TECHNOLOGICAL
UNIVERSITY

NANYANG TECHNOLOGICAL UNIVERSITY

MAPPING DATA FLOW GRAPHS ON COARSE-GRAINED FPGA
OVERLAYS

by

HSIEH, MU-HUA
(G1501670L)

A Dissertation Submitted in partial fulfillment of
the requirements for the degree of
Master of Embedded Systems

Supervised by

Assoc. Prof. Douglas L. Maskell

July 2016

Contents

1__Introductionl 1
(L1 Motivationlo 1
(1.2 Contribution|. 2
(1.3 Organization| 3

[2 Background| 4
2.1 Placement|o 4

[2.1.1 Simulated Annealing Method|)
[2.1.2 Analytical Method| 7
R 8l . 7
[2.2.1 Geometric Routing Algorithm and Rip-up and Re-route|. . . . 8
[2.2.2 Maze Routing Algorithm| 9
[2.2.3 A* Search Routing] 10
.24 The Pathfinderl 11
2.3 Versatile Place and Route (VPR)| 12
[2.4 Python-graph Library| 14

[3 Placement and Routing of DFG nodes on Island-style Overlay| 16

[3.1 Island-style Overlay Architecture| 16
B.1.1 Switch Boxes 17
[3.1.2 Connection Boxeso 18
B.1.3 Channels. 19

[3.2 Automated Mapping Tool| 19

il CONTENTS
(3.2.1 Data Flow Graph (DFG) Generation| 20

[3.2.2 DFG to VPR Compatible Netlist Conversion| 20

[3.2.3 Placement and Routing onto the Overlay| 20

[3.3 Detailed Description of the Placement| 21
3.3.1 Flow of the Placement| 23

[3.4 Detailed Description of the Routing| 27
[3.4.1 Initialization of the Routing| 30

[3.4.2 Cost Functions in Routing| 32

[3.4.3 Flow of the Routingl 33

[3.4.4 Directed Search Algorithm in the Routingl 34

[3.4.0 Routing Demonstration|. 36

3.5 Fault Tolerancel 36
4__Conclusions and Future Workl 45
4.1 Conclusions 45
4.2 Future workl 45
[Appendix A Python Implementation of Placement Algorithm) 46
[Appendix B Python Implementation of Routing Algorithm) 52
(Bibliography| 54

List of Figures

[2.1 Global and Local minimum value ot Simulated Annealing algorithm)| .
[2.2 Simulated Annealing algorithm|
[2.3 Distributed Graph ot Probability in Simulated Annealing Algorithm| .
2.4 Maze expanding flow] L.
2.5 A* search algorithm|
2.6 CADflowl
[2.7 Useful APIs for DFG processing|
[3.2 High level architecture showing interconnect resources.|
[3.3 Switch Box Topologies|.
B4 Connection Boxl
3.5 Data Flow Graph (DFG)[.
[3.6 DFG mapped onto the Overlay after Placement and Routing.|

13.8

Placement Iterations at a Given Temperature]

13.9

1O block and Configurable Logic Block{

[3.10

Switch Box Uni-Directional Routingf.

B.11

Routing Resource Graph|

B.12

Wavetront graph|

B.13

RR graph atter initialization| 000000

B.14

Direct Search Routing progress|

B.15

Directed search algorithm for routing each net|

B.16

Routing processstep 1|o L

il

10
10
13
15

v

LIST OF FIGURES
[3.17 Routing process step 2|o 37
[3.18 Routing processstep 3| 38
[3.19 Routing processstep 4| 38
[3.20 Routing process step o 39
[3.21 Routing process step 6|o 39
[3.22 Routing process step 7| 40
[3.23 Routing processstep & 40
[3.24 Routing process step 9| oL 41
[3.25 Routing process step 10] 41
[3.26 Routing process step 11| 42
[3.27 Routing process step 12| 42
[3.28 Routing process step 13|o 43
[3.29 Routing process step 14} 43
[3.30 Routing process step 15| L. 44
[3.31 Routing process step 16| 44

List of Tables

[3.1 Compute Kernel Code Descriptions| 19
(3.2 PAR mput File|. oo 20
B.3 Net q(n) factor| 22
[3.4 Evaluation of Moves at a Given Temperaturel. 27
[3.5 Routing resource struct|. Lo 31
[3.6 Determines the expected cost to reach the target from current| 33
[3.7 Trace and Binary Tree struct| 35
[A.1 Python Function for Initial Placement| 46
[A.2 Python Functions developed for Placement process| 47
[A.3 Python Function for Try Swap|. 48
[A.4 Python code for Placement|. 49
[A.5 Python Class for Block{ 50
[A.6 Python Class for Net| 51
(B.1 Python Functions for Directed Search{. 52
[B.2 Python Functions for Routing| 53

Abstract

FPGA based accelerator design is a complex process, requiring low-level hardware
device expertise and specialist knowledge of both hardware and software systems,
resulting in major design productivity issues. High level synthesis (HLS) has been
proposed to address the design productivity issue and has helped to simplify acceler-
ator design by raising the level of programming abstraction from RTL to high level
languages, such as C/C++/OpenCL. Even though HLS tools have improved in ef-
ficiency, allowing designers to focus on high level functionality instead of low-level
implementation details, the prohibitive compilation times (specifically the place and
route times in the backend flow) have largely been ignored and are now a major pro-
ductivity bottleneck that prevents designers from using mainstream design and debug
methodologies based on rapid compilation. One solution that has been explored ex-
tensively by researchers is to implement a coarse-grained reconfigurable architecture
on top a commercial FPGA device, referred to as a coarse-grained overlay. This al-
lows the coarse-grained elements and structure, specifically the FU and interconnect
to be changed at runtime as per the application requirements. Applications can be
written at a higher level of abstraction with compilation to the overlay being several
orders of magnitude faster than for the fine grained FPGA on which the overlay is
implemented. This report presents a placement and routing (PAR) tool for coarse-
grained island-style overlays based on the algorithm implemented in widely used and
accepted Versatile Place and Route (VPR) tool. We start with understanding the
placement and routing (PAR) algorithms in detail, develop a python based PAR tool
which is customized for island-style FPGA overlays, and implements Fault Tolerance
in it. We aim to adapt the algorithms to support different interconnect architectures

as a future work.

Chapter 1

Introduction

1.1 Motivation

Field Programmable Gate Arrays (FPGAs), which allow the implementation to be
modified post-deployment [1], are now more commonly used for rapid-prototyping of
application specific accelerators in heterogeneous computing platforms. Some of the
key advantages of FPGAs over other available platforms include reprogrammability
compared to ASICs, lower power consumption than multicore processors and GPUs,
real-time execution, and most importantly, the high spatial parallelism which can be
used to significantly accelerate compute-intensive algorithms. For more than a decade,
researchers have shown that FPGAs can accelerate a wide variety of applications, in
some cases by several orders of magnitude compared to state-of-the-art GPPs [2, 3]
1,15, 6.

FPGA based accelerator design is a complex process, requiring low-level hardware
device expertise and specialist knowledge of both hardware and software systems, re-
sulting in major design productivity issues. High level synthesis (HLS) [7, 8, [9] 10, [1T]
has been proposed to address the design productivity issue and has helped to simplify
accelerator design by raising the level of programming abstraction from RTL to high
level languages, such as C/C++/OpenCL. These tools allow the functionality of an

accelerator to be described at a higher level to reduce developer effort, enable design

1

2 CHAPTER 1. INTRODUCTION

portability, enable rapid design space exploration, thus improving productivity, veri-
fiability, and flexibility. Even though HLS tools have improved in efficiency, allowing
designers to focus on high level functionality instead of low-level implementation de-
tails, the prohibitive compilation times (specifically the place and route times in the
backend flow) have largely been ignored and are now a major productivity bottle-
neck that prevents designers from using mainstream design and debug methodologies
based on rapid compilation.

One solution that has been explored extensively by researchers is to implement a
coarse-grained reconfigurable architecture on top a commercial FPGA device, referred
to as a coarse-grained overlay [12, [13], 14}, 15} [T6}, 17, 18, 19} 20]. This allows the coarse-
grained elements and structure, specifically the FU and interconnect to be changed at
runtime as per the application requirements. Applications can be written at a higher
level of abstraction with compilation to the overlay being several orders of magnitude
faster than for the fine grained FPGA on which the overlay is implemented.

This report presents a placement and routing (PAR) tool for coarse-grained island-
style overlays based on the algorithm implemented in widely used and accepted Ver-
satile Place and Route (VPR) tool. We start with understanding the placement
and routing (PAR) algorithms in detail, develop a python based PAR tool which is

customized for island-style FPGA overlays, and implements Fault Tolerance in it.

1.2 Contribution

We start with understanding the algorithm of Versatile Placement and Routing (VPR)
tool, which is widely accepted in industry and academia, then developed a python-
based PAR tool for coarse-grained FPGA overlays, which uses APIs from Python
graph library for implementation. The ultimate goal is to adapt the python-based
PAR tool to support different FPGA architectures as the future work.

Our main contributions can be summarized as below:

e Understanding of placement and routing algorithms used in VPR
e Python based implementation of the VPR algorithms

e Fault tolerance implementation in placement algorithm

1.3. ORGANIZATION 3

1.3 Organization

The remainder of the dissertation is organized as follows: Chapter |2 presents the
background information of placement and routing algorithms and the algorithms used
in VPR tool. Chapter |3 shows the placement steps of data flow graph (DFG) nodes
on an island-style coarse-grained FPGA overlay, the routing steps of DFG edges on
the FPGA overlay, and the implementation of fault tolerance in our python based

place and route tool. Chapter |4/ presents the conclusion and discusses the future work.

