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Abstract

In the quest for hardware acceleration of applications, embedded reconfigurable plat-

forms have emerged with significant potential for addressing the demand for perfor-

mance at low power consumption. These platforms, such as Xilinx Zynq, couple one or

more general purpose processors with reconfigurable fabric, where the reconfigurable

fabric is used to accelerate some compute intensive tasks of an application. The ma-

jor concern in such a system is the integration of the accelerator with the processor

and the efficiency of the software-hardware (SW-HW) communication. Not only the

integration of accelerators with an embedded processor(s) but a system-level driver

is also crucial to enable communication abstraction while performing data transac-

tions between processor and reconfigurable fabric. This report presents a number of

experiments to characterize software-hardware communication interfaces on the Xil-

inx Zynq platform within a general purpose operating system (Linux) framework to

study the effect of interface choice on the maximum performance of these interfaces.

The goal is to quantify how and when these interfaces differ in terms of performance.

We present an approach for sending data between DDR to DDR memory locations

and DDR to BRAM locations in an optimized way achieving bandwidth close to

theoretical maximum. Use of optimized DMA engine driver calls and moving the

dma intialization overhead out of the write and read functionalities provided a bigger

improvement in achieving a good bandwidth. This work consists of development of

platform and character driver in case of PS-DMA and character driver in case of PL-

DMA. Necessary hardware architecture using a memory subsystem is also created in

order to establish a proper communication between PS and PL. This work concen-

trated on developing driver that meets the standard rules of driver development and

also optimized driver in which new technique such as Zero-copy is implemented. We

also measured the performance of developed PS-DMA drivers, PL-DMA drivers and

provided a comparison against commercially available system-level driver, Xillybus.
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Chapter 1

Introduction

1.1 Motivation

In the quest for hardware acceleration of applications, embedded reconfigurable plat-

forms have emerged with significant potential for addressing the demand for per-

formance at low power consumption. These platforms couple one or more general

purpose processors with reconfigurable fabric, where the reconfigurable fabric is used

to accelerate some compute intensive tasks of an application. The major concern in

such a system is the integration of the accelerator with the processor and the efficiency

of the software-hardware (SW-HW) communication. Not only the integration of ac-

celerators with an embedded processor(s) but a system-level driver is also crucial to

enable communication abstraction while performing data transactions between pro-

cessor and reconfigurable fabric. Managing SW-HW communication is normally one

of the embedded processor’s many tasks, and hence this must be done in a way that

does not degrade overall system performance. Low latency and high bandwidth are

the key requirements to enhance the efficiency of the hybrid system.To address pos-

sible communication bottlenecks, particularly in providing high bandwidth transfers

to the reconfigurable fabric, it has been proposed to tightly integrate processors and

reconfigurable fabric on a single platform. A number of tightly coupled architectures

have resulted [4], including vendor specific platforms with integrated processors such

as the Xilinx Zynq [2].

2



1.2. CONTRIBUTION 3

Reconfigurable accelerators can be integrated with processors over many different

types of interface, such as PCIe, Ethernet and Advanced eXtensible Interface (AXI),

etc. While the Zynq platform provides high speed AXI interfaces for communication,

designers must develop a system-level driver, including a memory subsystem around

the interfaces and software drivers, to manage the transportation of data to and from

the accelerator via the AXI interfaces. In our work, the goal is to present a number

of experiments to characterize software-hardware communication interfaces on the

Xilinx Zynq platform within a Linux based framework to study the effect of interface

choice on the maximum performance of these interfaces. We also aim to compare the

performance of proposed drivers with a commercial system-level driver, Xillybus.

1.2 Contribution

This report presents a number of experiments to characterize software-hardware com-

munication interfaces on the Xilinx Zynq platform within a general purpose operating

system framework to study the effect of interface choice on the maximum perfor-

mance of these interfaces. The goal is to quantify how and when these interfaces

differ in terms of performance. On the FPGA fabric, we develop an AXI-compliant,

lightweight memory sub-system (a portable bridge between the accelerators and the

external memory) and on the processor, we develop Linux based drivers, specifically

Direct Memory Access (DMA) drivers, to provide communication APIs. We first

develop PS-DMA driver (including a platform driver) and measure the performance

of driver for DDR-DDR communication and DDR-PL communication via General

purpose (GP) AXI interfaces. We then develop PL-DMA drivers and measure the

performance of drivers for DDR-DDR communication and DDR-PL communication

via High Performance (HP) and Accelerator Coherency Port (ACP) based AXI in-

terfaces. Finally, we compare the performance of proposed drivers with a commercial

system-level driver, Xillybus.

The main contributions can be summarized as follows:

� PS-DMA Driver implementation

� PL-DMA Driver implementation



4 CHAPTER 1. INTRODUCTION

1.3 Organization

The remainder of the report is organized as follows: Chapter 2 presents background

information on embedded platforms, software-hardware communication and system-

level drivers. Chapter 3 studies current state of the art drivers and techniques for

communication abstraction. In chapter 4, we present system architecture of proposed

system-level driver and DMA drivers for communication abstraction. In chapter 5,

we present experiments to measure the performance of PS-DMA driver for DDR-

DDR communication and DDR-PL communication via general purpose (GP) AXI

interfaces. Chapter 6, we present experiments to measure the performance of drivers

for DDR-DDR communication and DDR-PL communication via high performance

(HP) and Accelerator coherency port (ACP) based AXI interfaces. We conclude in

chapter 7 and discuss future work.



Chapter 2

Background

2.1 Embedded Reconfigurable Platforms

Today’s trend in the field of Embedded reconfigurable platforms is that they couple

one or many processors with reconfigurable hardware, such as Field Programmable

Gate Array (FPGA). Few examples are, Zynq-7000 All programmable SoC from

Xilinx [2], Micorsemi’s SmartFusion SoC, Cypress’s Programmable System on-chip

(PSoC) etc. The major advantages of these platforms are reconfigurability, reduced

power consumption than Graphic Processing Unit (GPU) and many-core processors,

real-time execution capability, and most importantly, high spatial parallelism which

can be used to significantly accelerate complex algorithms [5][6]. Solutions like Ap-

plication Specific Integrated Circuit (ASIC) have high-performance benefits but falls

back in flexibility metric. On the other hand, solutions like embedded reconfigurable

platforms are highly flexible.

Having talked about the advantages and evolution of reconfigurable platforms, it

is necessary to study and understand the difficulties in the implementation of appli-

cation on this kind of platforms. The main challenges are, communication interface

between the main processor and reconfigurable fabric, memory architecture and man-

agement, support for services such as communication, synchronization, scheduling,

interrupt handling through efficient operating systems and effective management for

reconfiguration of fabric and tools for mapping application to the platform.

5



6 CHAPTER 2. BACKGROUND

2.1.1 Example: Xilinx Zynq

Unlike general purpose processing systems, FPGAs are in a unique position to take

the maximum advantage of Moore’s Law improvements in semiconductor technology

[7]. The concept of reconfigurable hardware existed right from 1960ś [8] but the com-

mercially successful attempt was made by these market leaders. Both major FPGA

vendors, Xilinx and Altera, have recently introduced reconfigurable platforms consist-

ing of high performance processors coupled with programmable logic. These platforms

partition the hardware into a processor system (PS), containing one or more proces-

sors along with peripherals, bus and memory interfaces, and other infrastructure, and

the programmable logic (PL) where custom hardware can be implemented. The two

parts are coupled together with high throughput interconnect to maximize communi-

cation bandwidth. The principle is having the concept of main processor that controls

an array of reconfigurable hardwares to perform compute-intensive tasks. The focus

of this report is on Xilinx Zynq SoC [2].

Presence of both processor and reconfigurable fabric on Zynq platform seems

beneficial due to several reasons. This approach is usually processor centric for easy

control and adaptability. Zynq follows a processor centric approach by allowing the

processors to boot first. FPGA fabric provides application specific acceleration and

power of reconfigurability while the processor handles the control intensive tasks. Also

FPGA based designs are more energy and power efficient, smaller and more flexible

when compared to SW implementation, which makes it more suitable for embedded

systems. Fig. 2.1 shows some use cases for Zynq:

Figure 2.1: Zynq Use Cases Diagram



2.1. EMBEDDED RECONFIGURABLE PLATFORMS 7

The Xilinx Zynq product integrates dual-core ARM Cortex A9 cores and Xil-

inx Programming Logic [PL] in a single device built on a state-of-the-art with on-

chip memory, external memory interfaces and a rich set of I/O peripherals [2]. The

Processing system (PS) contains a dual-core ARM Cortex-A9 processor which can

boot independently unlike other cores such as PowerPC. The PS also consists of a

double-precision floating point unit, commonly used peripherals, a dedicated hard

DMA controller (PS-DMA), On-Chip Memory (OCM) and external memory inter-

faces. Each processor is a low-power and high-performance core that contains 32 KB

Level-1 separate caches for instruction and data. The components of PS are listed as

follows:

� Two ARM Cortex-A9 cores with ARMv7 ISA, with run-time options to config-

ure as a single processor, asymmetric or symmetric multiprocessor

� NEON 128b SIMD coprocessor and VFPv3 per MPcore.

� 32KB instruction and L1 data caches per core

� 512KB shared L2 cache

� Snoop Control Unit (SCU) and the ACP for maintaining L1 and L2 cache

coherency.

� 256 KB of On-Chip SRAM (OCM) with parity

� A set of IO peripherals

� DDR controller with three major blocks - AXI memory port interface, transac-

tion scheduler, digital PHY.

� DMA controller for PS [four channels] and PL [four channels].

� Interconnect has three separate features for different purposes- AXI high per-

formance data switches, based on ARM NIC-301, PS-PL interfaces.

The Programmable Logic (PL) consists of Artix 7 FPGA fabric. It has 6 input

LUTs and 36kb Block RAMs which can be configured as two 18 kb blocks. This family

is integrated with the three smallest devices belong to zynq family and they are 7Z010,

7Z015 and 7Z020. The processor in the system always boots first and PL can be

configured as a part of boot process or at some point of time in the future. In addition

to this, PL can be reconfigured completely or partially using partial reconfiguration
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Figure 2.2: Processing System (PS) Block Diagram[1]

(PR) feature. This is analogous to the dynamic loading and unloading of software

modules. The PL configuration data is referred to as bitstream. The predictable

latency feature of PL is useful for real-time applications. Power management can be

achieved by powering down the PL as it is on different power domain than the PS.

The PL provides a rich architecture of user-configurable capabilities and they are [2]:

� Configurable logic blocks (CLB) with 6-input lookup table (LUT)

� 36KB of block RAM with dual port capability

� Digital signal processing - DSP48E1 Slice with optional pipelining, ALU and

dedicated buses for cascading.

� Low skew and low jitter clock distribution

� Configurable high performance I/Os.

� Dual Analog-to-Digital Converter (ADC) blocks with 12-bit and 1 MSPS rate
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2.2 Software-Hardware Communication

High-performance Reconfigurable Computing (HPRC) is getting popular due to the

combination of main processors with reconfigurable computing-based accelerators like

FPGAs [8]. Major concern, in both static and dynamic reconfigurable systems, is data

transfer bandwidth. To address possible bottleneck problems, particularly in provid-

ing high bandwidth transfers between the CPU and the reconfigurable fabric, it has

been proposed to more tightly integrate the processor and the reconfigurable fabric.

