Count_d];

Dout2=array[Count d] 1

Figure 3.18: Flowchart of Doubling Data.
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Code is shown in Fig|3.19

reg [63:0] data [0:19];
integer y,z=0,k=0,num=0,count=0,count_d=1;
always@(posedge clk)
begin
//**x*valid signal**x*
if (control_d7) begin
num <=num+1;
flagl <= 1;
count <=count+1;
dout_v1l <=1;

end
else begin
num <=0;

if (count >1) begin
count <=count -1;
dout_v1l <=1;
end
else begin
count <=0;
dout_v1l <=0;
end
end
//***send data out**x
if (dout_v) begin
if (count_d==0) begin
dout_2<=datalcount_d];
count_d<=count_d+1;
flag<=1;
end
else begin
if (flag==1) begin
dout_2<=datal[count_d];
count_d<=count_d+1;
end
flag<="flag;
end
end
else begin
count_d <=0;
dout_2<=0;
flag<=0;
flagl<=0;
end
end
//*xxstore data from ALU tp array**x
always@(num or dout_1)
begin
data[num] <= dout_1;
end
//*x*xdetermine output data***
assign dout_1 = {p_0_2[31:0], p_o_1[31:0]};
assign dout = (flagl==0)7?dout_1:dout_2;
assign dout_v=(flagl==0)7control_d7:dout_v1l;

Figure 3.19: Doubling Clock Cycle of Data and Valid Signal
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In conclusion, the rest of structures are same as the structure of fully parallel
Linear overlay. The output data and the valid signal of parallel FU are doubled to

two cycles.

3.3.3 Ciritical Steps of Non-Parallel FU Block

In first stage parallel Linear overlay, except the first stage, the rest of stages are 32-bit
FUs based on the original FU of TMFU overlay to modify the FU structure. In the
previous section, a modified parallel FU block can generate data on every doubled
clock cycles. Hence, the 32-bit FU can simply acquire data from parallel FU output
without data loss.

The critical points of modifying 32-bit FU are all concluded in:

1. Getting corresponding 32-bit instruction data from parallel 64-bit instruction.
2. Separating parallel data and sending in the correct sequence to RF.

3. Generating the output data in the required format.

3.3.4 Acquiring 32-bit Instruction from Parallel Instruction

In this overlay, the instruction is almost same as the fully parallel instruction, except
address of data source is different since the rest of stage is 32-bit non-parallel FU.
Following the section mention, the address of data source should be added in
sequence from the 2nd stage, since only one register can store the instruction (shown
in Fig . This implies the 32-bit FU requires to get 32-bit instruction from parallel
64-bit instruction.

For a specific benchmark, instruction is written by the user according to the
execution of benchmark. Therefore, how many lines of instruction is known. In
this part, the number of instruction lines (INS_NO) is an important parameter for
operation, which is used to create the arrays. Two 32-bit instructions combine into
one instruction with a particular sequence, first executed instruction [65:33] is stored
in ‘ins_h’ array and the other instruction [32:0] is stored in ‘ins_1” array.

The flowchart in Fig is the processing steps when instruction input has value,

system starts ins-counter (counter) and storing the data into array until number of
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counter is greater than that of instructions (INS_NO), then counter clears to zero.
Meanwhile, when the counter has value, the system sends instruction into IM using
a number (num), which decides the sending sequence. If ‘num’ is odd then data in
‘ins_h’ is sent to input of IM (inter_ins), data of ‘ins1” is sent when ‘num’is even.

Until ‘num’ is larger than ‘INS_NO’, ‘inter_ins’ clears to zero.

Store into array Send into IM
Yes
No
Counter=0; Counter<INS_NO
Yes
| Inter_ins<=ins_I[num/2];
Num-++;
Ins_h[counter]<=ins;
Ins_|I[counter]<=ins;
Yes Counter++; | | Inter_ins<=ins_h[num/2]; a
En=1; Num-++;

@ Yes

Inter_ins<=0;

No

Figure 3.20: Flowchart of Instruction

3.3.5 Acquiring Input and Combination of Output

The implementation of receiving data has the similar method to process data, which
sends data into RF by checking the parity of the number. When the number is
even then data [63:32] is sent into RF (din_1). Otherwise, data [31:0] is sent to
‘din_1> when the number is odd. All the above processing requires the ‘valid’ signal
is high. If ‘valid’ signal is low, the ‘din_1" and number clear to zero.

For the combination of output, the critical method is similar to acquire input data.

When ALU block has the arithmetic result, calculation results are sent to the array
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if valid output signal (control-d7) is high. Counter (count_op) adds one for checking
parity. The first generated ALU result is in the higher bit of output data.
The flowcharts Fig [3.21] approximately display the execution process.

Din_1<=din[63:32]; Din_1<=din[31:0];

(a) Flowchart of Acquiring Data.

Data[count_op]=p_o;

count_op>0

Yes

Control_d7 is even
Yes

dout <= {data_out[count_op-2],
data_out[count_op-1]};

(b) Flowchart of Combination Output.

Figure 3.21: Flowchart of Design in 1% Stage Parallelism Overlay .