Chapter 2

Background

2.1 Placement

In case of fine-grained architectures, generally applications are described in hard-
ware description language (HDL) such as Verilog/VHDL. The process of generating

configuration data from HDL description can be divided into four major steps:

Synthesis

Technology Mapping

Placement

Routing

Synthesis step transforms the HDL to a hierarchical network of basic building
blocks. Given a set of library cells, technology mapping is generally defined as map-
ping the network to the library cells. In case of FPGAs, this library is composed of
k-LUTs, flip-flops, basic arithmetic circuits like adders, and advanced hard blocks.
Therefore, the technology mapping for FPGAs consists of transforming the Boolean
network into a set of nodes. Placement is the process of determining which logic blocks
should be placed where. In other words, which specific logic blocks on FPGA should
be used for a particular instance of a logic block of given network. Routing is the
process of finding routes so that all logic blocks used in placement stage are properly

connected. In the next sections, we introduce existing methods for placement.

4

2.1. PLACEMENT 3

2.1.1 Simulated Annealing Method

According to Fig. 2.1, simulated annealing algorithm is a heuristic-based probabilistic
technique to approximate global minimum optimum for the objective function in a
large search space. Basically, it mimics the annealing process to gradually cool the
melting metal to produce solid metal with high quality. It interprets slow cooling pro-
cess as a slow decrease in the probability of accepting worse solutions when exploring
the solution space. It is the property of heuristics as it allows exploring more searches
for global optimal solution. Therefore, if the cooling schedule is perfect enough, the

simulated annealing process can ultimately converge to a global optimal solution.

global

local minimum
minimum

)

Cost

Possible Placements

Figure 2.1: Global and Local minimum value of Simulated Annealing algorithm

Basically, it calculates the delta value by deducting cost of old placement from
new one, then uses random number generator to generate number between 0 and 1.
And the new placement is acceptable if random number less than the exponential on
the delta between new and old cost of placement divided by temperature. Otherwise,
it will rip up to the original placement. The above process is executed iteratively
by slowly decreasing the temperature. The well-known overall algorithm is shown in
Fig. 2.2.

Fig. 2.3 shows the relationship between probabilities to accept the new placement
and delta in different temperatures. It begins with very high temperature, which
is able to accept even bad swap. Then the temperature slowly goes to a very low

value. It is obvious that the curve becomes steeper as the temperature turns low

6 CHAPTER 2. BACKGROUND

P = InitialPlacement ();
T = Initial Temperature ();

while (ExitCriterion () = False) {
while (InnerLoopCriterion () == False) { /* “Inner Loop” */
P, = PerturbPlacementViaMove (P);
ACost = Cost (Ppew) — Cost (P);
r = random (0,1);
if (r <) {
P=P.. /* Move Accepted */

}
} /* End “Inner Loop™ */
T = UpdateTemp (T);

Figure 2.2: Simulated Annealing algorithm

which means it only accepts the certain swap in lower temperature to ensure the

good quality of swap.

—Temp=100
—Temp=90
—— Temp=80
Probability [1£mP=10
1 of accept |~ Temp=60

Temp=50

Temp=40
— Temp=30
—Temp=20

—Temp=10

-200 -180 -160 -140 -120 -100 -80 -60 -40 -20 0
Delta = Cost(new placement) - Cost(old placement)

Figure 2.3: Distributed Graph of Probability in Simulated Annealing Algorithm

Just like the procedure to cool the real melted metal, the cooling schedule is
important. If it is cooled too fast, it will force a greedy solution. In practice simulated
annealing is easy to program, very versatile, and widely used.

The advantages for simulated annealing algorithm are:

e Cost function can be modified based on the wire length or timing

e Can reach globally optimal if given enough processing time

2.2. ROUTING 7

The disadvantages:

e The overall procedure takes longer time for large circuits

2.1.2 Analytical Method

The best algorithm for FPGA placement is simulated-annealing algorithm, which
has been discussed above. However, it is not scalable as it consumes long time to
converge. The basic idea of analytical placement is used to place the blocks based on
appropriate net length estimation and then working towards disjointness. Then the
wire-length is approximated by Half-Perimeter Wirelength (HPWL) of the smallest
bounding box, which contains all terminals of a net inside. The limit for HPWL model
is that the cost is not accurate if a net with more than two terminals. It also means
that HPWL cannot be efficiently minimized. To avoid this problem, a quadratic wire
length objective function can be applied. However, it will sacrifice the short nets
and over-emphasize the longer nets. An analytical method named StarPlace model
is proposed by [21] to solve this drawback. The method uses start net to model each
block, which has a connection to the center of the gravity of the net. The length
of each edge is the quadratic distance from block to center of the gravity. It seeks
the minimum sum of the square roots of all distance between different blocks that
connect to the same net instead of the sum of all quadratic distances. Thus, it can

avoid over-emphasizing the cost of long net when performing optimization.

2.2 Routing

Routing is an important part as interconnection mainly decides the area of the FPGA,
and interconnection delay is usually greater than the delay on logic blocks. As a
result, an ideal routing algorithm manages to reduce the wiring area and critical path
of circuit. The ultimate target is improving the performance of the circuit. Basically,

routing is an NP complete problem. It can be divided into two phases:

e Global routing: the main purpose of global routing is balancing routing channels

and preventing any overuserd routing resources. If the net with more than one

8 CHAPTER 2. BACKGROUND

sink, then it will be decomposed into k-1 steps to be routed. In fact, there are
various ways to reach sink(s), and the router chooses the path with the least
congested channels by tracking the usage of every routing resource.

e Detailed routing: it assigns each specific wiring segment to each interconnection.
The detailed router specifies the exact wiring segment to be routed to the logic
blocks. In order to achieve this, it constructs a directed graph which consists
of available routing resources such as wires, connection boxes and switch boxes
on the FPGA. The directed graph is based on Dijkstra’s algorithm which helps

us find out the shortest path between two nodes.

Therefore, performance can be achieved by avoiding congested channels and min-
imizeing wiring area and length.

The routing algorithm can be divided into serial and parallel method. For tradi-
tional serial method, there are Boolean based method and geometric based method.
Nowadays, the geometric based one turns to be more powerful. Routing represents
the final step in the CAD system. It allocates the FPGA’s routing resource to inter-
connect the placed logic cells. It guarantees that all interconnections are connected.
Besides, it should maximize the performance of time-critical connections. FPGA
routing typically generates the Routing-Resource (RR) graph. Its target is finding
a feasible routing to ensure all signals will not share the same nodes in routing net-
work. In addition to the above mention, it is necessary to balance the tradeoff between

optimizing delay for critical nets and finding the feasible routing for all nets.

2.2.1 Geometric Routing Algorithm and Rip-up and Re-route

The geometric routing algorithm is based on rip-up and re-route approach. It can
easily describe the target architecture, but the disadvantage is that it is difficult
to achieve routing solution. It consists of two steps which are checking if there any
routing resource violations or timing violations such as wire delay and net delay. There
are three path search methods: 1. Directed search method 2. Breadth first search
method and 3. Depth first search method. For the breadth first search method,

it minimizes the total wire length and the cost function focuses on the distance.

2.2. ROUTING 9

Whereas the cost function focuses on congestion and distance for depth first search
function. The well-known Pathfinder algorithm adapts the above 2 methods into 2
steps which are initial routing and re-routing. The cost function Eq. is:

Cost(n) = b(n) x h(n) % p(n) (2.1)

where b(n) is the base cost, h(n) is the historical congestion and p(n) is the present

congestion penalty.

2.2.2 Maze Routing Algorithm

The maze router adapts Lee Algorithm initially. The router is based on a wavefront
expanding method that manages to find the shortest distance between two points
and avoid overused routing resources. Basically, this algorithm iteratively routes, rips
up and re-routes to eliminate the congested channels. One of the main advantages
guarantees that the path can be found if it exists between two points. Besides, the
path is surely the shortest available one. For the principal disadvantage of maze
routing, it does not take the subsequent nets into account which doing the routing,
which means that the different orderings of nets will deeply affect the performance of

algorithm.

It can be decomposed into three phases. The first phase is called propagation
phase. It will label the un-occupied routing resources with the distance from original
resource to the current. The expansion will continue until propagating wave reaches
the destination Sink. Therefore, it is unroutable if there are no un-occupied routing

resources to expand and it has not reached the destination cell.

The second phase is called Retracing. It performs a backtracking from Sink node
to Source node with numbers labeled decrementing. And the third phase is clearing
the numbered routing resources in previous step except those on the chosen path.
Those chosen routing resources will become blocking in the next propagation stage

for seeking other targets.

10 CHAPTER 2. BACKGROUND

Lager 1 Larer 1 Laver 1

ool =|ala|«|=c[=]==

|| | || = =] = [
| = = [a e =]«
ole[=[m[w]=[a]=

@l <|wlo|a]|=][w

BEEEER
[N

BEEEERE

NME R

Clickon Sourte

Layer 1 Layer 1

Clickon Hickan Souree Click on Saurre

Figure 2.4: Maze expanding flow

2.2.3 A* Search Routing

The maze routing is a special case of A* routing which allows tuning the search path
from a breadth-first search (BFS) into a short depth-first search (DFS). The BES is
an exhaustive algorithm that considers all possible paths and manages to find the
optimized one while it can be slow to process; in contrast, the DFS may not get the

minimum cost but it is faster.