A number of tightly coupled architectures have resulted [4, 9], including vendor spe-

cific systems with integrated hard processors. These platforms have a large number

of embedded memories to avoid memory bottlenecks. This created opportunities to

exploit high speed interfaces and raised questions of how to organize, manage, and

exploit these embedded reconfigurable memories. A data-transport mechanism using

a shared and scalable memory architecture for FPGA based computing devices was

proposed in [10]. It assumes that the FPGA is connected directly to L2 cache or

memory interconnect via memory interfaces at the boundaries of the reconfigurable

fabric. Similar mechanism of data-transport was demonstrated in a virtualized frame-

work on the Xilinx Zynq [11, 12]. The increase in the PL logic resources makes it

possible to execute compute-intensive tasks in a faster manner. Sooner, this trend

makes a big impact in the embedded platforms as well. As pointed out earlier, major

reason for this change is due to the processing power of PL logic. This implicitly

explains the need for data transfer between processor and PL logic which should be

highly optimized and should give maximum data bandwidth to have a good system

performance.

When reconfigurable hardware is tightly coupled with a processor with memory

management unit (MMU) support, reconfigurable hardware can share processor’s

MMU. The processor can now be used by the OS to perform memory accesses and

then it can feed data to reconfigurable HW for computation. This model brings good

control but reduces the ability of the processor to act as a compute unit as is kept

busy in memory transactions. DMA controllers are normally used in such cases to

counter this issue of handling memory transactions.
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2.2.1 Communication Interfaces on Zynq

Xilinx-Zynq family follows the AXI protocol from ARM introduced in 1996. The

interfaces between PS and PL are based on AXI protocol and they are of three types

for different purposes [13],

� AXI4 - For high-performance memory mapped application

� AXI4-Lite - For simple, low-bandwidth memory mapped application

� AXI4-Stream - For high speed streaming data application

Memory mapped applications often provide a more homogeneous way to view the

system because the peripherals operate in a defined memory mapped address, whereas

in the case of streaming applications which focuses on data-centric and data-flow

paradigm where there is no concept of address. The interconnection between PS and

PL provided by the AXI bus facilitates any logic implemented in PL to be addressable

by PS thereby acting as a memory-mapped peripheral. AXI [13] is an asynchronous

interface with independent read and write channels. This interface provides low

latency as well as processor DMA access to the peripherals. AXI interfaces have a

common principle of sending data between a single AXI master and a single AXI

slave and they contain five different channels - Read and write Address channels,

Read and write Data channels and write Response channel. Data can move in both

the directions simultaneously and data transfer size can vary with different protocols

for example, AXI4 has a burst size of up to 256 whereas AXI4-Lite has only one data

transfer per transaction. With respect to the underlying PL fabric, the AXI interfaces

used for the following ports,

� AXI GP - Two master and two slave interfaces

� AXI HP - Four slave interfaces with access to DDR and OCM

� AXI ACP - One slave interface for cache coherent memory access

GP port

AXI GP port includes the following feature set,

� Data bus width - 32-bit
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� Master port ID width - 12 with 8 read and 8 writes issuing capability.

� Similarly Slave port has port ID width of 6 and 8 read-write acceptance capa-

bility.

� Port normally connects with PS-DMA present in the processor side and the

underlying PL logic.

� The maximum bandwidth achieved with GP ports when 32-bit data sent to PL

logic running at 100 MHz is 400 MB/s and with increased frequency at 150

MHz is 600 MB/s

HP port

There are four HP interfaces that provide PL bus masters with high bandwidth

transfers to DDR and OCM memory in the platform. Each interface consists of two

separate buffers for read and write traffic and they often referred to as AXI FIFO

Interface (AFI). Diagram of HP connectivity is shown in Fig. 2.3 and the main

features are listed as follows,

� Data bus width - 32 or 64-bit

� Four HP ports are available that can support maximum of four masters to drive

the ports .

� Write channels can be configured to store and forward write commands or allow

without any storage.

� QoS priority option is available to assign an arbitration priority to the read and

write commands.

� Port normally connects with Soft IP core DMA provided by Xilinx such as

AXI-DMA, AXI-CDMA and AXI-VDMA.

� The maximum bandwidth achieved with a single HP port when 64-bit data

transaction is done with the logic running at 100 MHz is 800 MB/s and with

increased frequency at 150 MHz is 1.2 GB/s

� By using the four available ports for the data transaction the maximum band-

width attained is 3.2 GB/s running at 100 MHz and 4.8 GB/s
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Figure 2.3: HP port Connectivity Diagram[2]

ACP port Zynq platform has only one specialized port for doing cache coherent

transactions between with processor caches and PL logic. Diagram of ACP connec-

tivity is shown in Fig. 2.4 and the major features of this port are as follows,

� Data bus width - 64-bit

� Single ACP port is available that can support low-latency transfers with optional

coherency between L1, L2 caches and PL logic memory.

� From the Fig.2.4 it is clear that ACP port is connected directly to the snoop

control unit of the processor which is responsible for the cache-coherency.

� With the proper configuration of this port, it is possible to achieve very high

data bandwidth and also with the improper handling of ACP port will degrade
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Figure 2.4: ACP port Connectivity Diagram[2]

the entire system performance.

� ACP transfer are optimized when it matches the core’s coherent requests.

� Port normally connects with Soft IP core DMA provided by Xilinx such as

AXI-DMA, AXI-CDMA and AXI-VDMA.

� The maximum bandwidth achieved with a single HP port when 64-bit data

transaction is done with the logic running at 100 MHz is 800 MB/s and with

increased frequency at 150 MHz is 1.2 GB/s
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2.2.2 Communication Abstraction

Communication abstraction is a method to represent communication interfaces and

memory sub-system at a logical view by providing an interface similar to SW Applica-

tion Processing Interface (API). This logical view basically decouples the functionality

of communication interfaces from their actual implementation. Communication ab-

straction might be required by system developers to ensure standards-compliance,

handle the multitude of communication protocols, and reduce developer effort. Com-

munication abstraction should be an integral part of PSoC where there is a need of

easy and isolated memory transactions between processor and reconfigurable fabric.

The key figure of merit in embedded reconfigurable platforms is communication

abstract at both hardware and software level. In case of hardware, the abstraction

can be provided through hardware logic around the AXI port that gives maximum

bandwidth to transfer the data between processor and PL logic. As the applications

has to send data in order to be transferred to PL logic and for this reason the appli-

cation should know the functions or API in an abstract form at the software level to

send and receive data.

The key attraction of communication abstraction techniques is their capability

to seamlessly access memory sub-system and abstraction of physical interfaces. An

abstracted memory sub-system should be an integral part of programmable SoC where

there is a need for easy and isolated memory transactions[14]. System designs can

incorporate these abstractions at platform level to make use of reconfigurable memory

as local memory space for application accelerators. It works the same way as cache

works for processors. As both Altera and Xilinx started embedding hard memory

blocks (Block random access memory (BRAM)) within fine grained reconfigurable

fabric, researchers also started to explore these blocks as distributed storage elements.

System level drivers give a clear abstraction to the application developers. As

a developer, there is a need to understand the functionalities of each abstracted

functions, then use it and get the results without any concern about the underlying

drivers and hardware. In this report, we present the proposed memory subsystem by

exploring how BRAMs can be used as local and distributed memory space to provide

seamless access of data to streaming accelerators. We also explore the ways to provide
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OS support for the memory sub-system and communication abstraction. Different

techniques have been explored in literature to develop such an abstracted memory

sub-system, including Garp[4], CoRAM[10] and PyCoRAM[15].

2.3 Operating System Support

A number of researchers have focused on providing OS support for reconfigurable

hardware so as to provide a simple programming model to the user and effective

run-time scheduling of hardware and software tasks [16, 17, 18, 19]. A technique

to abstracting reconfigurable co-processors in high performance reconfigurable com-

puting (HPRC) systems was presented in [20]. ReconOS [21] is based on an ex-

isting embedded OS (eCos) and provides an execution environment by extending a

multi-threaded programming model from software to reconfigurable hardware. Sev-

eral Linux extensions have also been proposed to support reconfigurable hardware

[22, 23]. RAMPSoCVM [24] provides runtime support and hardware virtualization

for an SoC through APIs added to Embedded Linux to provide a standard message

passing interface.

Usage of Operating system (OS) in reconfigurable platforms renders help in co-

ordination of multiple hardware tasks and efficient management of memory, shared

resources among the applications[25]. In particular the presence of open-source pow-

erful OS such as Linux provides better control over the communication interfaces,

scheduling of threads and tasks, synchronization, interrupt management etc. When

compare with bare-metal applications, Linux application does not perform efficiently

but they are heavily abstracted from the underlying hardware and scheduling which

provides an easy way for the application developers to dwell upon Linux. Unlike

bare-metal application that requires explicit handling of resources, synchronization,

communication that creates an overhead for the developers to look into each one of

this tasks and it poses a great challenge as well. Some of the examples for OS support

are, SIRC[26], RIFFA[27][28] and Xillybus[3].
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2.3.1 Xillinux

Commercially available linux distro for Zynq platforms is Xillinux[29] which is a

combination of software and FPGA code kit based on Ubuntu 12.04 specifically meant

for Zynq platforms. The major things needed for booting up the board with Xillinux

are as follows,

� SD card with minimum 4GB of memory size

� Download the .img file from the distro website.

� copy the image using dd command present in linux which automatically creates

two partitions.

� First one is using FAT32 format and is for copying all the bootable files such as

.bin, .dtb, .bit files in order to boot the platform.

� Second one is using EXT4 format which is used for copying the Root File System

(RFS) of the distro.

Setting up of SD card with Xillinux distro is very easy as it requires very minimal

steps and the default image used in our experiments is Xillinux-1 3.img. This image

has in-built support for xillybus architecture, Xilinx DMA IP cores and for generic

DMA engine driver.

2.3.2 Xillybus

Xillybus is a portable and straightforward, DMA-based solution for data transport

between processor and FPGA. It is designed to work with the interfaces: the PCIe

interface (in a typical x86 based system) and the AXI interface (in an ARM based

system), as the underlying transport mechanism. Standard FIFOs are provided as

interfaces to the application logic on the FPGA. Each FIFO stream is mapped to a

device file by a universal Xillybus driver. It provides all necessary HW-SW commu-

nication interfaces such as memory mapped to stream interface, memory mapped to

memory mapped interface, memory mapped register interface. The main benefit of

using Xillybus, as a memory abstraction, is that it works on Xillinux OS (lightweight

management abstraction).
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Xillybus is intended to do data transaction between ARM and PL logic with

minimum latency and maximum data bandwidth. As stated earlier this is provided

along with Xillinux distro and this can be noticed by doing ls − lt/dev/xillybus∗
which prints out the pipes created for the xillybus usage. Since the xillybus drivers

are staged and enabled by default and so it is created as in-built module in the

kernel. The underlying hardware uses Xillybus hardware IP core connected through

ACP port for maximum transfer between DDR memory and PL logic memory.

In the case of application users the pipe present under /dev directory should be

used according to the functionality that it provides. For example, xillybus write 32

pipe provides an option for the application to send 32-bit data samples to the xillybus

bridge. Similarly, xillybus read 32 pipe provides facility to read 32-bit samples from

the xillybus.