The Verilog code about the implementation of instruction section [3.3.4] input and
output data are shown in Fig [3.22], Fig and Fig separately.
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//**************separate and give instruction **kkkkkkkkkkkkkkkkkX

integer i, j=0,counter=0,num=0;

reg [34:0] ins_h [0:INS_NO-1];

reg [34:0] ins_1 [0:INS_NO-1];

reg [34:0] inter_ins=0;

reg en_ins=0

always@(posedge clk)

begin

if (ins) begin

if (counter <INS_NO) begin
ins_h[counter] <= {ins[72:70],ins[65:45],ins[43:33]};
ins_1[counter] <= {ins[72:70],ins[32:12],ins[10:0]};

counter = counter+1;
end
else counter =0;

end

if (counter) en_ins=1;
if (en_ins) begin
j<=num/2;
if (num&1) begin //even -- low data
inter_ins <= ins_h[j];
num<=num+1;
end
else begin //odd -- high data
inter_ins <= ins_1[j];
num<=num+1;
end
if (num>(INS_NO<<1)) inter_ins <=0;
end
end

Figure 3.22: Implementation of Instruction

[/ xxkkkkkkkkkkkkkseparate and give dIn  skokskkkokokokskok sk koK kokokok ok ok ok %ok ok ok ok
integer k=0, z=0, num_d=1;
reg [31:0] din_1=0;
wire en_data;
always@(posedge clk)
begin
if (valid) begin
k<=k+1;
if (k%2==0) din_1 <= din[63:32];
else din_1<= din[31:0];

end
else begin
din_1<=0;
end

end

Figure 3.23: Implementation of Input Data
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Il /) c===ssossoosossssss output dout generate----------------—-—--—-—--

2 |reg dout_v_1,dout_v_2;

3 | integer count_op=0;

4 |reg [31:0] data_out [0:19];

5 | always@(posedge clk)

6 | begin

7 if (control_d7) begin

8 count_op <= count_op+1;

9 data_out [count_op] <= p_o[31:0];

10 end

11 else count_op <= 0;

12 if (count_op>0 && (count_op%2==0)) dout <= {data_out[count_op-2], data_out[
count_op-11};

13 dout_v_1 <= control_d4d7;

14 dout_v_2 <= dout_v_1;

15 dout_v <= dout_v_2;

16 | end

Figure 3.24: Implementation of Combination Output

3.3.6 Simulation of First Stage Parallel Linear Overlay

For testing the functionality of first stage parallel Linear Overlay, Verilog text fixture
is used to simulate system execution of Chebyshev benchmark. The test bench is as
Fig [3.11], the expected calculation result is shown in table [3.4f Furthermore, the II
should be reduced to four clock cycles in Chebyshev benchmark. Running simulation
in Modelsim, the simulation output is shown in Fig[3.25] According to the simulation
result, the Chebyshev benchmark in this overlay has the correct production and the II
also is four clock cycles. This means the first stage parallel Linear overlay is workable
in benchmark with a small amount of input data. The scenario of benchmarks with

large amounts of input data is compulsory to test.

L [ LI - LI L [
1 I362 15124 {47525 120176

{126 {127 {128 {125 {130 {131 | 132 {133 {134 {135 {136 {157 {138 {139 | 140 ) 141 {142 145 {144 {145 {146 § 147 | 148 | 149 | |
1 [ I I — L [ L |

Figure 3.25: Simulation of Chebyshev Benchmark

mm benchmark is selected for testing (Fig|3.26)), in the mm benchmark, there are
16 inputs and eight stages in architecture. Compared with Chebyshev benchmark,
mm has 14 bypass instructions and 2 arithmetic instructions in the first stage. But

Chebyshev only has one bypass and one arithmetic instructions. Hence, the mm
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Figure 3.26: MM Benchmark

benchmark is suitable for testing lager input scenario. In simulation, mm has 16

inputs and the simulation input is a set of data 1, 4, 2, 3 and 1, 5, 2, 3 following the

sequence. Test bench is shown in Fig|3.27]

OO0 Uk WN =

user_w_write_32_data

#20;user_w_write_32_data
#20;user_w_write_32_data
#20;user_w_write_32_data
#20;user_w_write_32_data
#20;user_w_write_32_data
#20;user_w_write_32_data

#20;user_w_write_32_data
#20;user_w_write_32_data
#20;user_w_write_32_data
#20;user_w_write_32_data
#20;user_w_write_32_data
#20;user_w_write_32_data
#20;user_w_write_32_data
#20;user_w_write_32_data

//**%*xfirst set of dataxx*

//**xsecond set of datax*x

h00000002_00000003;

Figure 3.27: Snapshot of Test Bench for mm Benchmark

The expected results from the calculation are shown in table [3.6| and simulation

result is shown in Fig|3.28, By comparison, the simulation result is correct, but the
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clock cycle of II is quite higher than the expectation. In TMFU overlay, the II is
32 clock cycles for mm benchmark. However, II is 30 clock cycles in the first stage

parallel linear overlay, it did not decrease as the expectation to almost half of original
II.