Figure 2.5: A* search algorithm

In general, routing resources in FPGA and the interconnections inside can be
represented by a graph e.g. G = (V,E) where V represents the routing nodes and E

represents the interconnections between wires or switches. In addition, each node has

2.2. ROUTING 11

a corresponding cost, ¢;, which represents the current occupancy. For the successfully
routing, each node cannot be occupied more than one net. A* algorithm considers a
function Eq. 2.2] at each node V in the partial route from Source node to Sink node

as below:

fi =gi(1) (2.2)

where g; is the cost of the path from the source through V, d; is the estimated
cost of the path from V to destination. g; is represented in maze routing algorithms

as the total cost of the previous path f;_; plus the cost of the next candidate node

or Eq. 2.5:

gi — fi—l + ¢ (23>

where ¢; is the node cost and represents the current usage of the node and it is
used to record the nodes occupied by previous routing iteration; f;_; is the total cost
of previous path. As the BSF consumes more time, a sub-optimal but much faster

approach is performed by using a scaling factor, alpha, which is between 0 and 1.

fi = (1 — alpha) * (fi_; + ¢;) + ax*d; (2.4)

2.2.4 The Pathfinder

The pathfinder algorithm is based on the maze router, but it speeds up the algorithm
by routing every node on a no restricted environment and allowing to overuse routing

resources. The cost function implemented by the pathfinder is shown below:

fi = (1 + hy, * hfac) * (1 + Pn * pfac) + bn7n+1 (25)

where b is the penalty of bend wires, p,, is the cost to use a particular wire, h,, is
the historical value to track the wires used during previous iterations, and f,. and
Dfac are the weighting factors. It will continue ripping up and re-routing the nets

until there is no overuse of routing resources.

12 CHAPTER 2. BACKGROUND

2.3 Versatile Place and Route (VPR)

Mapping a circuit into an FPGA architecture is called CAD process. The CAD

process consists of several steps:

e Logic optimization: it performs several layer of minimization for Boolean equa-
tions to optimize crtical delay and area.

e Mapping: it transforms from Boolean equations into a circuit of FPGA logic
blocks. Besides, it optimizes the number of CLB required (area optimization)
and the critical path time (delay optimization).

e Placement: it places the elements to the specific location on the FPGA, and
manages to minimize the length of interconnection.

e Routing: it connects those specific logic blocks which are placed at previous

step with available routing resources.

VPR is a versatile placement and routing tool for array-based FPGAs. Especially
for the research, it is frequent used to evaluate and experiment the utility of new
architecture. And benchmark the circuits by mapping, placing and routing onto the
FPGA architecture, and then evaluate the performance and quality such as area and
path delay. Therefore, it is extremely necessary to obtain a CAD tool with flexibility
to support such a variety of FPGA architectures. In addition, VPR has a versatile
routers in FPGA CAD tool as it allows to describe a variety of FPGA architecture
targets to speed up the comparisons within different architectures. It outperforms
than other current FPGA place and route tools in minimizing routing area. Although
the algorithms used are the well-know ones, it enhances the performance to improve
the quality.

As Fig. 2.6 shown below, it outlines the VPR CAD flow. The input file consists of
a netlist file and a text file, which describes the FPGA architecture such as the number
of input and output pins on logic blocks, the sides of logic block that each input and
output is accessible, the number of /O pads that fit into row or column of the FPGA,
and the dimensions of the logic block array. In addition, the relative widths of vertical

and horizontal channels can be specified if global routing is used. Finally, the type of

2.3. VERSATILE PLACE AND ROUTE (VPR) 13

switch box, the Fec value for logic block inputs/outputs and I/O pads can be specified
as well if combined global an detailed routing is performed. VPR can place the circuit
or load a pre-existing placement file. The router is based on the modified version of
Pathfinder algorithm, and it provides two different objectives-oriented methods to

routing the placement in previous stage.

Technology-Mapped Architecture
Metlist Description File

. —
bl <" Existing Placement ™
Place Circuit or Read in Existing Placement |-- or Placement from
¥ ™ _Another CAD Tool ~

—_—

Perform either Global or Combined
Global / Detailed Routing

Placement and Routing COutpur Files,
PMlacement and Routing Statistics

Figure 2.6: CAD flow

e VPR routability-driven router

For the routability-driven router, its primary goal is successful routing with the
minimum tracks used. To achieve this, it incorporates with a modified routing cost

function as shown in :

cost,, = by, * h,, * p, + bend,, 1 (2.6)

b, : the base cost, the range is usually between 0.95 or 1 for most routing re-
sources and 0 for sinks. The reason for sink is 0 is used to prevent the router from
continuing searching for possible connections within expanding wavefront step if the
sink is already reached. bend,, ,, : the penalty for bending the wire. (It is only used in
global routing part.) p, : the present congestion. It is the congestion penalty which
is the difference between the number of a wires that can be used on that channel and
the number of nets using the channel. It is re-calculated within every iteration to

avoid over-subscribing any channel. Its value is given by:

14 CHAPTER 2. BACKGROUND

Pn = 1+ max(0, [1 + occupancy,, — capacityy| * Ptac) (2.7)

Prac - & weighting factor. It equals to 0.5 in the first iteration and multiply 1.5 to
2 in the subsequent iterations. h, : the historical congestion penalty. It tracks the

previous cost of routing resources and to avoid using it in the subsequent iteration.

(hy)! = (hy)" 4+ max(0, [1 + occupancy,, — capacity,] * hs.e) (2.8)

hfqc @ & constant weighting factor between 0.2 to 1. It is similar to pse. while it is

computed for historical congestion penalty.
e VPR’s timing-driven router

The goal of timing-driven router is reducing delay time on the circuit. To achieve this,
it adds an Elmore delay model to cost function. Therefore, it gives preference to the
solutions with less delay. It starts with setting up an upper bound of delay, and then
it routes the farthest nets. The imposed ordering on routing produces suboptimal
track counts, and faster results. A common feature for both routers is that global
route divides the k-terminal nets into k-1 steps, and it iterates k-1 times wavefront-
expanding to connect each terminal. The standard maze router empties the current
wavefront, while VPR router adds all the routing segments so far into heap, and
it continues expanding the wavefront with a cost of 0. Therefore, it will reach the
rest of terminal much more fast than if entire wavefront has to expand from scratch.
After successful placement and routing, the output files contain placement, routing
result and useful statistics to evaluate which kinds of architecture on FPGA is more

suitable. It can support island-style and row-based FPGAs now.

2.4 Python-graph Library

Python-graph is a library (containing a set of APIs) for working with graphs in
Python. It provides suitable data structure for representing graphs and an imple-

mentation of important algorithms. It is a pretty useful development environment

2.4. PYTHON-GRAPH LIBRARY 15

for developers interested in exploring graph algorithms for data flow graph (DFG)
analysis. The most important feature which we have used is digraph class and the
APIs are listed in Fig. [2.7]

boolean|__eq (self other)
Return whether this graph 1s equal to another one.

it (self)
Initialize a digraph.

boolean|__ne_ (self other)
Return whether this graph 1s not equal to another one.

add_edge(self. edge. wt=1. label=""_ attrs=[])
Add an directed edge to the graph connecting two nodes.

add_node(self. node, attrs=None)
Add given node to the graph.

del_edge(self. edge)
Remove an directed edge from the graph.

del_node(self node)
Remove a node from the graph.

list| edges(self)
Return all edges in the graph.

boolean | has_edge(self. edge)
Retumn whether an edge exists.

boolean | has_node(self. node)
Returmn whether the requested node exists.

list | ncidents(self. node)
Retumn all nodes that are incident to the given node.

list | neighbors(self. node)
Return all nodes that are directly accessible from given node.

number | node_order(self node)
Return the order of the given node.

list | nodes(self)
ERetum node list.

Figure 2.7: Useful APIs for DFG processing

Using the set of APIs provided by this library, we developed a set of python
modules containing implementation of frequently used graph scheduling algorithms.

We implemented As Soon As Possible (ASAP), As Late As Possible (ALAP) and List
Scheduling algorithms, described later in this report.

Chapter 3

Placement and Routing of DFG

nodes on Island-style Overlay

In this chapter, we firstly introduce an island-style coarse-grained overlay architec-
ture (published previously in [I7]) and then describe the placement of input DFG on
to the overlay using placement algorithm used in VPR tool. Then we also explain
how to route the DFG edges on the interconnection architecture and the implemen-
tation of routing algorithm used in the VPR tool. Finally, We describe our python

implementation of the placement and routing algorithm.

3.1 Island-style Overlay Architecture

The island-style overlay instantiates the tiles where instantiates routing resources and
borders where instantiates one switch box (SB) and one connection box (CB), forming
the boundary at the top and right arrays, as shown in Fig. The I/0O, which
is contained around the periphery of the overlay fabric, can be connected to a FIFO
port. Fig. shows an 2x2 overlay architecture having 4 tiles, two north borders,
two east borders and one northern east corner. It consists 4 FUs, 9 SBs and 8 CBs
which means that an N x N overlay has N? FUs, (N + 1)2SBs and N? +2x N CBs.