Figure 2.5: Xillybus Block Diagram[3]

Fig. 2.5 shows the abstracted view of the xillybus hardware structure. FPGA

demo bundle used for Zynq consists of Integrated Software Environment and Xilinx

Platform Studio project, boot.bin and device-tree files which can be modified to

produce different hardware and bitstream according to the application requirements.
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Literature Survey

A memory sub-system is crucial to decouple the functionality of communication inter-

faces from their actual implementation. Instead of developing an application-specific

memory sub-system around an accelerator, CoRAM was proposed as a communica-

tion abstraction mechanism using a shared and scalable memory architecture [10].

It provides an interface to off-chip memory using on-chip interconnect generated by

the CONNECT NOC generator [30]. Communication between off-chip memory and

on-chip memory is abstracted and can be controlled using software threads. PyCo-

RAM [15] is a python based automation infrastructure of the CoRAM project with

slight modifications. For example, instead of making use of CONNECT NOC gener-

ator, it uses AMBA AXI-4 infrastructure and provides support for AXI based IP and

hence it is suitable for platforms like Zynq. LEAP[31] (logic-based environment for

application programming) scratchpad was proposed as an automatic memory man-

agement system to make reconfigurable memory hierarchy invisible which is very

similar to the concept of CoRAM. Both of these projects share the objective of pro-

viding a standard memory abstraction by virtualizing an FPGAs memory and I/O

interfaces. LEAP abstracts away the details of memory management by exporting a

set of interfaces to local client address spaces.

SIRC [26] was proposed as an open source OS based abstract interface (a software

API and hardware interface) for communication between a PC and the FPGA. SIRC

only supports Windows x86 based platforms and provides a peak bandwidth of 118

18
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MB/s. RIFFA [28] was proposed as an open source reusable framework to integrate

the FPGA IP cores to workstation software using the PCIe interface. Currently,

RIFFA only supports the PCIe interface hence it is not possible to use it on the

AXI based Zynq platform. A more comprehensive survey of various communication

frameworks is given in [32] with a focus on FPGAs in general purpose computers.

DyRACT [33] was recently proposed to provide SW APIs and Linux drivers for man-

aging partial reconfiguration and high throughput data communication over PCIe

interface. More detailed study about the usage of AXI-DMA and different ways of

configuring using register mode and scatter gather mode is done in the [34]. Their

main idea is to use AXI-DMA as a memory manager for supporting irregular sparse

access patterns and to show it is faster than traditional cache based access on em-

bedded CPUs on the Xilinx Zedboard.

HybridOS [35] was developed as a set of Linux extensions to study the methods of

data communication between tasks running on processor and accelerators. Authors

presented four accelerator access methods out of which two are DMA based and

another two are non-DMA based. Authors have performed a case study in which

JPEG application was implemented on FPGA fabric and data transfer was done using

proposed four different methods. They have shown that most effective method of data

transfer depends on data transaction size and the number of times the application

will use an accelerator.

This paper [36] deals with the methods that can be used for transferring data

between DDR and accelerator memory and it concentrates mainly on HP and ACP

ports. It also deals with the study of memory transfer when the target, here Xilinx

Zynq APSoC, is loaded with dummy tasks and also at idle. Results they could able

to achieve with HP port is around 700 MB/s and 707 MB/s with ACP port. This

paper does not deal with the usage of multiple HP ports and they mainly concen-

trated on drawing conclusions about the performance given by these ports at specific

applications and when to use.In this paper, we focus on high throughput data commu-

nication over different AXI interfaces of Zynq platform without considering overheads

incurred by Linux OS abstractions.
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System-Level Drivers for

Communication Abstraction

On the FPGA fabric side, there should be local memory space within programmable

logic region which can be accessed by both processor and the programmable logic

region. System designs can incorporate communication abstractions at platform level

to make use of reconfigurable memory as local memory space for application accel-

erators. It works the same way as cache works for processors. These solutions are

getting popular in reconfigurable community because memory access is a big issue

for programmable logic. As both Altera and Xilinx started embedding hard memory

blocks (BRAMs) within fine grained reconfigurable fabric, researchers also started to

explore these blocks as distributed storage elements. On the processor side, there

should be a set of APIs containing system calls (in the form of software drivers) for

communication between the processor and programmable logic.

4.1 Hardware Infrastructure

The Xilinx Zynq-7000, ARM based reconfigurable system, uses multiple AXI inter-

faces for SW-HW communication between the processor system (PS) and the pro-

grammable logic (PL). Each interface consists of multiple AXI channels, enabling

20
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high throughput data transfer between the PS and the PL, thereby eliminating com-

mon performance bottlenecks for control, data, I/O, and memory. The available AXI

interfaces to the fabric include:

AXI GP – Two 32-bit master and two 32-bit slave AXI GP interfaces

AXI HP – Four 64-bit/32-bit configurable, buffered AXI HP slave interfaces with

direct access to DDR and on chip memory

AXI ACP – One 64-bit AXI accelerator coherency port (ACP) slave interface for

coherent memory access

We have used the Xilinx Embedded Development Kit (EDK) for our system de-

sign. Xilinx Platform studio (XPS) can be used to automatically generate custom

AXI based peripherals. A peripheral connects to the AXI interconnect through the

corresponding AXI IP interface (IPIF) modules, which provides a quick way to imple-

ment an interface between AXI interconnect and the user logic. A peripheral can have

either a slave interface or a master interface. A slave interface is typically required

by most peripherals for operations like logic control, status report, etc. A master

interface is typically required by complex peripherals like DMA. XPS also provides a

bus functional model (BFM) simulation platform so that the designer can verify the

functionality of the generated peripheral. We generate the following custom periph-

erals in the PL using XPS base system builder (BSB) in order to communicate with

the PS:

AXI-lite based Register peripheral - A user specific SW accessible register (up to

32 registers) interface for operations such as logic control, status, etc.

AXI based Memory peripheral - User specific memory regions (up to 8 regions)

providing local storage of data in the PL. The peripheral supports burst transfer by

default. This feature provides for higher data transfer rates when using the DMA

controller for transactions. Fig. 4.1(a) shows one example of the memory peripheral

having 4 dual port block RAMs.

Peripherals mentioned in the previous section can be deployed under various set-

tings in the system. Fig. 4.1(b) shows a use case scenario of the proposed memory

sub-system. The slave interface of the register peripheral is connected to the GP

master interface via AXI interconnect and master interface of PL-DMA is used to
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connect the slave interface of memory peripheral with the ACP slave interface. The

control and status interface for the virtualized accelerator is provided via the register

peripheral and multiple streaming I/O interfaces are provided via memory periph-

eral. In the memory peripheral, one port of the dual port block RAMs is connected

to AXI IP interface (IPIF) while the other port is used to create streaming interfaces

for the virtualized accelerator. The memory peripheral streaming I/O interfaces can

be connected to the accelerator via a customized interconnect or can be connected

in a fixed manner. In the next section, we characterize of the various mechanisms

of interfacing the register and memory peripherals to the system via different AXI

interfaces.
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Figure 4.1: (a) AXI4 based Memory Peripheral, and (b) interfacing with the
system via AXI interfaces.

4.2 DMA Drivers

The current architecture is described in the Fig. 4.2 where there are three levels of

driver currently available.
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Figure 4.2: Linux overall architecture.

Figure 4.3: DMA driver steps

� Device Specific Drivers - contains driver that uses the dmaengine function calls

for the purpose of data transaction.

� DMA Engine Driver - generic dma-engine present in the Linux kernel.

� Xilinx DMA Drivers - drivers for Xilinx dma, cdma and vdma and it is enabled

by default in the Xillinux kernel.
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Our major driver code belong to the device specific drivers wherein we will write

either a character driver or a combination of platform and character driver [37] in

order to perform the transactions. The general procedure for writing this driver is

shown in the Fig.4.3.

According to the different types of driver different DMA APIs will be used but

the procedure remains same [38].

4.2.1 PS-DMA Driver

With regard to PS-DMA driver, we will be writing a combination of platform and

character driver along with the generic dma engine to perform transactions. With

regard to DDR-DDR communication, there are two ways of performing the transac-

tions.

The first way of doing transaction is described in the following steps [39],

� First step is to get the free dma slave channel using the API, dma request channel

() by setting the mask alone to slave characteristics which will make sure to get

the free channel from the main dma controller.

� Second step is to use the dma async memcpy buf to buf () API to start copying

the data from source to destination memory address and the return value of this

is a dma cookie.

� Third step is to wait for the transfer operation to complete using the API

dma async is tx complete () by passing the obtained cookie value in a while

loop.

� Final step is to terminate all the dma operations using dmaengine terminate all

() API and release the obtained dma channel using dma release channel () API.

Second way of performing the transactions follows the same steps (First and final

step) however second and third step got replaced.

In second step, the dma device− >prep dma memcpy () API is used instead of

dma async memcpy buf to buf () API.

Third step is replaced by the initialization of callback and checking for the inter-

rupt.
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There is an additional step to submit the descriptor using dmaengine submit ()

API and issue pending signal to dma using dma async issue pending () API which

actually starts the operation and wait for its completion by checking the callback

function. dma async memcpy buf to buf () API uses cookies to check the status of

transfer and dma device− >prep dma memcpy () API uses interrupts for checking

the acknowledgement from dma for the completion of the operation. We expect the

later to be better.

When the communication is between DDR and peripheral memory locations such

as PL-BRAM then getting the DMA to work will follow the below sequence (the basic

sequence which can be improved by few optimizations, mentioned later in the section

5 )

� First step is to get the free dma slave channel using the API, dma request channel

() by setting the mask alone to slave characteristics which will make sure to get

the free channel from the main dma controller.

� Second step is to allocate coherent memory in dma context in order to do write

operation from DDR to BRAM using dma alloc coherent () API.

� Third step is to use the dma device− >prep dma memcpy () API to inform

DMA about the source and destination memory address and the return of this

API give us a descriptor which will be used to start the dma operation. It is

not possible to use dma async memcpy buf to buf () API for DDR-PL commu-

nication.

� Fourth step is to initialize callback in order to get the acknowledgment from

dma for completion of its operation.

� Fifth step is to submit the descriptor using dmaengine submit () API and issue

pending signal to dma using dma async issue pending () API which actually

starts the operation and wait for its completion by checking the callback func-

tion.

� Final step is to terminate all the dma operations using dmaengine terminate all

() API and release the obtained dma channel using dma release channel () API.

DMA Driver with MMAP - in which a portion of actual physical memory is being
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mapped directly from the user-space using the mmap system call and a corresponding

virtual address is given to the application to write the samples [40]. This provides a

way of removing the latency/overhead of copying the data from user space to kernel

space. This is part of optimization which heavily improves the performance. The

same procedure is followed for PS-DMA driver in the case of DDR-DDR transactions

but for DDR to peripheral memory the second step is removed as the copy of user

space data to the kernel is avoided and the rest of the steps are unchanged. This

mmap approach is commonly referred to as Zero-copy[41] design and it is extensively

used in many applications such as dma transfer, video buffers, and network packet

buffers.