Table 3.6: Arithmetic Calculation Result of MM

Input 1,4,2,3 | 1,5,2,3
40 44

i
- e e e e E———
40 ] i
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I_l

Figure 3.28: Simulation Result of MM Benchmark

After checking the processing steps in the simulation, the reason why II did not
reduce as the expectation is that: When parallel data sends into the non-parallel
stage (32-bit FU) from the parallel stage (64-bit FU), the parallel 64-bit data must
expand to 32-bit format data. Hence, when executing the arithmetic operation in RF
and ALU block, the system still requires more clock cycles to finish the execution.
Thus, II only reduces few clock cycles when the number of input data is large in first
stage parallel Linear overlay. But when the number of input data is less, this overlay
is suitable for implementation. In conclusion, the first stage parallel Linear overlay
has less reduction of II when the number of input data is large, which is a tradeoff

between II and area utilization.

3.4 Summary

In this chapter, a proposed TMFU overlay architecture is introduced, which signifi-
cantly reduces the FU and interconnect resource, but causes the cost of a higher II

and a reduced throughput. Hence, a new Linear overlay is investigated and built
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to decrease the clock cycles of II. The Linear overlay includes two types: 1. Fully
parallel Linear overlay. 2. First stage parallel Linear overlay.

Through simulation and testing, we generalize the characteristics of this two over-
lay: 1) Fully parallel Linear overlay has higher area consumptions since it contains
more memory and function blocks. In contrast, the first stage parallel Linear overlay
has less area space utilization as only one stage has parallel FUs. 2) According to
the performance of reduction II, fully parallel Linear overlay has a greater advantage
than first stage parallel Linear overlay. When benchmark has a larger number of
input data, fully parallel Linear overlay can reduce II as expectation, but first stage
parallel Linear overlay cannot achieve same payoff with less reduction of II. This is a
tradeoff, which should be considered when selecting overlay for various benchmarks.
3) Because both Linear overlays have parallel stages (2 FUs), when benchmark has
odd instructions, Linear overlay might not execute properly. This should be tested
and investigated in the future work. Generally, the Linear overlay is a good idea to

reduce the IT with a reasonable selection of diverse benchmarks and requirements.



Chapter 4
Floating Point Computation Block

In the previous chapters, we enunciated the architecture of TMFU overlay and the
proposed Linear overlays with reducing initial interval. The Linear overlay is con-
structed to optimize the throughput of TMFU overlay and achieves better function-
ality. In this chapter, we present architectures of floating point computation blocks
using FPGA for investigating how to accomplish flowing point execution in TMFU
overlay architecture for the future design. Floating point computation blocks using
FPGA has been proposed as a method to solve the problem based on an issue [2].
We summarized and recorded the critical information. The key contributions of this

chapter are concluded:

e Basic processing of floating point execution in single precision IEEE 754-2008
format.

e Introduction of three types floating point computation blocks in FPGA: 1)
Logic-only fixed configuration floating point operators. 2) Fixed configuration
floating point operators with DSP blocks. 3) Iterative DSP-based floating point
unit.

e Result of payback and tradeoff between each operator, and the future work of

TMFU overlay in floating point execution.

40



4.1. EXECUTION OF IEEE 754 BINARY 32 41

4.1 Execution of IEEE 754 Binary 32

In IEEE 754-2008 binary32 standard, the floating point number can be expressed by
three parts: sign bit, exponent, and mantissa. The bit field format of 32-bit floating
point consists of 1-bit sign bit, 8-bit exponent (E) and 23-bit (F) mantissa in this

standard. The expression is written as:
FE,F = (-1)_5 % QUWE—12T 4 (1 + U)F)

When a decimal floating point number is given, it is necessary to convert the

decimal number to the IEEE 754 format. The procedures of converting are listed.

e Convert the decimal floating point number to binary number. (20.59375 —
10100.10011)

e Move the radix point to the place between the most significant bit and the
second bit. The decimal part is mantissa. (10100.10011 — 1.010010011 x
24 F = 010010011)

e Get the exponent bit from e=E-127 and convert to binary format. (F = 127 +
4 =131 = 10000011)

e When the number is negative, the sign bit is one. Otherwise, the sign bit is zero.
After all steps, the decimal number is converted to IEEE 754 320-bit format

number.

In the flowing floating point operation, the input number is required to be IEEE
754 format. In general, the addition and subtraction of floating point number have
six phases to complete the operation, architecture of floating point operator is built

following these steps:

1. Operand checking: Check whether the operand is zero or not.

2. Exponent Alignment: Compare the exponent of two operands, calculate the
difference value AFE, and the smaller exponent is shifted the AE bit so that the
smaller exponent and the larger exponent have same exponent-bit.

3. Mantissa operation: After exponent alignment, then do the mantissa operation

as general. Herein, the exponent number of two operands should be identical.
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4. Result normalization: Check the results by the above step, if the result bit
of exponent and mantissa is not regular (overflow or carrier bit), that system
executes normalization by shifting.

5. Rounding: In this structure, the default rounding mode is round to nearest and

tie to even.

In addition, there are five exception flags defined in the IEEE 754 standard, which are
an invalid operation, division by zero, overflow, underflow and inexact. The floating
point operator structure includes the above characteristics of addition and subtraction

processing steps.