Within each tile, it contains a functional unit (FU) and some routing resources, as

shown in Fig. [3.1(c)|

16

3.1. ISLAND-STYLE OVERLAY ARCHITECTURE 17

|4 |

>

e T T e T
oy |NEEEE] g
T Ly
T TT1 l 1T Vertical Channel Tl
T HH=EEssI====]
. . . . i oo jenmml
h b b hd 4—_:{ CB| '2 Functional Unit [
Sl el el T |2
il
_ :
S e B Mo B o B Moo 1 s & 3
m ™ LI T 5
i 0y T t 3

(a) Overlay block diagram. (b) Architecture of a 2x2 overlay. (c) Tile architecture.

Figure 3.1: Overlay architecture.

The interconnection resources used in routing DFG edges are explained below.

L

]
I’“‘I’“‘I L = Logic Block
-[= A

Horizontal — > . C = Connection Block

Routing Channel |‘||'|‘||'| . S = Switch Block
[]

Wiring Segment

? Vertical
Routing Channel

Figure 3.2: High level architecture showing interconnect resources.

As the Fig. [3.2l shown above, the main elements used in routing process are

switch boxes, connection boxes and channels.

3.1.1 Switch Boxes

For the routing interconnection between different logic blocks, switch box is an im-
portant element as it is responsible for connecting with another direction (horizon-
tal/vertical) track in other channels. It increases the flexibility and routability of
FPGA. The flexibility Fs indicates for a segment that enters the switch block, the

18CHAPTER 3. PLACEMENT AND ROUTING OF DFG NODES ON ISLAND-STYLE OVERLAY

maximum number of segments that it can connect to in the switch block. The differ-
ent architecture of switch boxes can influence the results of routing. Fig. [3.3] shows

the common topologies used for the switch box.

| YRy Wil
4 0 - D— d =g L 4 =0 —
3 o o — 3 —a o— 5§ —F o—
2 nl 2 =g L 2 m—y e
| —ta -“ 1 —a o— 1 — o—
B—ﬁu" 0 —a B 0 —a A
RERR Frrmt
012 23 4 0123 a 012 3 4
disjoint universal Wilton

Figure 3.3: Switch Box Topologies

3.1.2 Connection Boxes

The connection box can connect the channels with all possible neighboring logic
blocks. Fc represents the number of tracks in each channel to which each logic block
input and output pin can connect. There are two different architectures of connection
box which define the pattern of switches to connect to the tracks as shown in Fig. [3.4]

Topology 1 Topology 2

A e A Rk
L ; : L L i | L
e
: i i i i i
: : : : : : : :
| i .
L . : L L : ! L
L e

Figure 3.4: Connection Box

3.2. AUTOMATED MAPPING TOOL 19

3.1.3 Channels

Channels contain tracks, which consist of horizontal and vertical directions. The
main responsibility is connecting different pins of logic blocks after HDL is mapped
on the overlay and placement is complete. W represents the width of channel or the
number of tracks in each channel. Channel segments indicate that it can have various
lengths or one size, which can only span one logic block. Besides, channels can be
uni-directional and bi-directional. In our example, we assume that the segments can

only span one logic block, and the channels are uni-directional.

3.2 Automated Mapping Tool

In this section, we base on an automated mapping tool (published previously in

[17]), which allows mapping high level description (HLD) of computing kernels to the

overlay.
Table 3.1: Compute Kernel Code Descriptions
(a) C description (b) DFG description
digraph kermnel {
N8 [ntype="operation", label="add_Imm_5_N8"];
N9 [ntype="outvar", label="00_N9"];
#include<math.h> N1 [ntype="invar", label="IO_N1"];
#define SIZE 1000 N2 [ntype="operation", label="mul_N2"];
N3 [ntype="operation", label="mul_N3"];
int kermnel(int x){ N4 [ntype="operation", label="mul_Imm_16_N4"];
int temp = 16%x; N6 [ntype="operation", label="mul_N5"];
return (x*(x*(temp*x-20)x+5)); N6 [ntype="operation", label="mul_N6"];
} N7 [ntype="operation", label="sub_Imm_20_N7"];
N8 -> N2;
int main(void){ N1 -> N5;
int i; N1 -> N6;
int in[SIZE]; N1 -> N2;
int out[SIZE]; N1 -> N3;
for (i=0; i<SIZE; i++){ N1 -> N4;
out [i] = kernel(inl[il); N2 -> N9;
} N3 -> N6;
return O; N4 -> N5;
} N5 -> N7;
N6 -> N8;
N7 -> N3;

}

20CHAPTER 3. PLACEMENT AND ROUTING OF DFG NODES ON ISLAND-STYLE OVERLAY

3.2.1 Data Flow Graph (DFG) Generation

It starts with a C language description; the tool transforms C to a Data Flow Graph
description in Table [3.1]

3.2.2 DFG to VPR Compatible Netlist Conversion

To be compatible with the VPR requiring input file, we use a netlist generator, which
generates a VPR compatible netlist as shown in Table[3.2] Then we make use of VPR

tool to place logic block onto the overlay and route the interconnections between them.

Table 3.2: PAR input File

Netlist description

.input N1
pinlist: N1

.output out:N7
pinlist: N7

.fu N2
pinlist: N1 N6 open open N7 open open open open
subblock: N2_blk 0 1 open open 4 open open open open

.fu N3
pinlist: N1 N5 open open N3 open open open open
subblock: N3_blk O 1 open open 4 open open open open

.fu N4
pinlist: N1 open open open N4 open open open open
subblock: N4_blk O open open open 4 open open open open

.fu N5
pinlist: N1 N4 open open N5 open open open open
subblock: N5_blk O 1 open open 4 open open open open

.fu N6
pinlist: N1 N3 open open N6 open open open open
subblock: N6_blk 0 1 open open 4 open open open open

3.2.3 Placement and Routing onto the Overlay

Mapping DFG nodes onto homogeneous function units and DFG edges to the overlay’s

routing resources to connect the mapped function units. At this level, a netlist is able

3.3. DETAILED DESCRIPTION OF THE PLACEMENT 21

to have more than 100 nodes and make the problem much easier than that of fine-
grained FPGA. The Fig. displays a placement of DFG on a 5x5 Architecture.

Figure 3.5: Data Flow Graph (DFQG)

3.3 Detailed Description of the Placement

In VPR tool, it use simulated annealing algorithm mentioned in Chapter 2. It mimics
the cooling process of the melting metal at a high temperature and gradually lowing
temperature, which means the energy and defects are reduced. In this case, a high
temperature is initially selected. It is a heuristic-based iteration for minimizing the
costs. The cost function used here is linear congestion cost function, which mainly
focuses on wire length and penalizes placements which requires more routing area on

the overlay that has narrow channel.

Cost = i:; q(n) g:;((rlrz) + (t;:,yx((r:z)] (3.1)

22CHAPTER 3. PLACEMENT AND ROUTING OF DFG NODES ON ISLAND-STYLE OVERLAY

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

,,,

,,,

,,,

,,,

,,,,,,,,,,,,,,

Routing succeeded with a channel width factor of 2.

Figure 3.6: DFG mapped onto the Overlay after Placement and Routing.

Table 3.3: Net q(n) factor.

pin number | ¢(n) pin number | q(n)

1~3 1.0000 | 15 1.6899
4 1.0828 | 20 1.8924
5 1.1536 | 25 2.0743
6 1.2206 | 30 2.2334
7 1.2823 | 35 2.3895
8 1.3385 | 40 2.5356
9 1.3991 | 45 2.6625
10 1.4493 | 50 2.7933

q(n): the factor depends on the number of terminals that a net has to connect. It
becomes bigger than 1 for a net with more than 3 terminals. The ¢(n) used here is ,
as suggested in Fig. [3.3

Cavz(n) and Cgyy(n): the constant average channel capacities (in tracks) in x
and y direction over the bounding box. In our case, we assume that all channels

have the same density of the tracks, so the Cy, ,(n) and Cy,,(n) are the constant

3.3. DETAILED DESCRIPTION OF THE PLACEMENT 23

value. Therefore, the complexity of linear congestion function reduces and becomes
a bounding box based function. The total cost of the placement is the summation of
the costs of each net. The cost for each net is the x-direction and y-direction distance
of bounding box divided by Cy, ,(n) and C,, ,(n) respectively The bounding box is
defined as the maximum range of the x and y coordinates of the net spanning. For
example, there are two coordinates (a, b) and (c, d) which are source and target of
the net, then the equation of the bb, and bb, are shown in Eq. and Eq. 3.3}

bby = x5 — X3 + 1 (3.2)

bby =y2 —y1+1 (3.3)

As doing the simulated annealing, a fixed number of swap are executed within

certain temperature. The number of the swap is calculated as the following Eq. [3.4]

move_lim = 10 * (Npjocks) ' (3.4)

where Nblocks is the total number of logic blocks and I/O pads on a circuit.

3.3.1 Flow of the Placement

The placement flow in VPR starts with a random placement. The initial temperature
is defined as 20 times of the standard deviation of cost that randomly swaps the
Nblocks to ensure that it can accept any swap in the beginning of the simulated
annealing, where Nblocks is the total number of the logic blocks and I/O pads on the
FPGA.