The main idea behind this approach in our case is we have DDR memory available

as a file under /dev/mem. This is the major advantage for the application developers

to make use of this pipe to get memory mapped address and writing to this address

is equivalent to writing it to the actual physical DDR address [42]. The flip side

of this approach is the physical address has to be known by the user and it is not

portable since with different versions of Zedboard it is quite natural to have different

address space for DDR but for the maximum performance this is the best approach it

is available. So with every new version of Zedboard this address has to be validated

before the usage. Another flip side is the address whichever is being memory mapped

in the application has to be matched with the device driver addresses. This means if

the application is using a physical address let say 0x100A0000 for writing the samples

and the same address should be accessed in the device driver too which makes the

transactions to be correct.

4.2.2 PL-DMA Driver

This portion deals with the driver using soft DMA implemented in PL logic.

DMA Driver using CDMA - Central DMA [CDMA] is a soft IP core present in

the PL side which can be used for transferring data from DDR-DDR transactions

as well as DDR-BRAM transactions [43]. The advantage of this IP core is that it

connects the peripheral with memory interconnect through high performance [HP]
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ports which gives a good performance. It supports both 32-bit and 64-bit transfers

with maximum burst size of 256 and also the PL logic can be made to run at 100 or

150MHz. The maximum bandwidth that can be achieved with 32-bit running at 100

MHZ is 400 MB/s and with 64-bit is 800 MB/s. It is also possible to use all the four

HP ports with CDMA transfers running at 100 MHZ with 64-bit data samples to

achieve about 3.2 GB/s theoretically. Xilinx already provided the platform drivers

for this IP core and it has been integrated with the Xillinux kernel. We have two

options whether to have it as loadable kernel module or as an in-built module. The

procedure for using the CDMA driver is same for both DDR-DDR and DDR-PL

transactions and it has the following steps,

� First step is to get the free dma slave channel using the API, dma request channel

(). In this case, the mask is specified with slave characteristics along with di-

rection as DMA MEM TO MEM and the match attribute in order to get the

channels from CDMA and not from the main dma controller.

� Second step is to use the dma device− >prep dma memcpy () API to inform

DMA about the source and destination DDR memory address and the return

of this API give us a descriptor which will be used to start the dma operation.

In this case, no need to initialize callback since the completion of the DMA

transactions will not depend on interrupts.

� Third step is to submit the descriptor using dmaengine submit () API and issue

pending signal to dma using dma async issue pending () API which actually

starts the operation.

� Fourth step is to wait for the completion of CDMA as the interrupt and its

callback is not used. Each CDMA IP core has its own status register present at

[BASE ADDRESS+04h] and the value is being polled for a specific bit which

corresponds to the idle or busy state in order to make sure the transaction is

completed or not.

� Final step is to terminate all the dma operations using dmaengine terminate all

() API and release the obtained dma channel using dma release channel () API.

Similar steps are being followed for the DDR to peripheral memory transactions
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except for the destination or source address has to be changed according to the

necessity of the application. The applications implemented using this driver, are all

memory-mapped and the maximum performance is achieved with that.

DMA Driver using AXI-DMA - This is another soft IP core provided by Xil-

inx specialized for streaming data transactions between DDR storage locations via

PL [44]. The main principle in transaction is that it converts the memory mapped

data from DDR to PL in a streaming fashion through memory map to stream inter-

face and also vice-versa it has stream to memory map interface. Similar to CDMA it

supports 32 and 64-bit transfer with the maximum burst size of 256. Xilinx already

provided the platform driver for this IP core and it has been integrated with the

Xillinux kernel. We have two options whether to have it as loadable kernel module or

as an in-built module. In this work, we use the platform driver as loadable module

and we load whenever the experiments are carried out. The maximum bandwidth

that can be achieved with 32-bit running at 100 MHZ is 400 MB/s and with 64-bit

is 800 MB/s. It is also possible to use all the four HP ports with AXI-DMA transfers

running at 100 MHZ with 64-bit data samples to achieve about 3.2 GB/s theoreti-

cally. But the current version of driver code available in the kernel is not supporting

multiple port capability [45]. Also in our experiments we made a loopback hardware

where the data whatever is fed is taken back through AXI-DMA interfaces. The

procedure to use this driver in our character driver is as follows,

� First step is to get the free dma slave channel using the API, dma request channel

(). In this case, we need two channels and the mask is specified with slave charac-

teristics along with direction as DMA MEM TO DEV and DMA DEV TO MEM

and the match attribute in order to get the channels from AXI-DMA and not

from the main dma controller.

� Second step is to use the dma map single API to map DDR address one for

source and another for destination in order to tell the DMA to transact the data

with these addresses. This procedure is quite different as these API belong to

streaming DMA operations [46].

� Third step is to use the dmaengine prep slave single () API to inform DMA

about the source DDR memory address with the direction as DMA MEM TO DEV
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and the return of this API give us a descriptor which will be used to start the

dma operation. This belong to the transmission of data from DDR to PL. In the

next statement use the same API to receive the data from AXI-DMA to DDR

but with different DDR address and DMA DEV TO MEM direction. In this

case, no need to initialize callback since the completion of the DMA transactions

will not depend on interrupts.

� Fourth step is to submit the descriptor using dmaengine submit () API and issue

pending signal to dma using dma async issue pending () API which actually

starts the operation.

� Fifth step is to wait for the completion of AXI-DMA as the interrupt and

its callback is not used. Each AXI-DMA IP core has its own status reg-

ister present at [BASE ADDRESS+04h] for memory-mapped-to-stream and

at [BASE ADDRESS+34h] for stream-to-memory-mapped operation and the

value is being polled for a specific bit which corresponds to the idle or busy

state in order to make sure the transaction is completed or not.

� Final step is to terminate all the dma operations using dmaengine terminate all

() API and release the obtained dma channel using dma release channel () API.
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PS-DMA based Communication

5.1 Introduction

Our platform is running with Linux OS-Xillinux kernel version3.12 from Xillybus in

which the PS-DMA support is not enabled by default. This is identified by checking

/proc/config.gz file on the running zed board. After configuring the support for PS-

DMA and kernel recompilation, we got the DMA up and running as we can observe

in the kernel boot log,

1 root@localhost: dmesg | grep pl330

2 [0.602915] dma-pl330 f8003000.ps7-dma: unable to set the seg size

3 [0.606344] dma-pl330 f8003000.ps7-dma: Loaded driver for PL330 DMAC-2364208

4 [0.613367] dma-pl330 f8003000.ps7-dma: DBUFF-128x8bytes Num_Chans-8 Num_Peri-4

Num_Events-16

Figure 5.1: Kernel Boot Log.

In order to use the DMA, there is a need to write a combination of platform and

character driver as ARM does not provide any driver for PS-DMA [47]. But Xilinx

has provided driver support for PS-DMA but it is not desirable to use that for our

software-hardware communication as it is not the optimized one. First a platform

driver is developed and on top of it a character driver [37] is developed which does

the transaction of data. In order to write platform driver there is a need to change

the device tree since we have to write our own driver related device tree in order to

30
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get the resource from DMA controller present in the platform. So the device tree has

been modified by including the below lines,

1 overlay_dma@78000000 \{

2 burst-length = <0x4>;

3 dma-channel = <0x1>;

4 overlay-depth = <0x800>;

5 reg = <0x78000000 0x2000>;

6 compatible = "xlnx, overlay-dma";

7 \};

Figure 5.2: DTS file entry.

With respect to character driver, there are many file operations functions available

in order to give abstraction APIs to the application. Out of those, the important

operations used in our case is shown in Figure.5.3,

1 struct file_operations mem_fops = {

2 .open = mem_open,

3 .release = mem_release,

4 .read = mem_read,

5 .write = mem_write,

6 };

Figure 5.3: File operations.

From the operation names it is clear that each one of these APIs are abstracted

and given to the user-application to send and receive the necessary data and all the

experiments profiled the code present in write file operation which is our major focus.

5.2 DDR-DDR Communication

Before proceeding to test the data transfer between DDR and PL memory first, we

started with the transfer between two different DDR memory locations. All the test

are done using general purpose [GP] ports. There are basically two methods for

PS-PL communication using GP ports -
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� PIO [Programmed Input Output] wherein the processor itself involves in writing

and reading of data

� Using PS-DMA wherein the processor will not involve in data transfer rather

offload it to DMA present in the processor side.

With regard to OS like Linux, there is no straight way to access the data from DDR

and put it to PL-BRAM since it is heavily abstracted from the application side. In

Linux world, there are two spaces i) User-land or userspace where user does not have

any privileged access to the underlying hardware but it can write any applications

and ii) Kernel space which serves as a bridge between underlying platform devices

and userspace. This has all privileges to access any device in the platform and their

process priorities are higher than the userspace process.

Figure 5.4: Data transaction flow

5.2.1 High level view of data transport

The overall picture of the experiment is given in Fig. 5.4 and explained as follows:

� 1. Indicates userspace virtual memory allocated using the library call malloc();

� 2. Indicates transfer of data from userspace to kernel virtual memory through

copy from user kernel function call.
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� 3. Kernel virtual memory is created by doing phys to virt() function call which

performs the mapping of actual physical address to kernel virtual address which

can be accessed by the kernel. This means writing to this kernel memory implies

writing to the physical address. Copying of data from 2 to 3 can be done through

either memcpy which is PIO or using PS-DMA.

� 4 & 5 indicates the actual physical address present in the system.

5.2.2 Non-DMA experiments

Table 5.1: DDR-DDR latency and bandwidth using PIO Userspace Measurement

Number of Latency Bandwidth

Samples in us in MB/s

32 73 1.7

64 73 3.5

128 73 7

256 73 14

512 73 28

1K 117 35

2K 171 48

4K 256 64

8K 442 74
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Figure 5.5: (a) userspacelatency pio in us, and (b) userspacebw pio in MB/s
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Using PIO the measurement is taken in the userspace application code wherein

the fwrite() function call is profiled using gettimeofday() function call. Since fwrite

is the API provided by the driver this is used to send 32-bit samples for transfer.

As observed from the Table 5.1 and Fig. 5.5(a), till 512 Samples the time measured

is same and it increases as the number of samples increased. Fig. 5.5(b) shows the

bandwidth in MB/s.

Table 5.2: DDR-DDR latency and bandwidth using PIO Kernel space Measurement

Number of Latency Bandwidth

Samples in us in MB/s

32 3 42.7

64 5 51.2

128 9 57

256 10 102.4

512 20 102.4

1K 36 113.7

2K 81 101.1

4K 164 100

8K 346 94.7
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Figure 5.6: (a) The transaction time in us, and (b) The bandwidth in MB/s, vs the
amount of data transferred for PIO userspace and kernelspace measurement

Table 5.2 provides values measured in the kernel space write API where it does

copy the data from user through copy from user() and further copies the data to the

intended DDR memory location through for loop. As observed from the Fig.5.6(b)
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and Fig. 5.6(a), non-dma driver does not perform well (bandwidth is not going beyond

150MB/s) when processor is used for copying of data. Hence, we develop PS-DMA

driver which can improve the bandwidth beyond 150 MB/s. One key observation

from Fig.5.6(a) is that the system call overhead is approximately 70 us.

5.2.3 PS-DMA experiments

Initially non-optimized PS-DMA driver is developed by considering only the func-

tionality of the driver and initial bringing up of the platform.