4.2 Logic-Only Fixed Configuration Floating Point

Operators

This operator is LUT-only implementation, which consumes a significant amount of
logic resources since no DSP block used. The previous section noticed, the arithmetic
operation of the floating point requires shifting when executing mantissa alignment
and normalization. Addition and subtraction of floating point are expensive to fulfill
as shifting is difficult to implement. This logic-only operator has a limitation of costly
design requirement.

In the fixed configuration floating point adder architecture for logic-only imple-
mentation, it consists of six pipeline stages which match the processing of addition
for floating point numbers.

Compared with the steps in section [{.1], there are few slightly different parts. In
Fig[d.1], the first pipeline not only has operand checking, but also has sign bit checking
and calculation of exponent difference E. Calculation of exponent difference is in step
2 mentioned before, and it is calculated using 8-bit subtraction. Except these function
blocks, this pipeline stage contains multiplexers for the selection of next pipeline stage.
The second stage is alignment shift and fulfilled by barrel shifter with Guard, Round
and Sticky bits. The third pipeline stage is executing arithmetic operation (addition

or subtraction) if operation is subtraction, then the lesser operand is negative. The
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operands are in two’s complement format in execution. The fourth pipeline stage is
normalization, in the previous execution processing mention, this step requires the
function of shifting (barrier shifter) and leading zero counter (a series of multiplexer).
The fifth pipeline stage is rounding and uses default IEEE rounding mode. The last
pipeline stage is exception condition checking, which implements to check whether

the five conditions occur in the exponent and mantissa part.

Qper Operand A ap
[s ] exe FRAC. | [s | exe FRAC. |
Y 1
* L 1
1' ] T l
; — l
Prel. Operand Exponent Comparator
Sign Checking Difference P
T T
I e ! ——
MUX A—\ MUX A—\ MUX A\ MUX

Alignment
Shifting
T
Effective
Operation 2'Comp Adder
b

Exponent LzC
Logic
9 Normalization
Shifting
]
I

I Rounding Logic I

Exception Checking |

| |

Exception Flags Result

Figure 4.1: Adder in Logic-Only Fixed Configuration Operators [2]

The multiplication in logic-only operator has fewer pipeline stages since the align-
ment (second pipeline stage of addition) is not required, but multiplication is more
complicated to execute. Thus, the logic utilization will increase compared with addi-

tion and subtraction.
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4.3 Operators with DSP Blocks

In the last section [£.2] an LUT-only implementation operator is emphasized, which
has higher resource requirements as no DSP block used. DSP block is flexible when ex-
ecuting floating point calculation and it can be configured at runtime and deign time,

which makes the system more flexible and reduces the logic utilization of pipelines.

Operandg A Operand B
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Exception Flags Result

Figure 4.2: Multiplier in DSP Block Configuration Operators [2]

In this section, operators with DSP block is presented. For addition and subtrac-
tion in DSP block operators, the architecture is only changed the third stage in logic-
only operators (Addition) to a DSP48E1 primitive through using Xilinx DSP48E1
primitive to do the addition and subtraction, the rest of pipelines keep the same
with logic-only. However, this operator is not suitable for 25x25 bit multiplication

since it can only operate 25x18 bit multiplication (one DSP48E1 inside), which is
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not suitable for design requirement. Thus, a cascade of 2 DSP48E1 primitives solves
the problem of not enough bit width in the multiplier. Diagram of the multiplier is
shown in Fig

Multiplier is achieved by cascading two DSP48E1 primitives, 0000101 and 1010101
are set to OPMODE in DSP1 and DSP2 blocks separately to distinguish which block
is used, the execution result of DSP blocks operation can be drawn. From the Fig[4.2]
the above DSP block is DSP2 and the result expression is P, = (A[23 : 0] * B[23 :
18]) + (P1 << 17). The below DSP block is DSP1 and expression is P, = A[23 :
0] x B[17 : 0]. The output of DSP2 is the calculation result of the multiplier.

Not only is the multiplier changed to DSP block, but also the function of exponent
and the sign bit are changed. The exponent subtraction now is executed by adding
two exponents of operands together and subtracting with 127. The sign bit is used

XOR logic gate to accomplish.

4.4 Iterative DSP-based floating point unit

Iterative DSP-based floating point unit is a new proposed operator [2] with one
DSP48E1 primitive inside, which is different from the last two mentioned opera-
tors. In iterative unit, all the arithmetic operations can be finished in one structure,
but the previous two operators have to use different structures for supporting various
arithmetic operation. Therefore, iterative floating unit has more flexible and saves
more logic resources as only one DSP block in the design.

Fig[4.3shows the block diagram of iterative DSP-based floating point unit, in con-
trast, this structure has some new components inside: the control unit and RAM32M
memory. DSP block is flexible for floating point operators since it configures in run-
time and configured time. The unit exerts these characteristics of DSP, thus unit can
be programmed to choose which arithmetic operation should be through the control
unit. The control unit is a state machine and saves the instructions, it contains the
DSP48EL1 inputs: ALUMODE, OPMODE, INMODE and a ready signal. RAM32M is
a memory to store the input operands and sends the corresponding input operand to

DSP block by getting selection signal from the control unit. The rest of pre-alignment
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Figure 4.3: Iterative DSP-Based Floating Point Operator [2]

and exception checking are implemented in the logic and can be overlapped.