After initially random placement, the nodes are placed on a 3x3 overlay as shown
on Fig. and the cost is calculated by the linear congestion function, which is
adding the cost of each net. For example, N1 is the input node in the DFG which
is placed initially on the I/O block located at (0,2). N7 is the output node in the
DFG which is placed initially on the I/O block located at (2,0). The initial placement
shows 5 compute blocks, 2 I/O blocks and 6 nets.

24CHAPTER 3. PLACEMENT AND ROUTING OF DFG NODES ON ISLAND-STYLE OVERLAY

et3

(0,0) N1

Figure 3.7: Initial Placement Connections.

The calculation of the cost of initial placement is shown as below: The initial
placement shows 5 compute blocks, 2 1/O blocks and 6 nets. We use the initial

temperature as 0.4 and evaluate a fixed number of moves at this temperature.

(3.5)

bby(n) bby (n)
Covx(®) cav,x(n)]

Nety bb_coor [(1,1), (3,3) | Net; bb_coor [(1,1), (2,1)] Nety bb_coor [(1,1), (1,2)
| Nets bb_coor [(2,2), (3,2) | Nety bb_coor [(1,2), (3,2) | Nets bb_coor | (2,2), (3,3)]

The cost of the initial placement is calculated: 0.073236 + 0.03 + 0.03 + 0.03 +
0.04 + 0.04 = 0.2432

The iteration of swap starts with temperature = 0.4 and it executes 133 times

3.3. DETAILED DESCRIPTION OF THE PLACEMENT 25

before reducing the temperature. Each swap randomly selects and moves a logic block
to another random location on the FPGA. After that, the new cost is calculated on
linear congestion function for this new placement, and then compare to the previous
cost. The new cost will be accepted if it is less than the previous one, and this happens
frequently especially when temperature is higher. However, if the new cost is larger
than the previous one, the Eq. is used to decide whether accepting the swap or
not. As the equation shown, it is oppositely related to the temperature, which means
that higher temperature have higher probability to accept even the cost increases.
Therefore, it is the approach to avoid getting stuck at a local minimum. When it

comes to the lower temperature, the percentage of accepting swap is obviously lower.

if (random (0, 1) < e~ deltarcost/T) (3.6)

The placement is optimized after hundreds and thousands of iterations . Fig. [3.3

is the example to demonstrate the few random swap at temperature = 0.4.

In the first iteration (iteration 0), the N4 block is selected and swapped to random
location from (3,3) to (2,3). The new random location is empty. As NetO and Net5
connect N4, the bounding box of these two nets is changed after N4 moves to new
location and new cost as well. Therefore, it will affect the total cost of the placement.
If the net change is less than 0, the swap is accepted absolutely. However, the swap
is assessed by the probability factor calculation and compared to a random generated
number, which is between 0 and 1 as shown below. In the second iteration (iteration
1), N4 is selected again and the new location is randomly selected as (2,1), which is
empty too. After updating the bounding box, the delta of two costs is negative. Then
the swap is accepted again. In the third iteration (iteration 2), N5 is selected and
the new randomly selected location is (3,2), which is occupied by N3. It means that
nets to be considered are those connect to either N3 or N5. Thus, Net0, Net3, Net4
and Neth are updated and as well as their bounding box. The delta after swapping
is positive, so the probability factor is used to assess the move. And it is accepted
in this case. The above example just simply demonstrates the few iterations of the

placement process by using the simulated annealing algorithm. The temperature

26CHAPTER 3. PLACEMENT AND ROUTING OF DFG NODES ON ISLAND-STYLE OVERLAY

(0,0) N7 N7

(b) Moving N4 from (3,3) to (2,3), Net 0 and Net 5

Initial Pl t with t=0.2432
(a) Initial Placement with a cos affected, change in cost = - 0.01, Move accepted

N7 N7
(c) Moving N4 from (2,3) to (2,1), Net 0 and Net 5 (d) Swapping N5 and N3, Net 0, Net3, Net 4 and Net 5
affected, change in cost = - 0.01, Move accepted affected, change in cost = 0, Move accepted

Figure 3.8: Placement Iterations at a Given Temperature

will be updated after the number of iteration reaches the move_lim. And the overall

process terminates when the T j= 0.005 x Cost/Nnets.

The Table B.4] shows the manual trace of Moves.

3.4. DETAILED DESCRIPTION OF THE ROUTING 27

Table 3.4: Evaluation of Moves at a Given Temperature

Cost Calculation

Iteration O

Swap N4(3,3) <-> empty (2,3).

Nets to be updated: Net 0, Net 5

Net 0 bbCoor = [(1,1), (3,3)] Temp Cost=1.2206%(3-1+1)/100
+1.2206*(3-1+1) /100=0.073236

Delta=Temp Cost-NOCost =0.073236-0.073236=0

Net 5 bbCoor = [(2,2), (2,3)]

Temp Cost=1%*(2-2+1) /100 +1%(3-2+1)/100=0.03

Delta=Temp Cost-N5Cost = 0.03-0.04 = -0.01 DeltaTotal=0+(-0.01)=-0.01
DeltaTotal < 0O -> Accept

Iteration 1:

Swap N4 (2,3) <-> empty (2,1)

Nets to be updated: NetO, Netb

NetO bbCoor [(1,1), (3,2) 1]
TempCost=1.2206%(3-1+1) /100 +1.2206*(2-1+1)/100=0.06103
Delta=TempCost-NOCost = 0.06103-0.073236 = -0.012206
Net5 bbCoor [(2,1), (2,2) 1

TempCost = 1*(2-2+1) /100 +1%(2-1+1)/100=0.03

Delta = TempCost-N5Cost = 0.03-0.03=0
DeltaTotal=-0.012206

DeltaTotal <0 => Accept

Iteration 2:

Swap N5(2,2) <-> N3(3,2)

Nets to be updated: NetO, Net3, Net4, Netb

For NetO, Net3, the cost will be the equivalent as bbCoor is same.

Net4 bbCoor [(1,2), (2,2) 1

TempCost = 1%(2-1+1)/100+1%(2-2+1) /100=0.03
Delta=TempCost -N4Cost =0.03-0.04=-0.01

Net5 bbCoor [(2,1), (3,2) 1]
TempCost=1*%(3-2+1) /100 +1%(2-1+1) /100=0.04
Delta=TempCost -N5Cost =0.04-0.03=0.01
DeltaTotal = -0.01+0.01 = 0

prob_fac = exp(-0/0.4) =1 > 0.5 -> Accept

3.4 Detailed Description of the Routing

The DFG is mapped onto homogeneous functional units and needs to be connected
using the interconnect architecture. The main elements of the interconnect architec-
ture are channels, connection boxes and switch boxes. For each logic block, it consists
of 4 RECEIVER pins, 4 DRIVER pins and one Global RECEIVER pin. For each
channel, it consists of two unidirectional tracks, which mean the width of channel is
2. Switch box flexibility F_s = 3, which means any track can connect to 3 neighbor

channels except those corner cases. Connection box flexibility F_.¢ = 1. This is an

28CHAPTER 3. PLACEMENT AND ROUTING OF DFG NODES ON ISLAND-STYLE OVERLAY

ideal case that greatly simplifies the difficulty of routing task.

Figure 3.9: 10 block and Configurable Logic Block

||

Figure 3.10: Switch Box Uni-Directional Routing

Routing is used to connect the available routing resources with the CLBs and
I/Os which are distributed on the FPGA after placement process, transiting signals
from where they are generated to the blocks where going to use. An ideal routing
algorithm should lower the wire routing area and the critical path of nets to improve
the performance of circuit. Generally, there are two steps in the routing process
that are global and detailed routing. The purpose of global routing is balancing

the congestion on channels. It begins with routing each net according to the lowest

3.4. DETAILED DESCRIPTION OF THE ROUTING 29

cost regardless of the congestion caused. And the algorithm will balance out the
congestion after iteratively re-routing the nets. After global routing, the detailed
routing aims to build a directed graph from the routing resources to represent the
available interconnection between tracks, input pins, output pins, Switch boxes and
logic blocks on the FPGA. There is another special case that the routing process
can be complete within one step detailed routing that is the routing directed graph
is constructed initially, and each node (e.g. Sink, Source, track x and track_y) on
the graph has own cost function. The routing process is searching sink node(s) from

source node(s) based on the cost.

SOLCE

wire3 wired

onr (Ingir block pin)

wirel

LT —

Figure 3.11: Routing Resource Graph

The algorithm used to find the shortest path between two nodes is based on
Dijkstra’s algorithm (ie. Maze router). And the VPR tool implements the Pathfinder
Negotiated Congestion algorithm. The pathfinder algorithm initially routes each
net by expanding wavefront technique to find out the shortest path regardless of
any overuse of wiring segments or logic block pins, which is based on the concept
of maze router. The cost function for each routing resource is calculated on the
current overuse of routing resources and any prior overuse of routing resources that
occurred in previous routing iterations. Therefore, the cost of over-used resources
will gradually increase in the subsequent iterations and the algorithm will find an
alternative route to avoid those unfavorable resources. Subsequently, it iteratively
rips up and re-routes all nets until there is no overuse of routing resources exist.
Besides, it solves the drawback that occurs in maze router that is performance is

dependent on net ordering. The VPR router expands wavefront in an efficient way,

30CHAPTER 3. PLACEMENT AND ROUTING OF DFG NODES ON ISLAND-STYLE OVERLAY

which adds the routing resources routed so far into the wavefront firstly and continue
expanding normally with a cost of 0. For example, the maze router is called k-1 times
to execute the overall expanding for a net with k terminals. In the first invocation,
the wavefront expands from the Source node until it reaches any one of the Sink
nodes. Normally, the router will empty the wavefront and start the next iteration
with the empty wavefront. However, the maze router will start from the wavefront in

the previous iteration. As a result, the net will be routed much faster.