1 dma_cap_set(DMA_SLAVE, mask);

2 /** here you have to get the dma channel */

3 /** First stage to get request slave channel*/

4 gp_dma_rx = dma_request_channel(mask, NULL, NULL);

5 if(!gp_dma_rx)

6 {

7 printk(KERN_INFO"So simple man... \n\r");

8 return ENOTSUPP; /* Just a fancy return value */

9 }

10 cookie = dma_async_memcpy_buf_to_buf(gp_dma_rx, d_base, c_base,

count);

11
12 while(dma_async_is_tx_complete(gp_dma_rx, cookie, NULL, NULL) ==

DMA_IN_PROGRESS)

13 {

14 dma_sync_wait(gp_dma_rx, cookie); /** just return success */

15 }

16 tot_bytes = count;

17 if(gp_dma_rx)

18 {

19 dmaengine_terminate_all(gp_dma_rx);

20 dma_release_channel(gp_dma_rx);

21 }

22 return count;

23 }

Figure 5.7: mem-write-call
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The main part of the code which is being profiled in the entire part of the ex-

periment is write API present in the driver code and code snippet attached in the

Fig.5.7.

Results for userspace measurement got for this driver can be observed in the table

5.3

Table 5.3: DDR-DDR latency and bandwidth using PS-DMA Userspace
Measurement

Number of Latency Bandwidth

Samples in us in MB/s

32 74 1.7

64 74 3.5

128 74 7

256 74 14

512 74 27.6

1K 135 30.3

2K 156.5 52.3

4K 212 77.3

8K 324.5 101

0 2,000 4,000 6,000 8,000

100

200

300

400

500

Number of Samples

T
ra

n
sa

ct
io

n
ti

m
e

in
u
s

0 2,000 4,000 6,000 8,000

0

50

100

150

200

Number of Samples

B
an

d
w

id
th

in
M

B
/s

Figure 5.8: (a) userspacelatency psdma in us, and (b) userspacebw psdma in MB/s

From the Fig. 5.8(a) and Fig. 5.8(b), it is observed that the userspace measure-

ment performs slightly better than PIO method at higher number of samples and

it can able to achieve around 100 MB/s. The reason of better performance can be
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Table 5.4: DDR-DDR latency and bandwidth using PS-DMA Kernel space
Measurement

Number of Latency Bandwidth

Samples in us in MB/s

32 38.5 3.3

64 37 7

128 42 12.2

256 40 25.6

512 57 36

1K 52 78.7

2K 77 106.4

4K 127 129

8K 227 144
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Figure 5.9: (a) The transaction time in us, and (b) The bandwidth in MB/s, vs the
amount of data transferred for userspace and kernelspace measurement - psdma

the use of DMA transfer instead of memcpy API. It’s actually a point of discussion

on when to use DMA for data transfer versus just using memcpy. In case of send-

ing a large amount of samples (may be greater than 1K), the benefit of using DMA

increases significantly compared to memcpy.

From the Fig. 5.9(a) and Fig. 5.9(b) it is observed that the PS-DMA driver

slightly better performance in both kernel and userspace compared to memcpy API.

The achievable bandwidth is close to 150MB/s when we are using a basic driver imple-

mentation of PS-DMA. The performance can be improved using driver optimizations
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Figure 5.10: MMAP data transfer flow.

such as moving DMA initialization and releasing routines to the open and release

driver function. Such few optimizations provide us a head-start towards performance

improvement of PS-DMA driver.

5.3 Driver Engineering

Next we will move on to the optimized PS-DMA driver code in which following things

are done:

� Moving from dma aysnc memcpy buf to buf () to prep dma memcpy () makes

a huge difference since the former depends on the cookie completion status

whereas the latter depends on the interrupt.

� Implementation of mmap() system call in the userspace application code. This

requires two things to be developed. First is the application has to know the

physical DDR memory address which the kernel will be using for copying the

data from userspace. Secondly the /dev/mem pipe, which represents physical

DDR address, is used for doing mmap and getting a virtual address.

� Moving the dma channel initialization and releasing portions to open and release

driver function calls which improves the write and read driver function calls.

Initially, it was present as part of write and read file operation in the driver

which results in higher latency since a part of the time is given for initialization

and releasing operations.

Optimized driver code snippet can be seen in the Fig.5.11.
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1 /**Getting the transcriptor*/

2 p_txdma_desc = gp_dma_tx->device->device_prep_dma_memcpy(

gp_dma_tx, DDR_END,

3 DDR_START, count, DMA_PREP_INTERRUPT);

4
5 /** Initializing callbacks*/

6 p_txdma_desc->callback = &rxd_dma_callback;

7 p_txdma_desc->callback_param = NULL;

8 dmaengine_submit(p_txdma_desc);

9 /** Final stage to issue pending signal*/

10 dma_async_issue_pending(gp_dma_tx);

11 while(!gdma_check)

12 {

13 /** Checking whether the CDMA goes back to idle or not */

14 printk("received \n\r");

15 }

Figure 5.11: optimized-mem-write-call

Table 5.5: DDR-DDR latency and bandwidth using optimized PS-DMA Userspace
Measurement

Number of Latency Bandwidth

Samples in us in MB/s

32 62.6 2

64 73.6 3.5

128 73 7

256 99.6 10.3

512 114.6 18

1K 95.8 42.7

2K 114.2 71.7

4K 114.2 143.4

8K 118.2 277.2

16K 147.4 444.6

Fig.5.12(a) and 5.12(b) shows the userspace measurement graph and the values

are captured in the table 5.5.

Fig.5.13(a) and 5.13(b) shows the kernelspace measurement graph and the values

are captured in the table 5.6.
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Figure 5.12: (a) userlatency psdmammapddr in us, and (b)
userbw psdmammapddr in MB/s

Table 5.6: DDR-DDR latency and bandwidth using PS-DMA Kernel space
Measurement

Number of Latency Bandwidth

Samples in us in MB/s

32 37 3.5

64 47 5.4

128 47.6 10.7

256 48 21.3

512 55 37.4

1K 41 100

2K 44 186.2

4K 55.2 297

8K 29 555.4

16K 92 712.3

It is clearly observed this optimization gives a lot better performance than the non-

optimized PS-DMA driver. It is found that optimized DMA driver is approximately

has bandwidth of about 4.5× times better than the non-optimized DMA driver and

6× times better than PIO driver in the kernelspace measurement.
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Figure 5.13: (a) The transaction time in us, and (b) The bandwidth in MB/s, vs the
amount of data transferred for userspace and kernelspace measurement - mmap psdma

5.4 DDR-PL Communication

In the same way as DDR-DDR driver, the DDR-PL driver is developed in an optimized

way as mentioned in the previous driver engineering section but the difference lies in

the specification of destination addresses that the DMA will work with.

Table 5.7: DDR-PL latency and bandwidth using optimized PS-DMA Userspace
Measurement

Number of Latency Bandwidth

Samples in us in MB/s

64 77.6 3.3

128 73.6 7

256 92 11

512 114.5 18

1K 105 39

2K 112.4 73

4K 142 115.4

8K 186.2 176

16K 284 230.7

In the case of hardware in the PL side, a physical BRAM is created that supports

16K 32-bit wide samples in order to do the experiments.

Fig 5.14(a) and 5.14(b) shows the userspace measurement graph and the values
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Figure 5.14: (a) userspacelatency pl330 mmappl in us, and (b)
userspacebw pl330 mmappl in MB/s

are captured in the table 5.7.

Table 5.8: DDR-PL latency and bandwidth using optimized PS-DMA Kernel space
Measurement

Number of Latency Bandwidth

Samples in us in MB/s

32 33.2 3.8

64 33.2 7.7

128 37 14

256 38.6 26.5

512 38.7 53

1K 38.7 106

2K 47.7 171.7

4K 74 221.4

8K 118 277.7

16K 219 303.4

Fig 5.15(a) and 5.15(b) shows the userspace measurement graph and the values

are captured in the table 5.8.

As we know the maximum theoretical performance in case of PS-DMA driver

transferring 32-bit samples to PL is 400 MB/s and our optimized driver can achieve

approximately 300 MB/s for 16K samples data transfer.
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Figure 5.15: (a) The transaction time in us, and (b) The bandwidth in MB/s, vs the
amount of data transferred for userspace and kernelspace measurement - mmap psdma

PL transfer

5.5 Summary

In this chapter the characterization of data transactions between DDR-DDR memory

using PIO and PS-DMA driver and DDR-BRAM using PS-DMA driver and also

about the driver engineering wherein we discussed about the optimization done in

order to achieve closer to the theoretical performance.

From the experiements we can conclude that, for DDR-DDR transactions 4.5×
better than the non-optimized DMA driver and 6× times better than PIO driver in

the kernelspace measurement. The difference between user-space and kernel-space

performance is because of system call overhead which is approximately 70 us. For

lesser number of samples (below 1K) non-DMA method performs well as DMA has

some initialization overhead and makes it unfavorable for less number of samples. We

used the optimized PS-DMA driver for DDR-PL transactions. We observe a through-

put of up to 230 MB/s in user-space and up-to 300 MB/s (theoretical maximum

bandwidth of 400 MB/s ) in kernel space. The reduction in bandwidth in case of

DDR-PL transactions is due to the operating frequency of memory sub-system which

is 100 MHz. In future work, we plan to scale the frequency up to 250 MHz and

observe the effect on achievable communication bandwidth.
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PL-DMA based Communication

6.1 Introduction

In order to enhance the transactions between DDR and PL, Xilinx has provided soft

IP DMA cores that can achieve very high performance. The major aim for this kind

of soft DMA is to ensure the communication latency between ARM and FPGA should

be very minimal. Since by nature, FPGA is much faster in the execution and act as a

co-processor it is heavily deployed in many applications. This potential can be fully

used only by having minimal communication latency between ARM and FPGA. For

this reason in case of zynq, Xilinx has provided three DMA IP cores which are [45],

� AXI-CDMA - Central Direct Memory Access

� AXI-DMA - Direct Memory Access

� AXI-VDMA - Video Direct Memory Access

Our major focus is on CDMA and DMA since the former does transaction between

memory mapped regions while the latter does on memory map to stream region and

vice-versa. AXI-VDMA is used in the case of video traffic related applications and it

is not characterized in our work.

44
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6.2 AXI Centralized DMA

CDMAs major application is in the area of transferring data between memory mapped

source address and destination address. It provides a much higher bandwidth and it

supports both 32-bit, 64-bit samples width with maximum burst size of 256. This

can run at both 100 and 150 MHZ frequencies. This can be used to transfer data

from DDR-DDR as well as DDR-BRAM [PL]. Xilinx has provided a platform driver

for CDMA and it is already integrated in the Xillinux build. As mentioned already,

it can be made either as an in-built or loadable module and for all the following

experiments we use the driver as loadable module. Steps needed in order to make the

CDMA working are as follows,

� 1. Generate bitstream with necessary hardware involving CDMA IP core in-

stantiated in the Xilinx Platform Studio [XPS] and connecting a peripheral in

order to store the data in it.

� 2. Two bitstreams are generated one with HP port and other with ACP port.