This floating point unit saves the logic resource using one DSP block, which does
many sub-operation during the execution. Conversely, DSP block has a latency of 3
clock cycles, thus every operation will consume extra time for execution, which leads
higher 1T and lower throughput. Generally, the II of a multiplier is 20, II of a adder
is 23 cycles as each sub-operation takes the time to execute. It is a tradeoff for the

designer to choose the operators.

In iterative floating point unit, the critical phases are still concluded in 6 parts.
They are similar to the previous operator implementation in section The
first pipeline stage is pre-alignment, including operand checking, the sign bit and
exponent different, which are same as logic-only operators. The time consumption
of operating exponent difference in DSP block is 3 clock cycles. The second pipeline
stage is alignment, shifting is required in this step, it is achieved in DSP48E1 block
by processing multiplication. The third pipeline is execution, the adder is capable of
processing with one DSP block, but multiplier requires two DSP blocks to cascade
by setting the OPMODE, this is same as the section mention of cascading result.
Adder needs 3 clock cycles and multiplier requires over 6 clock cycles in this imple-
mentation. The fourth is normalization, it consumes 6 clock cycles to fulfill operation

in DSP slice by using multiplication, the procedures are same as alignment. The
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fifth stage rounding and sixth stage exception condition checking are similar to the
previous work. They are executed in DSP primitive and logic respectively but the

methods to operate are same as the previous standard.

4.5 Comparison of Operators and Future Work

In comparison with three types of operators: logic-only, DSP block and iterative unit.
Among this operators, the logic-only operator requires the higher logic resources than
the rest of operators. The DSP block operator exerts the DSP48E1 primitive to
fulfill the arithmetic operations, hence, less logic resource is required. Comparing the
iterative unit with DSP block operators, the adder of an iterative unit is smaller than
that of DSP block operators, because shifting of an adder in the iterative unit also is
accomplished in DSP48E]1 slice but DSP block operator implements shifting in logic,
this is costly. In summarized, the logic-only implementation has the highest logic
utilization, in adder design, the iterative unit is smaller than DSP block operators

but DSP block operator is smaller than iterative unit when executing multiplier.

Except considering utilization of the logic resource, the throughput and latency
should also be considered. As iterative unit combines two arithmetic operations
together into one structure by using the configurable function of DSP48E1 slice, it
causes higher I than the other two operators. Therefore, the latency of iterative unit
is higher, it leads to a lower throughput among the operators result. Nevertheless, it

is undeniable that the iterative unit has the best flexibility with a tradeoff of latency.
For the TMFU overlay [3.1], it executes arithmetic operation in DSP48E1 primitive

and is capable of getting the desired result when input operand is an integer. After
testing the execution of floating point number, we found out that the TMFU overlay
cannot support the floating point execution. Based on the previous investigation of
floating point operators, the second operators [4.3| which is DSP block operators is
suitable to be a reference when modifying the structure of TMFU overlay. In TMFU
overlay, each FU contains one DSP48E1 primitive inside, the ALU block in FU can

be reconfigured to the similar structure of DSP operators.
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4.6 Summary

In this chapter, we presented the characteristics of three types operators in throughput
and logic utilization aspects. To sum up, the operators with DSP block is suitable
for modifying the TMFU overlay to support floating point execution. Each FU has
ALU block which is made up of one DSP48E1 slice to do an arithmetic operation, we
could modify this part of code according to the six pipeline stages structure of DSP

block operators. The more detailed information is explained in [2].



Chapter 5

Experiments

5.1 Introduction

The experiments investigate and measure the performance of interface between the
overlay accelerator and host processor via Xillybus. In this chapter, we present the
TMFU overlay integrated with ARM processor through Xillybus interface, and anal-
ysis of performance result in comparison with commercial soft vector processors, Vec-
torbox MXP over a set of benchmarks. The main contributions of this chapter are

emphasized as follows:

e An introduction of Xillybus interface.
e A systematic integration of TMFU overlay and ARM processor on Zynq plat-
form via Xillybus.

e Benchmark evaluations between our proposed system with Vectorbox MXP.

5.2 Xillybus

Xillybus provides a DMA-based end-to-end connection interface between host pro-
cessor and accelerator. Thus the FPGA and host can transfer data through Xillybus
running in Linux or Windows operating system. The experiments are fully achieved

in Linux environment. The host driver generates device files which is similar to pipes
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between processors and capable of reading from and writing to. When executing
the program on the host, the other side of the stream is a FIFO in the FPGA in-
stead of another process. Moreover, the Xillybus stream is suitable for high data rate
transmission, in this experiments, the operating frequency is 100MHz, and theoretical
bound of writing and reading bandwidth is 100MS/s (Million Sample per second), as
the Xillybus interface is round trip processing then the theoretical bound is 50MS/s.
Xillybus is ready-made infrastructure in the ACP interface between programmable
logic (PL) and processing system (PS) of Zynq platform and offers a straightforward

and convenient option to acquire data.