Unconnected Expansion Expansion Re-expand around Expansion
sink wavefront wavefront new wire wavefront
_ / \
’J T aor q / - — - 74
| | | [- | A |
T
|_\ S | = '1 | \ N |
Y 5= | \
! | . S § |
| N 5 *l \
\ 4
e O - B—_I 1 \ 0
ol q
\ | T 1 gl — - |
‘ _ | | [\
| :— E:_Ill_ A | : | N\ -
i e J\ e L e 1
/ —_ — —
Current partial P _ o
Routljj;lo Sink reached (c) VPR method: maintain
=) (b) Traditional method: wavefront and e:{lpand
(a) Expansion reaches a sink restart wavefront around new wire

Figure 3.12: Wavefront graph

The Fig. shows the important structs used in routing process. We simply

explain the terminology which will be used in following contexts.

3.4.1 Initialization of the Routing

The routing process in VPR tool starts with creating the routing graph. After the
routing graph is constructed, the graph is shown in Fig. [3.13| It consists of CLBs,
I/Os, switch boxes, and channels. The number represents the index of each rr node

on the routing graph. The index can be tracked as the reference node.

3.4.

DETAILED DESCRIPTION OF THE ROUTING

Table 3.5: Routing resource struct

Variable

Meaning

t_rr_type type

{ SOURCE, SINK, IPIN, OPIN, CHANX, CHANY?}

short num_edges

Number of edges exiting this node.That is, the number
of nodes to which it connects.

int *edges

Array of indices of the neighbours of this node.

int prev_node

Index of the previous node used to reach this one; used
to generate the traceback. If there is no predecessor,
prev_node = NO_PREVIOUS.

short target_flag

Is this node a target (sink) for the current routing
Number of times this node must be reached to fully
route.

I/O

Figure 3.13: RR graph after initialization

31

32CHAPTER 3. PLACEMENT AND ROUTING OF DFG NODES ON ISLAND-STYLE OVERLAY

3.4.2 Cost Functions in Routing

The Pathfinder Negotiated Congestion algorithm uses of the current routing as well
as the routing history in previous routing when calculating the cost functions. Each

node has an unique cost. The cost of node is indicated below:

e pres_cost: The present congestion cost term for this node. Occ represents the
number of nets, which occupy this node. Capacity is the maximum utilization
allowed for each node to be occupied. (It is updated in each iteration after each
net.) If Occ >Capacity, Eq. is used. Otherwise, Eq. is uesd.

pres_cost =1 (3.7)

pres_cost = 1. + (occ + 1 — capacity) * pres_fac (3.8)

e acc_cost: Accumulated cost. (It only updates after all nets have been routed.)

acc_cost+ = (occ — capacity) * acc_fac; (3.9)

* pres_fac: The sharing penalty; it is multiplied by a factor in each routing iteration.
* acc_fac: Historical congestion cost multiplier. If the occ >capacity then the
acc_cost is increased according the delta between occ and capacity, which is multiplied

by the acc_fac.

e Congestion cost of using this node

Congestion_cost = base_cost * acc_cost * pres_cost (3.10)

base_cost: The basic cost of using an rr_node.

e Total path cost: The total cost of the path up to and including this node plus
the expected cost to the target.

3.4. DETAILED DESCRIPTION OF THE ROUTING 33

path_cost = new_back_pcost + astar_fac * expected_cost_to_target() (3.11)

Table 3.6: Determines the expected cost to reach the target from current

if (rr_type == CHANX || rr_type == CHANY)
{
...Some calculation ...
return (cong_cost);
}
else if (rr_type == IPIN)

return base_cost;

return 0;

new _back _pcost = old_back _pcost + congestion.ost(new_node) (3.12)

where new backward_path_pcost is the summation of old backward_path_cost in

previous step and congestion cost of new nodes.

3.4.3 Flow of the Routing

After initializing the routing graph, the next step is creating the minimum spanning
tree (MST) for each net prior to running the algorithm. It contains the Source node
and all Sinks node of the net, which is a spanning tree of a connected, undirected
graph. Taking N1-net for example, Source node is N1_blk pinl and the Sink nodes
are N2_blk pin0, N3_blk pinl, N4_blk pin0, N5_blk pin0 and N6_blk pin0. In the first
invocation, it finds out the nearest sink from source and records them in minimum
spanning tree. Then it finds out the nearest distance between the minimum spanning
tree and the sink, which is not recorded yet. After finding the nearest distance, it
records the pair of two nodes into minimum tree. It iterates the invocations until all
sinks are stored in the tree.

After creating the mst tree, it starts a loop of 50 iterations, which routes each

34CHAPTER 3. PLACEMENT AND ROUTING OF DFG NODES ON ISLAND-STYLE OVERLAY

net by using directed search algorithm. As it begins with allowing to route overused
resources. Therefore, it is necessary to check if the routing is feasible or not. As our
implemented cost function, the cost of overused node will be gradually updated after
several iterations. And if a successful routing cannot be found within 50 iterations,

the routing will be failed.

Get minimum spanning tree of each net Direct Search Rout ng progress

Iteration<50

Directed search algorithm to
route each net

No
Are all nodes’
capacity limits

for the pathfinder algorithm

Success!

Figure 3.14: Direct Search Routing progress

3.4.4 Directed Search Algorithm in the Routing

There are two data structures used in the Directed search algorithm.

The Directed search algorithm is about to route each net by expanding the wave-
front from Source node to Sink node(s). As we mentioned before, it uses the maze
router with an efficient fanout method. Basically, it iterates number of Sink-1 times

to reach all Sink nodes. It restarts the expanding from the previous wavefront, which

3.4. DETAILED DESCRIPTION OF THE ROUTING

Table 3.7: Trace and Binary Tree struct

Data Structure | Description

Trace Store the traceback (routing) of each net.

Binary heap

Store the potential node to be routed in order of the cost,
so the head of the heap is the node with the minimum cost.

includes all wiring segments routed so far by adding all of these nodes into the binary
heap. After it completely routes an individual net, it updates these connected nodes

into the trace, frees the heap and updates the present congestion cost before next

1teration.

Directed search algorithm for routing

each net

If trace[inet]
is NOT null

Rip-up it as trace_head[inet]
contains the previous ieration's
routing.

Add the source node to heap

Connect to all
sinks of net?

Adds all nodes (except IPIN and SINK
type) in the entire trace[inet] from
SOURCE to all SINKS routed so far.

Get head node from heap

Is this node
SINK ?

Is the cost
updated in heap
gss than before

of this node

Puts all the nodes adjacent to
current node on the heap

Add the recently finished wire segment to
trace[inet] and free the heap. Then update
the congestion cost of nodes due to the
routing to this (partial routing)

Figure 3.15: Directed search algorithm for routing each net

36 CHAPTER 3. PLACEMENT AND ROUTING OF DFG NODES ON ISLAND-STYLE OVERLAY

3.4.5 Routing Demonstration

ATake Nety for example, the Source node is N8_blk and the Sink node is N2_blk.
Fig. to Fig. demonstrate the process of updating the cost function step
by step when expanding wavefront from Source node to Sink node. Starting with
calculating the cost of Source node, and it iteratively calculates neighboring nodes

which are adjacent to the nodes which are calculated in previous step until reaching
the Sink node.

Net2:[N8->N2]

pres_fac:10000.0 astar_fac:1.20

Stepl: Calculate cost of
SOURCE(25)

ong+cost{25)= base_cost x
acc_cost x pres_cost=1x1
1=1

new_back_pcost =
old_back_pcost + congestion
cost(25)=0+1=1

ath_cost= new_back_pcost
astar_fac*
et_directed_search_expect
ed_cost(inode target_node)
=1+12x0=1

. tep2: Add node to heap
| b Heap tree shown below:
1.0

Figure 3.16: Routing process step 1

3.5 Fault Tolerance

After implement the placement and routing algorithms into Python. We implemented
the Fault tolerance property in the placement step. Fault tolerance is a methodology
that ensures that a system can continue working properly even failures occurred in

the components. The severity of failure is proportional to system quality compared to

3.5. FAULT TOLERANCE 37

Net2:[N8->N2]

pres_fac:10000.0 astar_fac:1.20

Sink #1
Target index{36):pin num:1

Step3:Get heap of head
urrent(25), type:S0URCE

old cost=HUGE_FLOAT
new cost=1

Accept -> put node into trace

Heap tree shown below:

empty

Figure 3.17: Routing process step 2

the normal system that a small failure may breakdown whole system. Its advantage
enables a system keep operating, possibly in a degraded level, but can still execute.
As the structure of FPGA is homogeneous, our implementation enables developer do
the placement but avoid some selected logic blocks to be placed. As a result, the

FPGA can be used and tested even there are some resources broken.