� 3. Make an entry in the device-tree file with the correct address in the generated

in XPS. The entry currently made in the device-tree file is shown in Fig.6.1,

1 axicdma_0@axicdma40200000 {

2 compatible = "xlnx,axi-cdma";

3 reg = <0x40200000 0xFFFF>;

4 interrupt-parent = <0x2>;

5 interrupts = <0x0 0x3E 0x4>;

6 dma-channel@40200000 {

7 xlnx,device-id = <0x0>;

8 xlnx,datawidth = <0x40>;

9 interrupts = <0x0 0x1e 0x4>;

10 };

11 };

Figure 6.1: DTS entry for CDMA.

Code snippet for CDMA transfer is shown in the Fig.6.2. With the above setup

and driver code the experiments are done for 64-bit transfer from DDR-DDR and then

DDR-BRAM. Lets deal with DDR-DDR transfer by connecting the CDMA with one
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1 /**Getting the transcriptor*/

2 p_txdma_desc = gp_dma_tx->device->device_prep_dma_memcpy(gp_dma_tx,

DDR_DEST,

3 DDR_START, count, DMA_PREP_INTERRUPT);

4 p_txdma_desc->callback = NULL;

5 p_txdma_desc->callback_param = NULL;

6 /** Submit the obtained descriptor*/

7 dmaengine_submit(p_txdma_desc);

8 /** Final stage to issue pending signal*/

9 dma_async_issue_pending(gp_dma_tx);

10
11 while(((gdma_check = ioread32((VP)gp_cdma_sr)) & 0x0002 ) != C_VALUE)

12 {

13 /** Checking whether the CDMA goes back to idle or not */

14 }

Figure 6.2: CDMA-write-API

of the four HP ports first. The driver is optimized fully with mmap call present in

the application and the obtained graphs are as follows,

6.2.1 DDR-DDR Communication

DDR-DDR with Single HP port - This deals with the measurement of latency and

bandwidth in the user-space context using single HP port. An AXI-CDMA is in-

stantiated in the hardware and it is connected to one of four HP ports and then the

bitstream is generated. As mentioned earlier the devicetree file is changed according

to the hardware and then experiments are done.

Fig 6.3(a) and 6.3(b) shows the userspace measurement graph and the values are

captured in the table 6.1. Range taken is from 32 to 16K samples and the values

for bandwidth can reach maximum of 800 MB/s but due to the overhead of system

calls to the kernel space the measurement cannot above the kernel space bandwidth

measurement.

Fig.6.4(a) and 6.4(b) shows the obtained kernel space measurement and the values

are captured in the table 6.2

It is noted that the difference between the kernel and user space time is always

constant in this case around 70 us which makes the bandwidth to be higher for kernel
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Table 6.1: DDR-DDR Latency and bandwidth using AXI-CDMA Userspace
Measurement through single HP port

Number of Latency Bandwidth

Samples in us in MB/s

32 73.7 3.5

64 74 7

128 90.3 11.3

256 112.3 18.2

512 85 48.2

1K 92 89

2K 110.6 148

4K 121.6 269.5

8K 166 394.7

16K 252.2 519.7
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Figure 6.3: (a) userlatency cdmaddrhp in us, and (b)userbw cdmaddrhp in MB/s

than user as pointed out earlier. This is due to the face that the user application

has to make several system calls to reach the kernel space which is the major reason

for the higher latency and lower bandwidth for the userspace. Another important

observation is the bandwidth obtained in the case of DDR-DDR transaction is much

closer to the theoretical maximum of 800 MB/s.

DDR-DDR with ACP port - With regard to hardware, CDMA is being connected

to ACP port rather than HP port and the driver, devicetree remains the same.
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Table 6.2: DDR-DDR Latency and bandwidth using AXI-CDMA Kernel space
Measurement using single HP port

Number of Latency Bandwidth

Samples in us in MB/s

32 18.4 14

64 18.2 28

128 20.3 50.4

256 24.2 84.6

512 22 186.2

1K 27.7 295.7

2K 37 443

4K 59 555.4

8K 98 668.7

16K 181 724
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Figure 6.4: (a) The transaction time in us, and (b) The bandwidth in MB/s, vs the
amount of data transferred for userspace and kernelspace measurement using single HP

port

Fig.6.5(a) and 6.5(b) shows the latency and bandwidth measurement in the user-

space context and the values are captured in the table 6.3. It is clear that the

userspace performance difference between HP and ACP ports for DDR transactions

is very minimal.

Fig.6.6(a) and 6.6(b) shows the latency and bandwidth measurement in the kernel

space and the values are captured in the table 6.4. It is observed that HP and ACP

ports bandwidth performance are almost equal in the case of data transfer in kernel
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Table 6.3: DDR-DDR Latency and bandwidth using AXI-CDMA Userspace
Measurement through ACP port

Number of Latency Bandwidth

Samples in us in MB/s

32 73.8 3.5

64 77.8 6.6

128 85 12

256 110.6 18.5

512 88.4 46.4

1K 92 89

2K 110.8 148

4K 129 254

8K 158.4 413.7

16K 247.2 530.2

0 0.5 1 1.5

·104

100

150

200

250

300

Number of Samples

T
ra

n
sa

ct
io

n
ti

m
e

in
u
s

0 0.5 1 1.5

·104

0

200

400

600

Number of Samples

B
an

d
w

id
th

in
M

B
/s

Figure 6.5: (a) The transaction time in us, and (b) The bandwidth in MB/s, vs the
amount of data transferred for userspace measurement using ACP port

space as well for DDR transactions and we can able to achieve close to the theoretical

maximum of 800 MB/s.

DDR-DDR with Two HP ports:

In order to further increase the performance we tried to use the other HP ports

with CDMA since it has four ports while in the case of ACP it is a single port so

we cannot able to do much experiments with ACP port. Initially two CDMAs are

instantiated to use HP0 and HP2 along with two peripherals using XPS in order to

see the performance. With respect to this hardware change the device-tree is changed
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Table 6.4: DDR-DDR Latency and bandwidth using AXI-CDMA Kernelspace
Measurement through ACP port

Number of Latency Bandwidth

Samples in us in MB/s

32 18.4 14

64 18.2 28

128 18.2 56.3

256 18.4 111.3

512 18.6 220

1K 25.8 317.5

2K 36.6 447.6

4K 55.4 591.5

8K 92.2 711

16K 180.6 725.7
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Figure 6.6: (a) The transaction time in us, and (b) The bandwidth in MB/s, vs the
amount of data transferred for userspace and kernelspace measurement using single HP

port

in order to include two CDMA instantiations in the Fig.6.7,

Accordingly the driver is modified to get two slave channels from each CDMA

present in the hardware and the procedure is followed for the two slave channels.

The obtained graph for DDR-DDR transfer is shown in the Fig.6.8(a) and 6.8(b) in

user-space context and its values are captured in the table 6.5 ,

It is observed that the two HP ports latency is quite high compare to single port

as the driver waits for the two CDMA to get finished and hence the slight difference.
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1 axicdma_0@axicdma40200000 {

2 compatible = "xlnx,axi-cdma";

3 reg = <0x40200000 0xFFFF>;

4 interrupt-parent = <0x2>;

5 interrupts = <0x0 0x3E 0x4>;

6 dma-channel@40200000 {

7 xlnx,device-id = <0x0>;

8 xlnx,datawidth = <0x40>;

9 interrupts = <0x0 0x1e 0x4>;

10 };

11 };

12
13 axicdma_1@axicdma40240000 {

14 compatible = "xlnx,axi-cdma";

15 reg = <0x40240000 0xFFFF>;

16 interrupt-parent = <0x2>;

17 interrupts = <0x0 0x3D 0x4>;

18 dma-channel@40200000{

19 xlnx,device-id = <0x1>;

20 xlnx,datawidth = <0x40>;

21 interrupts = <0x0 0x1d 0x4>;

22 };

23 };

Figure 6.7: DTS entry for CDMA - Two HP ports.

Table 6.5: DDR-DDR Latency and Bandwidth using AXI-CDMA Userspace
measurement through two HP ports

Number of Latency One-port Bandwidth Two-ports Bandwidth

Samples in us in MB/s in MB/s

16 73 1.7 3.4

32 73.6 3.5 7

64 81 6.3 12.6

128 86.7 11.8 23.6

256 112.4 18.2 36.4

512 92.2 44.4 89

1K 106.7 76.8 143.6

2K 110.7 148 296

4K 127 258 516

8K 175 374.5 750

16K 263.6 497 995
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Figure 6.8: (a) The transaction time in us, and (b) The bandwidth in MB/s, vs the
amount of data transferred for userspace measurement one port vs two HP ports

This is reflected in the bandwidth achieved and but it is clear that the total bandwidth

achieved is much greater than the single port as we are sending samples in two ports

in parallel.

Table 6.6: DDR-DDR Latency and Bandwidth using AXI-CDMA Kernelspace
Measurement through Two HP ports

Number of Latency One-port Bandwidth Two-ports Bandwidth

Samples in us in MB/s in MB/s

16 27.7 4.6 9.2

32 26 10 20

64 29.5 17.3 34.6

128 29.6 34.6 69.2

256 31.5 65 130

512 24.5 167.2 334.4

1K 29.4 278.6 557.2

2K 46.2 354.6 709.2

4K 64.6 507.2 1014.4

8K 110.7 592 1184

16K 193.5 673.4 1347

The obtained kernel space measurement is shown in the Fig.6.9(a) and 6.9(b) and

the values are captured in the table 6.6.

The key observations are, having a difference of approximately 70 us between

userspace and kernel space latency, latency is quite high for two ports compare to
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Figure 6.9: (a) The transaction time in us, (b) The bandwidth in MB/s, vs the amount
of data transferred for userspace and kernelspace measurement using two HP ports vs

one HP port

single port and the total bandwidth achieved is much higher than single port as

expected.

6.2.2 DDR-PL Communication

With respect to DDR-PL BRAM transaction, device-tree and hardware remains same

except for the driver code in which the destination address is changed according to

the PL-BRAM’s address generated in the XPS.

Table 6.7: DDR-PL Latency and bandwidth using AXI-CDMA Userspace
Measurement through HP single port

Number of Latency Bandwidth

Samples in us in MB/s

32 73.5 3.5

64 78 6.5

128 92 11

256 110 18.6

512 88 46.5

1K 92 89

2K 103 159

4K 122 268.5

8K 166 394
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Figure 6.10: (a) userlatency plcdmaHP in us, and (b)userbw plcdmaHP in MB/s

In our experiments, we have used 0x6AA00000 as the BRAM memory address

since the hardware is generated with that address in XPS. Then we performed sim-

ilar experiments as in DDR-DDR having both single and two ports performance

measurement with respect to HP port.

Fig.6.10(a) and 6.10(b) shows the single HP port measurement in the userspace

context and the values are captured in the table 6.7. It is observed that CDMA gives

approximately equivalent performance for DDR-DDR and DDR-PL transactions in

the case of userspace measurement.