! —m
full
Application wr_en
FIFO T data Altera's or
< Xilinx'
. PCle
to application )|(|I3| lybus interface
logic core IP core
,,,,,,,,,,,, - empty (MegaWizard
77| Application | rd_en or Coregen)
e FIFO " data
—

Figure 5.1: Simplified Block Diagram of Xillybus [3]

Fig[5.1)demonstrates the Xillybus simplified block diagram which is the connection
of only one data stream in both directions. In the general implementation design,
the system usually contains a few data streams which can transmit on each side. In
summary, the system is consist of user logic and a host processor, while Xillybus acts
as the connection between them.

The leftmost block in the picture is ‘application FIFOs’ which is a customizable
standard FIFO and connected with Xillybus IP core to fulfill data communication
between user logic and Xillybus IP core, this FIFO has excellent flexibility as the
depth of FIFO, and the user logic can be decided and changed by the designer.
The application FIFO is a connector of application logic (user logic) which is TMFU
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overlay in the experiments and controlled by empty /full signals and write/read enable
signals when transferring data. The user logic accepts data from the input FIFOs
unless the input FIFOs us not empty. Otherwise, no data transmit into the user
logic. After getting data from input FIFOs and executing the program in user logic,
the processing result will be sent to output FIFOs when FIFOs is not full, and the
Xillybus IP core keeps detecting whether data is available for transmission to the
host. During the processing, Xillybus core is charged to check FIFOs empty and full
signals, the ready controls initiation of data transmission.

The rightmost block in the picture is the host application interface, and ARM
processor is host processor in the experiment. As mention above, the host driver gen-
erates writable and readable device file (pipes) between processes. The configuration
of host is approximate that the data in the stream is detected by driver and loaded
into the operating system of the host, additionally, the corresponding device file is
generated. When Xillybus is implemented into design and modification is needed in
the structure of accelerator, as the simplicity of implementing Xillybus, the modifi-
cation of accelerator can be made by generating and uploading the new specific bit
stream file to the location of root file system accordingly and rebooting. Xillybus is
convenient and mature technique, the Xillybus team provides an IP Core Factory to
benefit the FPGA designer and make Xillybus has diversification. The characteristics
and parameters of Xillybus like bandwidth of the system, data width and the number
of pipes, which can be customized following the user requirement. The Xillybus dose

offer a good stage for FPGA designer.

5.2.1 Zynq FPGA Demo Bundle

The Zynq platform is a commercial computing platform which is comprised of pro-
grammable logic (PL) and processing system (PS). The PS includes a dual-core ARM
processor with peripherals, buses and memory interfaces, and it is coupled together
with PL which is formed by customized hardware. The data communication inter-
face of PL and PS is achieved by AXI channels which enable high throughput data

transmission. In this experiment, a Zedboard which contains the Xilinx Zyng-7000
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All Programmable SoC is used as the platform. The Zynq FPGA demo bundle is
the foundation structure of the experiment, which is made up of Integrated Software
Environment (ISE), Xilinx Platform Studio (XPS) project, boot.bin and device tree
files, through these file and projects, the netlist and bitstream can be generated. Ad-
ditionally, the FPGA demo bundle has customized device files such as read ports,
write ports, and address/data interfaces when it is created in the IP Core Factory.
According to the user guide, the custom application logic can be integrated with
Xillybus IP core through the FIFOs in a stream manner.

At the beginning of processing, system firstly generates a netlist in XPS project
file, then following the given FIFO IP cores in ISE, the system reconfigures all the
netlists which meet the demand of users. In top level HDL file, the bitstream is created
and downloaded into the FPGA. In this infrastructure, the FIFOs are connected to
Xillybus IP core via loopback connection and user logic is attached with the FIFOs to
achieve application logic (shown in Fig. Xillybus infrastructure implements in the
ACP interface of Zedboard and includes host program (on the processor), synthesized
function (on reconfigurable fabric) and wrapper function, designers can interact and

send data to the system through synthesized function by API interface.

5.3 Integration with Custom Logic

5.3.1 Round Trip Loopback Evaluation

Before integrating the TMFU overlay with ARM processor, we first use the demo
bundle with default settings to evaluate the performance of Xillybus. The initial
Demo bundle contains FIFOs connected in a loopback fashion thereby causing the
Xillybus core to act both as a source and sink. As shown in Figure [5.3] the input
(user-w_write) and output (user_r_read) pipes connect to the same FIFO to send and
receive data in a loopback manner. Since there is no application logic in between the
pipes, the round trip time can be treated as the PS-PL communication overhead.
Figure demonstrates a simplified block diagram of Xillybus demo bundle.
Xillybus.v build up the interface between Xillybus IP core and ARM processor core
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Figure 5.2: Xillybus Demo Bundle [3]

// 32-bit loopback
fifo_32x512 fifo_32

(

.clk(bus_clk),
.srst(luser_w_write_32_open && 'user_r_read_32_open),
.din(user_w_write_32_data),
.wr_en(user_w_write_32_wren),
.rd_en(user_r_read_32_rden),
.dout (user_r_read_32_data),
.full (user_w_write_32_full),
.empty (user_r_read_32_empty)
)

[
OO0 Uk WN -

=
w N

-
S

assign user_r_read_32_eof = 0;