38CHAPTER 3. PLACEMENT AND ROUTING OF DFG NODES ON ISLAND-STYLE OVERLAY

Net2:[N8->N2]

pres_fac:10000.0 astar_fac:1.20

Sink #1
Target index{36):pin num:1

Stepd:Expand neighbors

he edges of node:4

1: Node(31)
old_back_pcost=1
ew_back_pcost=1+1=2
ew_tot cost=2+12x0=2

add node(31) to heap

Heap tree shown below:

2

Net2:[N8->N2]

pres_fac:10000.0 astar_fac:1.20

Sink #1
Target index{36):pin num:1

2: Node(32)
old_back_pcost=1
ew_back_pcost=1+1=2
new_tot_cost=24+1.2x0=2

add node(32) to heap

Heap tree shown below:
2

2

3: Nodel33)
old_back_pcost=1
ew_back_pcost=1+1=2
ew_tot_cost=2+12x0=2

add node(33) to heap

Heap tree shown below:
2

2 2

Figure 3.19: Routing process step 4

3.5. FAULT TOLERANCE

Net2:[N8->N2]

pres_fac:10000.0 astar_fac:1.20

Sink #1
Target index{36):pin num:1

4: Mode(34)

ew_back_pcost=1+1=2
new_tot_cost=2+1.2x0=2

add node(34) to heap
Heap tree shown below:
2(31)
2(32) 2(33)
2(34)

Net2:[N8->N2]

pres_fac:10000.0 astar_fac:1.20

Sink #1
Target index{36):pin num:1

Step5:Get heap of head
urrent{31), type:OPIN

old cost=HUGE_FLOAT
new cost=2

Accept -> put node into trace
Heap tree shown below:

2(32)
2(33) 2(34)

Figure 3.21: Routing process step 6

39

40CHAPTER 3. PLACEMENT AND ROUTING OF DFG NODES ON ISLAND-STYLE OVERLAY

Net2:[N8->N2]

pres_fac:10000.0 astar_fac:1.20

Sink #1
Target index{36):pin num:1

Stepb:Expand neighbors

he edges of node:2

1: Node(187)
old_back_pcost=2
ew_back_pcost=241=3
ew_tot_cost=3+1.2x0.95
4.14

add node(187) to heap

Heap tree shown below:

2(32)
2(33) 2(34)
4.14(187)

Net2:[N8->N2]

pres_fac:10000.0 astar_fac:1.20

Sink #1
Target index{36):pin num:1

Stepb:Expand neighbors

he edges of node:2

2: Node(186)
old_back_pcost =2
ew_back_pcost=2+1=3
ew_tot_cost=3+ 1.2 x 055
4.14

add node(186) to heap

Heap tree shown below:

232)
2(33) 2(34)
4.14{187) 4.14{186)

Figure 3.23: Routing process step 8

3.5. FAULT TOLERANCE 41

Net2:[N8->N2]

pres_fac:10000.0 astar_fac:1.20

Sink #1
Target index{36):pin num:1

Step:Get heap of head
urrent{32), type:OPIN

old cost=HUGE_FLOAT
new cost=2

Accept -> put node into trace
Heap tree shown below:

2(34)
2(33) 4.14(187)
4.14(186)

Net2:[N8->N2]

pres_fac:10000.0 astar_fac:1.20

Sink #1
Target index{36):pin num:1

Step8:Expand neighbors

he edges of node:2

1: Node(211)
old_back_pcost=2
ew_back_pcost =2 + 10001
10003
ew_tot_cost=3+1.2x 155
10005.34

add node(211) to heap
Heap tree shown below:
2(34)

2(33) 4.14(187)
4.14(187) 10005{211)

Figure 3.25: Routing process step 10

42CHAPTER 3. PLACEMENT AND ROUTING OF DFG NODES ON ISLAND-STYLE OVERLAY

Net2:[N8->N2]

pres_fac:10000.0 astar_fac:1.20

Sink #1
Target index{36):pin num:1

Step8:Expand neighbors

he edges of node:2

2: Node(210)
old_back_pcost=2
ew_back_pcost=2+1=3
ew_tot_cost=3+1.2x1.95
5.34

add node(210) to heap

Heap tree shown below:

2(34)
2(33) 4.14(187)
4.14 10005 5.34(210)

Net2:[N8->N2]

pres_fac:10000.0 astar_fac:1.20

Sink #1
Target index{36):pin num:1

Step9:Get heap of head
urrent({34), type:OPIN

tepl0:Expand neighbors

After these two steps, the
eap is shown below.

2
4.14 5.34
4.14 10005.34 534 534

Figure 3.27: Routing process step 12

3.5. FAULT TOLERANCE

Net2:[N8->N2]

pres_fac:10000.0 astar_fac:1.20

Sink #1
Target index{36):pin num:1

Stepll:Get heap of head
urrent{33), type:OPIN

tepl2:Expand neighbors

After these two steps, the
eap is shown below.

4,14
4.14 5.34
5.3410005.34 5.34 6.54
6.54

Net2:[N8->N2]

pres_fac:10000.0 astar_fac:1.20

Sink #1
Target index{36):pin num:1

Stepl3:Get heap of head
urrent{187), type:CHANX

tepld:Expand neighbors

After these two steps, the
eap is shown below.

3.95(41)
414 5.34
534 514 534 654
5.54 6.34 10005.339844

Figure 3.29: Routing process step 14

43

44CHAPTER 3. PLACEMENT AND ROUTING OF DFG NODES ON ISLAND-STYLE OVERLAY

Net2:[N8->N2]

pres_fac:10000.0 astar_fac:1.20

Sink #1
Target index({36):pin num:1

Stepl5:Get heap of head
urrent{41), tvpe:IPIN

teple:Expand neighbors

After these two steps, the
eap is shown below.

3.95(38)
4.14 5.34
534 514 G534 654
5.54 6.34 10005.339844

Net2:[N8->N2]

pres_fac:10000.0 astar_fac:1.20

Sink #1
Target index{36):pin num:1

Stepl7:Get heap of head
urrent{36), type:SINK

arget_node(36)=inode(36)

tepl8:Update trace

he current trace contains:
36->41->187->31-»25

Stepl9:Free heap

Step20:Update the pres_cost
of nodes in trace[inet]

Figure 3.31: Routing process step 16

Chapter 4

Conclusions and Future Work

4.1 Conclusions

This report discussed the placement and routing of high level description of applica-
tion (in data-flow graph format) on coarse-grained FPGA overlays. The algorithms
used in Versatile Placement and Routing (VPR) tool were first discussed. This work
included developing an understanding of the placement and routing algorithm. We
developed an understanding of the underlying FPGA architecture as well as the var-
ious stages in the design process where placement and routing plays an important
role. We then develop python implementation of placement and routing algorithms.

We plan to release it publicly for others to use in research community.

4.2 Future work

The future work in this project mainly involves adapting the algorithms for different
interconnect architecture since the current implementation only supports island-style
architectures. As a next step, we aim to work on scalability analysis and runtime
optimization of our implemenation. Long term goal is to build a Python-based tool-
chain to implement novel placement and routing algorithms which would make it

easier to further extend our research to alternative architectures.

45

Appendix A

Python Implementation of

Placement Algorithm

Table A.1: Python Function for Initial Placement

def doInitialPlacement():

index = 0
while blocksPlaced() == -1:
flag = 0

block = block_list[index]
print "Block being placed is.", block.name
if block.getType() == "CLB":

rand_x, rand_y = random.randrange(1,4,1), random.randrange(1,4,1)
while [rand_x, rand_y] in FT_clb:
rand_x, rand_y = random.randrange(1,4,1), random.randrange(1,4,1)
else:

location_list_io = [[0,1], [0,2],[0,3],[4,1], [4,2],[4,3],[1,0],[2,0],[3,0],[1,4],[2,4],[3,4]]

random_index = randrange(0,len(location_list_io))
rand_x, rand_y = location_list_io[random_index]
while [rand_x, rand_y] in FT_io:
rand_x, rand_y = random.randrange(1,4,1), random.randrange(1,4,1)

print "The random coordinates are ", rand_x,rand_y

for blockl in block_list:
print blockl.name, blockl.getLocation(),

if blockl.getLocation() [0] == rand_x and blockl.getLocation()[1] == rand_y:
flag = 1

if flag == 1:
print "Location generated", rand_x,rand_y, "ispalready, filled"
print "generate another random location"
continue
else:
block.x = rand_x
block.y = rand_y
print block.name, "_is placed at", block.x,block.y
print HHEHHEHHEHEHEREEEEE
index += 1

46

47

Table A.2: Python Functions developed for Placement process

#checks if all blocks have been placed.
def blocksPlaced():
for block in block_list:
if block.isPlaced() == -1:
return -1
return 1

#return block object on providing the name of the block
def getBlock(name):
for block in block_list: #block_list is the list of block objects generated at the start

if block.name name: #if query block is in the block list, then return the block object, need to put exception handle
return block

#Return net object on providing the name of the net
def getNet(name):
for net in net_list: #net_list is the list of net objects generated at the start
if net.name == name: #if query net is in the net list, then return the net object, need to put exception handle
return net

def printBB():
print "Bouding box coordinates of all ithe nets are"
for net in net_list:
print net.name,":,(",net.minx,",",net.miny,"), (",net.maxx,",",net.maxy,")"

#assess if a swap is accepted or note
def assessSwap(delta, t):
if delta <= 0:
return 1
else:
randno = random.random()
prob_fact = math.exp(-delta/t)
if prob_fact > randno:
return 1
else:
return -1

Criteria for Simulated Annealing to Stop
def exitCrit(temp,cost):
if temp <0.005*cost/len(net_list) : #num of nets = len(net_list)
return 1
else:
return 0