Table 6.8: DDR-PL Latency and bandwidth using AXI-CDMA Kernel space
Measurement through single HP port

Number of Latency Bandwidth

Samples in us in MB/s

32 15 17

64 18 28

128 20 51

256 24 85

512 18.5 221

1K 27 303

2K 37 443

4K 56 585

8K 96 669

Fig.6.11(a) and 6.11(b) shows the kernel space measurement and the values are
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Figure 6.11: (a) The transaction time in us, and (b) The bandwidth in MB/s, vs the
amount of data transferred for userspace and kernelspace measurement using two HP

ports DDR-PL

captured in the table 6.8

The main observations are, having a difference of approximately 70 us between

userspace and kernel space latency as expected and the bandwidth achieved is ap-

proximately equivalent to that DDR-DDR transaction and it clearly indicates CDMA

is giving same performance irrespective of the system memory locations.

DDR-PL with ACP port - With regard to hardware the CDMA is being connected

to ACP

Table 6.9: DDR-PL Latency and bandwidth using AXI-CDMA Userspace
Measurement through ACP port

Number of Latency Bandwidth

Samples in us in MB/s

32 74 2.7

64 78 6.5

128 90 11.4

256 112 18.3

512 90 45.5

1K 98 83.5

2K 103 159

4K 122 268.5

8K 166 394
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Figure 6.12: (a) userspacelatency axicdma-acp-pl in us, and (b)
userspacebw axicdma-acp-pl in MB/s

port rather than HP port and the driver, device-tree remains the same. Fig.6.12(a)

and 6.12(b) shows the userspace latency and bandwidth measurement and the values

are captured in the table 6.9.

Table 6.10: DDR-PL Latency and bandwidth using AXI-CDMA Kernel space
Measurement through ACP port

Number of Latency Bandwidth

Samples in us in MB/s

32 16 15

64 16.5 31

128 18.4 55.6

256 18.4 111

512 20.4 201

1K 24 341

2K 37 443

4K 57 575

8K 100 655

It is observed that the latency and bandwidth are almost equivalent with HP port

and it does not give much higher performance than the HP port. The bandwidth

achieved at 8K samples is quite closer to the maximum theoretical bandwidth that

can be achieved with CDMA through ACP port.
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Figure 6.13: (a) The transaction time in us, and (b) The bandwidth in MB/s, vs the
amount of data transferred for userspace and kernelspace measurement using two HP

ports DDR-PL ACP port

Fig.6.13(a) and 6.13(b) shows the kernel space measurement and the values are

captured in the table 6.10.

The key observations are, having a difference of approximately 70 us between

userspace and kernel space latency as expected and the bandwidth achieved is ap-

proximately equivalent to that DDR-DDR transaction and also to HP port. This

clearly indicates CDMA is giving same performance irrespective of the system mem-

ory locations and also ports through which CDMA connects.

Table 6.11: DDR-PL Latency and Bandwidth using AXI-CDMA Userspace
Measurement through Two HP ports

Number of Latency One-port Bandwidth Two-ports Bandwidth

Samples in us in MB/s in MB/s

32 70 3.6 7.2

64 81 6.3 18.6

128 85 12 24

256 110.5 18.5 37

512 92 44.5 89

1K 101.3 81 162

2K 105.5 155.3 310.6

4K 133 246.4 493

8K 175 374.5 749
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Figure 6.14: (a)userspacelatency axicdma-twoports-pl in us, and (b)
userspacebw axicdma-twoports-pl in MB/s

DDR-PL with two HP ports - similarly we have done experiments using two ports

of HP to see the performance.

Fig.6.14(a) and 6.14(b) shows the userspace latency and bandwidth measurement

and the values are captured in the table 6.11.

Table 6.12: DDR-PL Latency and Bandwidth using AXI-CDMA Kernel space
Measurement through Two HP ports

Number of Latency One-port Bandwidth Two-ports Bandwidth

Samples in us in MB/s in MB/s

32 26 9.8 19.6

64 26 19.7 39.4

128 31.4 32.6 65.2

256 29.6 65.2 130.4

512 26 157.5 315

1K 35 234 468

2K 42.6 384.6 769

4K 62.6 523.5 1047

8K 103.2 635 1270

It is observed that the latency and bandwidth are almost equivalent with DDR-

DDR transaction using HP ports. The bandwidth achieved at 8K samples is quite

closer to the maximum theoretical bandwidth that can be achieved with CDMA.But



6.2. AXI CENTRALIZED DMA 59

0 2,000 4,000 6,000 8,000

50

100

150

200

Number of Samples

T
ra

n
sa

ct
io

n
ti

m
e

in
u
s

Kernelspace
Userspace

0 2,000 4,000 6,000 8,000

0

200

400

600

Number of Samples

B
an

d
w

id
th

in
M

B
/s

Kernelspace
Userspace

Figure 6.15: (a) The transaction time in us, and (b) The bandwidth in MB/s, vs the
amount of data transferred for userspace and kernelspace measurement using two HP

ports for DDR-PL transfer

as mentioned already, latency is a bit high when compared to single port HP exper-

iment as the application has to wait for both the CDMAs to finish the transaction

process.

Fig.6.15(a) and 6.15(b) shows the kernel space measurement and the values are

captured in the table 6.12 and the observations are as same as two HP ports for

DDR-DDR transaction.

After this we used all the four HP ports and try to do DDR-PL transaction for

the maximum performance to attain between ARM and FPGA. Steps followed are

similar as in for two ports instantiating four CDMA along with four peripherals,

editing the driver code to get four slave channels and performing transactions for all

the channels and also changing the device-tree file as shown in the Fig.6.16.

With these changes the experiments are done in the case of DDR to four BRAM

locations which are obtained in the XPS and the observations are captured as follows.

Fig.6.17(a) and 6.17(b) shows the userspace latency and bandwidth measurement

and the values are captured in the table 6.13.

As observed, the latency for doing the transaction is bit higher compare to two-

ports HP port as the application has to wait for all the four CDMA to complete

the transaction and hence the bandwidth also gets reflected. The total bandwidth

achieved is much greater than the bandwidth of two HP ports and this is the maximum
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1
2 axicdma_0@axicdma40200000 {

3 compatible = "xlnx,axi-cdma";

4 reg = <0x40200000 0xFFFF>;

5 interrupt-parent = <0x2>;

6 interrupts = <0x0 0x3E 0x4>;

7 dma-channel@40200000 {

8 xlnx,device-id = <0x0>;

9 xlnx,datawidth = <0x40>;

10 interrupts = <0x0 0x1e 0x4>;

11 };

12 };

13
14 axicdma_1@axicdma40240000 {

15 compatible = "xlnx,axi-cdma";

16 reg = <0x40240000 0xFFFF>;

17 interrupt-parent = <0x2>;

18 interrupts = <0x0 0x3D 0x4>;

19 dma-channel@40200000{

20 xlnx,device-id = <0x1>;

21 xlnx,datawidth = <0x40>;

22 interrupts = <0x0 0x1d 0x4>;

23 };

24 };

25 axicdma_2@axicdma40220000 {

26 compatible = "xlnx,axi-cdma";

27 reg = <0x40220000 0xFFFF>;

28 interrupt-parent = <0x2>;

29 interrupts = <0x0 0x3C 0x4>;

30 dma-channel@40220000{

31 xlnx,device-id = <0x2>;

32 xlnx,datawidth = <0x40>;

33 interrupts = <0x0 0x1c 0x4>;

34 };

35 };

36
37 axicdma_3@axicdma40280000 {

38 compatible = "xlnx,axi-cdma";

39 reg = <0x40280000 0xFFFF>;

40 interrupt-parent = <0x2>;

41 interrupts = <0x0 0x3B 0x4>;

42 dma-channel@40280000{

43 xlnx,device-id = <0x3>;

44 xlnx,datawidth = <0x40>;

45 interrupts = <0x0 0x1b 0x4>;

46 };

47 };

Figure 6.16: DTS entry for CDMA - Four HP ports.

that we could achieve with the setup.

Fig.6.18(a) and 6.18(b) shows the kernel space measurement and the values are

captured in the table 6.14 and the observations are as same as two HP ports for

DDR-DDR transaction.

The key observations are, having a difference of approximately 70 us between

userspace and kernel space latency as expected and the bandwidth achieved is the

highest with four CDMAs connected to four HP ports.

This clearly indicates usage of CDMA in high-performance applications which

provide four simultaneous transfer of 555 MB/s per port which corresponds to the

total of 2.2 GB/s.
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Table 6.13: DDR-PL Latency and Bandwidth using AXI-CDMA Userspace
Measurement through Four HP ports

Number of Latency One-port Bandwidth Four-ports Bandwidth

Samples in us in MB/s in MB/s

32 74 3.5 14

64 81 6.3 25.2

128 92.2 11.4 44.4

256 110.6 18.5 74

512 99.4 41.2 165

1K 110.2 74.3 297.2

2K 121.6 134.7 539

4K 144.2 227.2 909

8K 184.6 355 1420
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Figure 6.17: (a) userspacelatency axicdma-four-ports in us, and (b)
userspacebw axicdma-four-ports in MB/s

After performing these experiments with single, two and four ports, the summa-

rized graph in user and kernel spaces for bandwid is shown in the Figure 6.19 and

6.20 respectively.

It clearly says that, as the number of channels increases the latency also increases

since the driver will wait for all the CDMA operations to be finished in order to make

sure the functionality of the CDMA. This is the reason for the increase in latency

and it is observed in both user and kernel space.
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Table 6.14: DDR-PL Latency and Bandwidth using AXI-CDMA Kernel space
Measurement through Four HP ports

Number of Latency One-port Bandwidth Four-ports Bandwidth

Samples in us in MB/s in MB/s

32 37 7 28

64 44 11 46.5

128 40.6 25.2 101

256 47.4 43.2 173

512 37 110.7 443

1K 40.6 202 808

2K 55.2 297 1188

4K 73.6 445.2 1781

8K 118 555.4 2221
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Figure 6.18: (a) The transaction time in us, and (b) The bandwidth in MB/s, vs the
amount of data transferred for userspace and kernelspace measurement for four HP

ports PL transfer

6.3 AXI DMA

The main application for AXI-DMA is in the case of streaming since it has the

capability of converting memory mapped data to streaming data to the FPGA and

get the streaming data back from FPGA convert it to memory mapped data in the

ARM side.
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Figure 6.19: Userspace bandwidth in MB/s
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Figure 6.20: Kernelspace bandwidth in MB/s

The experiments are carried out in a loopback fashion in order to see the per-

formance of DMA. Connecting the MM2S channel to the S2MM channel directly

without any intermediate fabric gives the loopback hardware and all the experiments

are carried out. The key changes done for this DMA are - device-tree file modified as
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1 axidma\_0@axidma40400000 \{

2 compatible = "xlnx,axi-dma";

3 reg = <0x40400000 0xFFFF>;

4 interrupt-parent = <0x2>;

5 interrupts = <0x0 0x1d 0x4 0x0 0x1e 0x4>;

6 \#dma\_cells = <0x1>;

7 dma-channel@40400000 \{

8 xlnx,device-id = <0x0>;

9 xlnx,datawidth = <0x40>;

10 interrupts = <0x0 0x1e 0x4>;

11 compatible = xlnx,axi-dma-s2mm-channel;

12 };

13 dma-channel@40400030 {

14 xlnx,device-id = <0x0>;

15 xlnx,datawidth = <0x40>;

16 interrupts = <0x0 0x1e 0x4>;

17 compatible = xlnx,axi-dma-mm2s-channel;

18 };

19 };

Figure 6.21: DTS entry for AXI-DMA

1 /** Transfer the ownership to the dma handle and then take it after work*/

2 g_txdma_handle = dma_map_single(gp_dmadevtx, (VP)ddr_start, count,

DMA_TO_DEVICE);

3 /**Getting the transcriptor*/

4 p_txdma_desc = dmaengine_prep_slave_single(gp_dma_tx, g_txdma_handle,

5 count, DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT);

6 p_txdma_desc->callback = &txd_dma_callback;

7 p_txdma_desc->callback_param = NULL;

8 /** Submit the obtained descriptor*/

9 dmaengine_submit(p_txdma_desc);

10 /** Final stage to issue pending signal*/

11 dma_async_issue_pending(gp_dma_tx);

12 dma_unmap_single(gp_dmadevtx, g_txdma_handle, count, DMA_TO_DEVICE);

Figure 6.22: AXI-DMA Write API

shown in the Fig.6.21, driver code changes are mentioned in the section 4. The main

function we will be profiling is the write API function call as shown in the Fig.6.22

and its equivalent fwrite function in the userspace.