Figure 5.3: Xillybus 32-bit Loopback FIFO Connection

via AXI interconnect. And the top level Xillydemo.v wrapper file present in the Xilly-
bus bundle is used to integrate our application logic. In this specific case, there is no
application logic involved, data from Xillybus IP core will just loopback through a
FIFO. After generating the bitstream for Xillybus interfaces, we download it to the

Zedboard, along with boot file and device tree to set up a mini Linux system. An
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example of host program is shown in Figure to do the round trip time measure-
ment, and Table demonstrates the round trip time and throughput for different

No. of samples.
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Figure 5.4: Xillybus Demo Bundle Block Diagram

Table 5.1: Single Pipe Loopback Results

No. of Samples Round Trip Time (us) Throughput (KS/s)

256 129 1984.5
512 129 3969.0
1K 129 7938.0
2K 147 13932.0
4K 166 24674.7
8K 258 31751.9
16K 406 40354.7
32K 756 43343.9
64K 1567 41822.6
128K 2820 46479.4
256K 5714 45877.5
512K 11336 46249.8
1M 22727 46137.9

From the results listed in Table |5.1] it is clear that for a small amount of data
streaming, the Xillybus performance is reduced which means that communication

overhead is high. But for large amount of data, its performance is close to theoretical
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1 #include <stdio.h>

2 #include <unistd.h>

3 #include <stdlib.h>

4 #include <errno.h>

5 #include <sys/types.h>

6 #include <sys/stat.h>

7 #include <fcntl.h>

8 #include <string.h>

9 #include <pthread.h>

10 #include <stdint.h>

11 #include <sys/time.h>

12 int fdr32 = 0;

13 int fdw32 = 0;

14 int N = 0;

15 int i;

16 int *array_input;

17 int *array_hardware;

18 struct timeval tstart, tend;

19 ssize_t t1,t2, temp;
20 int main(int argc, char *argv[]) {
21 £dr32 = open( , O_RDONLY);
22 fdw32 = open( , O_WRONLY) ;
23 N = atoi(argv([i]);
24 if (£dr32 < 0 || £fdw32 < 0) {
25 perror( E
26 exit(1);
27 }
28 //allocate memory
29 array_input = (int*) malloc(N*sizeof (int));
30 array_hardware = (int*) malloc(N*sizeof (int));
31 // generate inputs and prepare outputs
32 for(i=0; i<N; i++){
33 array_input[i] = i;
34 array_hardware[i] = 0;
35 }
36 //Measure the excution time
37 gettimeofday (&tstart, NULL);
38 tl=write(fdw32, array_input, sizeof (int)*N);
39 temp = write(fdw32, NULL, 0);
40 t2= read(fdr32,array_hardware, sizeof (int)*N);
41 gettimeofday(&tend, NULL);
42 printf( , (double)1000000*(tend.tv_sec-tstart.tv_sec)+(tend.

tv_usec-tstart.tv_usec));

43 return 0;
44 }

Figure 5.5: Code Example: Execution Time Measurement

limit (50 MS/s).

5.3.2 Interfacing the TMFU Overlay

Because of the linear topology with FIFO channels, the TMFU overlay can be easily
connected with Xillybus IP core, as shown in Figure [5.6] Since the system contains
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only one input pipe and one output pipe, we can use the same program to measure

the execution time as in Figure [5.5

{ | |
N
Time-multiplexed .. full
Function Unit Application | wr_en
FIFO g data
ARM
Time-multiplexed . Processor
Function Unit Xillybus <:> Core
® IP core
[
® - full (PS)
- : Application wr_en
Tlme-m'ultlple)fed FIFO data
Function Unit )
______________ f ’|‘

Figure 5.6: TMFU Overlay Integration via Xillybus

Table lists the round trip time and throughput of the integrated TMFU over-
lay over benchmark chebyshev. According to the results, this system shows similar
performance compared with the single pipe loopback when the No. of samples is less
than 512. However, when the No. of samples grows gradually, the round trip time
of integrated TMFU overlay is about 3 — 4x more than that of single pipe loopback,
which is due to the reason that, for benchmark chebyshev the 11 equals 6.

Table 5.2: Integrated TMFU Overlay Results

No. of Samples Round Trip Time (us) Throughput (KS/s)

256 129 1984.5
512 184 2782.6
1K 276 3710.1
2K 479 4275.6
4K 886 4623.0
8K 1696 4830.2
16K 3060 5354.2
32K 9751 9697.8
64K 11004 5955.7
128K 19372 6766.1
256K 28274 9271.6
512K 40606 12911.6

1M 62485 16781.2
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5.4 Benchmark Evaluation with MXP

The VectorBlox MXP was developed as a commercial IP core which can be connected
with Xilinx FPGAs via AXI interfaces [30]. It is able to explore the tradeoff between
performance and area, with a hybrid approach which shares the benefits of traditional
vector processing and modern SIMD mode. The MXP consists of a Nios II/f scalar
soft processor, along with some vector lanes executing custom instructions on a local
vector memory. Significant performance is achieved by effectively unrolling loops into
vector operations. Instead of traditional vector load/store instructions, the MXP
adopted direct memory access (DMA) read /write commands to achieve better storage
efficiency and less memory latency. To have a fair comparison with the Xillybus-
interfaced system, we perform the same benchmark chebyshev using MXP. Figure
shows an example of vector processing functions and its inherent timer to measure

the whole operation time.

1 vbx_timestamp_start();

2 start = vbx_timestamp();

3 for(i = 0; i < div_factor; i++)

4 {

5 vbx_dma_to_vector(vb_input, (input + i*no_of_samples), no_of_bytes);
6 vbx (SVWS, VMUL,vb_result,16,vb_input);

7 vbx (VVWS, VMUL,vb_result,vb_result,vb_input);

8 vbx (SVWS, VADD,vb_result,-20,vb_result);

9 vbx (VVWS, VMUL,vb_result,vb_result+i,vb_input);

10 vbx (VVWS, VMUL,vb_result,vb_result+i,vb_input);

11 vbx (SVWS, VADD,vb_result,5,vb_result);

12 vbx (VVWS, VMUL,vb_result,vb_result,vb_input);

13 vbx_dma_to_host ((result + i*no_of_samples) , vb_result, no_of_bytes);
14 vbx_sync() ;

15 }

16 end = vbx_timestamp();

17 vbx_print_scalar_time(start, end);

Figure 5.7: A Snapshot of MXP Program

We list the execution time and throughput of MXP over benchmark chebyshev
in Table and draw the curves to have a better observation for each system in
Figure [5.8 and Figure |5.9

From the above results, the MXP vector processor shows the best performance
because of its SIMD mode data processing. The theoretical throughput can be 100

MS/s. However, due to the communication overhead, it reaches around 70 MS/s.
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Table 5.3: MXP Results

No. of Samples Execution Time (us) Throughput (KS/s)

256 92 2782.6
512 92 5565.2
1K 92 11130.4
2K 101 20277.2
4K 110 37236.4
8K 138 59362.3
16K 258 63503.9
32K 498 65799.2
64K 977 67078.8
128K 1935 67737.5
256K 3834 68373.5
512K 7686 68213.4
1M 15340 68355.7

Execution Time (us)
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Figure 5.8: Execution Time of Integrated TMFU Overlay

Though the performance of our integrated system is less than 20 MS/s at the current
time, it is capable of reaching the theoretical throughput of Xillybus round trip (50
MS/s) by replicating multiple pipelines to make IT equals one. Another potential
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Figure 5.9: Throughput of Integrated TMFU Overlay

for us to improve the throughput significantly is that the theoretical throughput of
Xillybus itself can be doubled if it makes use of the whole 64-bit AXI interconnect,

instead of merely 32-bit interconnect.



Chapter 6

Summary and Future Work

6.1 Summary

In this report, we investigated the architecture of TMFU overlay and presented an
analysis of Linear overlay architecture which is a new proposed overlay to decreasing
the II. The architecture of Linear overlay is based on the proposed TMFU overlay. It
can be classified into two options: fully parallel and first stage parallel. This two types
of Linear overlay consist of parallel FUs on internal stages to reduce II. Additionally,
the experiments of Xillybus infrastructure are presented which is using Xillybus to
transfer data between the accelerator and ARM processor on Zynq platform. Finally,
we evaluated the performance of our proposed system in comparison with Vectorbox
MXP over several benchmarks.

In chapter [3, we demonstrated the execution principle of TMFU and new proposed
Linear overly in two types for decreasing II. The fully parallel Linear overlay nearly
reduces half of IT but comes with the higher area consumption. The first stage parallel
Linear overlay achieves the similar result when the number of data input is small.
When the number of data input is high, it cannot reduce II as expectation. However,
the area resource requirement of first stage parallel overlay is lower. Tradeoff between
area and throughput is inevitable when processing various benchmarks. In chapter [4]
we indicated three types structures of floating point operators on FPGA. Comparing

the internal structure with elements of logic resource and latency, the operator with
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DSP blocks is the most suitable for the TMFU overlay to support floating point
execution among these designs. In chapter 5] we presented the performance outcomes
of TMFU overlay integrated with ARM processor via Xillybus on various benchmarks
and demonstrated the analysis of performance result between ARM processor and
Vectorbox MXP.

6.2 Future work

As the above summary of the overall contributions for this dissertation, the proposed
Linear overlay still has several limitations, which should be noticed in the future work.
Considering portability and compatibility of Linear overlay, we present two potential

directions for the future work:

e Compatibility of Linear Overlay: As the structure of Linear overlay is
achieved by a parallelism of 2 FU on the internal stages, it causes a restriction
on the number of instructions. When instruction number is even, the system
operates in normal. Nonetheless, when instruction number is odd, the parallel
FU stage might have faulty operation since one FU does not have instruction
to execute. Thus, the corresponding measure in this scenario should be investi-
gated in the future work.

e Floating Point Execution: The current TMFU overlay is capable of exe-
cuting the integer number as the input operand. However, it cannot process
floating point operands. In chapter [4 we mentioned the three types of floating
point execution on FPGA and investigated internal architecture by comparing
the latency and area resource requirements. The structure of operators with
DSP block should be referenced in the future work to make TMFU support

floating point operations.
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