Hardware is generated with axi-dma interface connected to single HP port and

experiments carried out. Figure 6.23(a) and 6.23(b) shows the bidirectional latency
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and bandwidth measurement in the user-space and the values are captured in the

table 6.15,

Table 6.15: Bidirectional latency and bandwidth AXI-DMA - Userspace
Measurement

Number of Latency Bandwidth

Samples in us in MB/s

512 151 27

1K 179 45.8

2K 236 69.5

4K 348 94

8K 599 109.5

16K 1065.5 121.3

32K 2040.5 128.5

64K 3793.2 138.2
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Figure 6.23: (a) userspacelatency axidma-loopback in us, and
(b)userspacebw axidma-loopback in MB/s

Fig.6.24(a) and 6.24(b) shows the kernel space measurement and the values are

captured in the table 6.16. It can be observed that the bidirectional bandwidth is

saturating at around 140 MB/s.

The reason for doing loopback experiments with AXI-DMA is that the maximum

burst size or the samples that the channel can hold is 256 corresponds to 2 KB of

memory. If the samples are more than 256 then the DMA channel hangs since there
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Table 6.16: Bidirectional latency and bandwidth AXI-DMA- Kernelspace
Measurement

Number of Latency Bandwidth

Samples in us in MB/s

512 86.6 47.3

1K 114.2 71.8

2K 166 98.7

4K 287.5 114

8K 520 126

16K 978.7 134

32K 1920.7 136.5

64K 3773.5 140
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Figure 6.24: (a) The transaction time in us, and (b) The bandwidth in MB/s, vs the
amount of data transferred for userspace and kernelspace measurement for DMA

loopback

is a need to get the data back to some memory location. This clearly implies that

we have to start receiving of samples through S2MM channel right after the MM2S

channel is started fetching the samples. For this reason, the driver code for doing this

transaction is present in the same write API of driver code.

After this experiment with HP port, we moved to carry out experiments with

ACP port and the latency and bandwidth is found to be equivalent.
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6.3.1 Comparison with Xillybus

In order to compare our results with the existing commercial infrastructure we chose

Xillybus.

Table 6.17: Bidirectional Latency and bandwidth Using Xillybus

Number of Latency Bandwidth

Samples in us in MB/s

1K 3544.4 1.15

2K 4676.3 1.75

4K 4394 3.7

8K 3721.5 8.8

16K 5104 12.8

32K 2706 48.4

64K 4639.5 56.5

128K 3367.5 155.7

0 0.2 0.4 0.6 0.8 1 1.2 1.4

·105

3,000

4,000

5,000

6,000

Number of Samples

T
ra

n
sa

ct
io

n
ti

m
e

in
u
s

0 0.2 0.4 0.6 0.8 1 1.2 1.4

·105

0

50

100

150

200

Number of Samples

B
an

d
w

id
th

in
M

B
/s

Figure 6.25: (a) userspacelatency xillybus-loopback in us, and
(b)userspacebw xillybus-loopback in MB/s

It provides an infrastructure in which 32-bit samples can be sent to the under-

lying FPGA hardware through application FIFO’s and get it back in an efficient

manner as mentioned in the section 2. They have this hardware connected through

AXI-DMA through ACP port and they have two pipes ”/dev/xillybus write 32” and

”/dev/xillybus read 32” through which the samples are sent and received.

From the Figures.6.25(a) and 6.25(b), it is clear that the commercially available

Xillybus infrastructure does not perform well at all samples and the bandwidth is

saturating at 150 MB/s at 128K samples and we can able to achieve 140 MB/s
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at 64K Samples. From this, we can observe that our performance is comparable to

commercially available infrastructure.

6.4 Summary

An analysis of PL-DMA driver and its performance when used for DDR-DDR trans-

action as well as for DDR-PL transaction and comparison of HP, ACP ports were

presented in this chapter. The maximum theoretical performance of using AXI-DMA

or AXI-CDMA with the single port is 800 MB/s supporting 64-bit data transfer.

Using AXI-CDMA driver, we are able to achieve up to 730 MB/s (kernel-space) and

up to 530 MB/s (user-space) in case of DDR-DDR transaction and up to 700 MB/s

(kernel-space) and up to 400 MB/s (user-space) in case of DDR-PL transaction. The

maximum performance achieved when connecting four HP ports with four CDMA is

1.4 GB/s in user space and 2.2 GB/s in kernel space against the theoretical value of

3.2 GB/s. The difference between user-space and kernel-space performance is because

of system call overhead which is approximately 70 us as same as PS-DMA case.

The round trip bandwidth achieved in the case of our AXI-DMA driver is 140MB/s

which is comparable to a commercially available system-level driver, Xillybus. The

performance of this Xillybus driver were observed with the given kernel and presented

and compared against the AXI-DMA driver that we have developed. The latency and

bandwidth of our driver is better than Xillybus at some samples and almost compa-

rable at higher samples such as 64K samples.



Chapter 7

Conclusions and Future Work

This chapter concludes and summarizes this report and in addition to it, we discuss

future research directions in detail.

7.1 Conclusions

This report proposed an approach for sending data between DDR to DDR memory lo-

cations and DDR to BRAM locations in an optimized way achieving bandwidth close

to theoretical maximum. Use of optimized DMA engine driver calls and moving the

dma initialization overhead out of the write and read functionalities provided a big-

ger improvement in achieving a good bandwidth. This work consists of development

of platform and character driver in case of PS-DMA and character driver in case of

PL-DMA. Necessary hardware architecture using a memory subsystem is also created

in order to establish a proper communication between PS and PL. This work concen-

trated on developing a driver that meets the standard rules of driver development and

also optimized driver in which new technique such as Zero-copy is implemented. On

the FPGA fabric, we developed an AXI-compliant, lightweight memory sub-system

and on the processor, we develop Linux based drivers, specifically DMA drivers, to

provide communication APIs. The proposed memory sub-system serves as a portable

bridge between the accelerators and the external memory. Experiments were designed

69
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to characterize software-hardware communication interfaces on the Xilinx Zynq plat-

form within a general purpose operating system (Linux) framework to study the effect

of interface choice on the maximum performance of these interfaces. We also mea-

sured the performance of developed PS-DMA drivers, PL-DMA drivers and provided

a comparison against the commercially available system-level driver, Xillybus.

An analysis of PS-DMA driver and its performance when used for DDR-DDR

transaction as well as for DDR-BRAM transaction and comparison with normal PIO

method were presented in chapter 5. For DDR-DDR transactions (non-DMA), we

observe a throughput of up to 80 MB/s in user-space and up-to 100 MB/s in ker-

nel space. Using PS-DMA driver (un-optimized), we observe a throughput of up to

100 MB/s in user-space and up-to 150 MB/s in kernel space. Using Optimized PS-

DMA driver, we observe a throughput of up to 450 MB/s in user-space and up-to 700

MB/s in kernel space. Hence, for DDR-DDR transactions the optimized PS-DMA

driver performs 4.5× better than non-optimized PS-DMA driver and 6× better than

non-DMA method. The difference between user-space and kernel-space performance

is because of system call overhead which is approximately 70 us. For lesser number

of samples (below 1K) non-DMA method performs well as DMA has some initializa-

tion overhead and makes it unfavorable for lesser number of samples. We used the

optimized PS-DMA driver for DDR-PL transactions. We observe a throughput of up

to 230 MB/s in user-space and up-to 300 MB/s (theoretical maximum bandwidth

of 400 MB/s ) in kernel space. The reduction in bandwidth in case of DDR-PL

transactions is due to the operating frequency of memory sub-system which is 100

MHz. In future work, we plan to scale the frequency up to 250 MHz and observe

the effect on achievable communication bandwidth.

An analysis of PL-DMA driver and its performance when used for DDR-DDR

transaction as well as for DDR-BRAM transaction and comparison of HP, ACP ports

were presented in chapter 6. The maximum theoretical performance of using AXI-

DMA or AXI-CDMA with the single port is 800 MB/s with 64-bit data transfer.

Using AXI-CDMA driver, we are able to achieve up to 730 MB/s (kernel-space) and

up to 530 MB/s (user-space) in case of DDR-DDR transaction and up to 700 MB/s

(kernel-space) and up to 400 MB/s (user-space) in case of DDR-PL transaction. The
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maximum performance achieved when connecting four HP ports with four CDMA is

1.4 GB/s in user space and 2.2 GB/s in kernel space against the theoretical value of

3.2 GB/s. The difference between user-space and kernel-space performance is because

of system call overhead which is approximately 70 us as same as PS-DMA case.

The round trip bandwidth achieved in the case of our AXI-DMA driver is 140MB/s

which is comparable to the commercially available system-level driver, Xillybus. The

performance of Xillybus were observed with the given kernel and presented in chapter

6 and compared against the AXI-DMA driver that we have developed. The latency

and bandwidth of our driver is better than Xillybus at some samples and almost

comparable at higher samples such as 64K samples.

7.2 Future work

Some of the main future research directions are developing optimized Linux DMA

driver with minimum latency, overhead and maximum bandwidth for data transfer

between main memory and accelerator memory. We describe these directions in detail

as follows:

� Improvement of PS-DMA driver: The current platform driver utilized one

of the eight PS-DMA channels which can be further extended by utilizing the

remaining seven channels to see if performance can be improved further.

� Improvement of AXI Centralized DMA (CDMA) driver: The current

CDMA character driver can be improved by introducing kernel threads in the

driver to access the four HP ports in parallel which might increase the overall

performance in terms of bandwidth.

� Improvement of AXI DMA driver: The current driver is a very generic and

portable and it is not intended for high-performance applications. For applica-

tions that do not need driver portability those situations it can be developed

using direct addressing of dma registers to give maximum performance.

� Increase the PL frequency: All the experiments done in this work uses

default frequency of 100 MHz in PL. In future work, we plan to scale the
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frequency up to 250 MHz and observe the effect on achievable communication

bandwidth.

� Measuring the power: Measurement of power when running driver along

with an application can be performed to provide a performance metric of power

consumption.

Finally, with these initiatives we hope to develop a system-level driver (optimized

for low latency and high bandwidth) for communication abstraction while perform-

ing data transactions between processor and streaming accelerators (implemented on

reconfigurable fabric) on the Xilinx Zynq platform.
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