#Calculates total cost of a given configuration
def costFunction():
total_cost = 0
for net in net_list:
print "\n[Bounding, box for net",net.name,"is,:",net.getBBCoord(),"]"
print "bbx,bby =,",net.bbx,",",net.bby
cost = net.netCost ()
total_cost+=cost
return total_cost

48APPENDIX A. PYTHON IMPLEMENTATION OF PLACEMENT ALGORITHM

Table A.3: Python Function for Try Swap

Global declaration: the coordinates to be skipped
FT_clb = [[3,3],[2,2]]
FT_io = []

#this function is used to attempt to make a swap in the location of a randomly selected block
Return 1 if the move is accepted, otherwise O return 0 if rejected
def try_swap(t):

global current_cost

to_block = None

from_block = random.choice(block_list)

#find out nets affected by swap

to_nets = []

from_nets = from_block.getNets()

from_nets_name = []

for net in from_nets:
from_nets_name.append(net.name)

#initial cost

#o0ld_cost = current_cost

initial from coordinates
_from_x = from_block.x
_from_y = from_block.y

#initial to coordinates
if from_block.type == "CLB":
_to_x, _to_y = random.randrange(1,4,1), random.randrange(1,4,1)
while [_to_x, _to_yl] in FT_clb:
_to_x, _to_y = random.randrange(1,4,1), random.randrange(1,4,1)
else:
#selects a random value from the possible locations for io
location_list_io = [[0,1], [0,2],[0,3],[4,1], [4,2],[4,3],[1,0],[2,0],[3,01,[1,4],[2,4],(3,4]]
random_index = randrange(0,len(location_list_io))
_to_x, _to_y = location_list_io[random_index]
while [_to_x, _to_y] in FT_io:
_to_x, _to_y = random.randrange(1,4,1), random.randrange(1,4,1)

for block in block_list:
#print block.name
#print block.getLocation() [0],",",block.getLocation() [1]
if (block.getLocation() [0] == _to_x)& (block.getLocation()[1] == _to_y)
to_block = block
to_nets = to_block.getNets()

#store list of nets to update - includes nets connected to 'to' block and 'from' block
nets_to_update = list(set(to_nets + from_nets))

#Print the current values of net cost and bounding box for nets in net_to_update
for net in nets_to_update:

cost = net.netCost()

print "Net,cost =", cost

old_net_cost = 0

for net in nets_to_update:
#Find the net cost of nets to be updated before swapping
old_net_cost += net.netCost()

print "old net,cost_of nets_to_update =,", old_net_cost
Perform swap
if to_block == None: #move to empty location
from_block.x = _to_x
from_block.y = _to_y
else: #swap to and from blocks
to_block.x,to_block.y = from_block.x, from_block.y
from_block.x, from_block.y = _to_x, _to_y

new_net_cost = 0
#Blocks have been swapped => nets attached to these blocks have different Bounding box coordinates
#Find net cost of nets to be updated after swapping
for net in nets_to_update:
new_net_cost += net.netCost()
print "newyunetycost_of nets_to_update =_,",new_net_cost #print new net costs

delta = new_net_cost - old_net_cost

keep_switch = assessSwap(delta,t) #assess the swap

if keep_switch == 1: #The move is accepted
current_cost += delta

return 1;
else: # The move is rejected, revert block locations to old valuese
from_block.x,from_block.y = _from_x,_from_y

if to_block != None:
to_block.x, to_block.y = _to_x, _to_y
return O;

Table A.4: Python code for Placement

Start Simulated Annealing

num_blocks = len(graph.nodes())

inner_num = pow(num_blocks, 1.3333)

#move_lim = (int) (inner_num*pow(num_blocks,1.3333))

move_lim = int(10*inner_num)

print "Move_lim, =_", move_lim

list_all_nodes = list_compute_nodes + list_output_nodes + list_input_nodes

doInitialPlacement() #do initial placement

print " The nets in the_ design are listed"
for net in net_list:
print net.name, net.num_target,
net.printTargetList ()
print ","

initial_cost = costFunction() #get initial cost
printPlacement () #print initial placement
printBB() #print bounding box

temp = intialTemp() #set initial temperature
current_cost = initial_cost

total_iter = 0

line = "TuLuuuoouuuuooooAv . nCostuuuuuuuuAccept . urat . yuuuTot . Moves\n"
outfile.write(line);

#Start of while loop
while exitCrit(temp,current_cost) == 0:
print "Number of iterations,=_", move_lim
print "Start_of while loop!"
print "temperature,=,", temp
success_sum = 0
avg_cost = 0

#start of inner iteration
for inner_iter in range(move_lim):
print "The costyof the configuration,in this iteration is:",current_cost
if try_swap(temp) ==
success_sum += 1
avg_cost += current_cost
#Total iterations is incremented
total_iter += move_lim
success_rat = float(success_sum/float(move_lim))

print "The average costyof the configuration, in this iteration.is:",avg_cost, success_sum
if success_sum != 0
avg_cost = avg_cost/ success_sum

line = "%fuuhfuouuuuhfoouuonkd\n" % (temp, avg_cost, success_rat, total_iter)
outfile.write(line)
print "The average cost of the configuration,in this iteration,is: ",avg_cost
#update temperature
oldt = temp
temp = tempSchedule(temp,success_rat) # Temperature is updated
print " The new temperature_,is", temp

print "Final placement cost_is_,", current_cost
print "The_ final placement is, "
printPlacement ()

50APPENDIX A. PYTHON IMPLEMENTATION OF PLACEMENT ALGORITHM

Table A.5: Python Class for Block

#Data Structure to store information about a block
class Block:
pins = []

nets = [] #nets[0] - net connected to pin O, nets[1] - net connected to pin 1, - location

#constructor
def __init__(self,name,blk_type):
self.name = name #name is the node name in the dfg
self.type = blk_type #blk_type can be CLB/INPAD/OUTPAD
self.nets = []
self.x = self.y = -1 #initializing with -1, -1
if (self.type == 'CLB'):
self.pins = [-1 -1 -1 -1 -1 -1 -1 -1]

else:
self.pins = []

#Add nets to the blocks
def addNet(self, net):
self.nets.append(net)

#sets the coordinates of the block
def setLocation(self, x, y):
self.x = x
self.y = y

#returns the coordinates of the block
def getLocation(self):
return self.x,self.y

#checks if block is placed
def isPlaced(self):
if self.x > -1 and self.y > -1:
return 1
else:
return -1

#returns all details of the block
def details(self):
print self.name, self.type, self.getLocation(),

#returns the type of block
def getType(self):
return self.type

#returns the nets connecting to self
def getNets(self):
return self.nets

Table A.6: Python Class for Net

#Data Structure to store information about a block
Net has 1 source and can have >=1 destination(target)
class Net:

num_target = 0

ncost = 0.0

#initialises net with net name and source block
def __init__ (self, name, src, src_blk):
self.name = name
self.source = src
self.source_blk = src_blk
self.target_list = []

#adds another destination to a net
def addConn(self,dest,dest_blk):
self.num_target += 1
self.target_block = dest_blk
if self.target_block != None:
self.target_list.append(self.target_block)

#bbx = [left bottom right top]
#sets q factor depending on number of terminals
def getQfactor(self):
if len(self.target_list)<=11:
self.qfactor = cross_count[len(self.target_list)]
else:
self.qfactor = 1.5455

return self.qfactor

#returns the coordinates of the bounding box for the net
def getBBCoord(self):
maxx = self.source_blk.getLocation() [0]
minx = max(maxx,1)
maxy = self.source_blk.getLocation() [1]
miny = max(maxy,1)
#check coordinates of each target in target list to set min and max of bb
for target in self.target_list:
if target.getLocation() [0] < minx:
minx = max(target.getLocation()[0],1)
if target.getLocation() [0] > maxx:
maxx = target.getLocation() [0]
if target.getLocation()[1] <miny:
miny = max(target.getLocation()[1],1)
target.getLocation() [1] > maxy:
maxy = target.getLocation()[1]
#Bounding box coordinates for net is found
self.maxx = maxx
self.minx = minx
self.miny = miny
self.maxy = maxy
self.bbx = self.maxx - self.minx + 1
self.bby = self.maxy - self.miny + 1
mincoord = self.minx,self.miny
maxcoord = self.maxx,self.maxy

H

i

return mincoord,maxcoord

#returns the bouding box
def findBB(self):
return self.bbx, self.bby

#Returns cost of a net

def netCost(self):
self.bbx, self.bby = self.findBB()
#Cavx(n) and Cavy(n) are the average channel capacities
cavx = cavy = 0.01
cost = self.getQfactor() * (self.bbx + self.bby)*cavx
return cost

#prints list of target nodes for the net
def printTargetList(self):
for target in self.target_list:
if target.name != None:
target.details(),

Appendix B

Python Implementation of Routing
Algorithm

Table B.1: Python Functions for Directed Search

def directed_search_expand_trace_segment(trace, target, astar_fac, rem_conn_to_sink):
if rem_conn_to_sink == 0:

for item in trace:

item_type = type(item)

item_info = getNodeinRRNodeInfo(item)

if item_type == Block:
sink = item_info.isSink

if item_type == Ipin or sink ==
total_cost = astar_fac * get_directed_search_expected_cost(item, target)
node_to_heap(item,total_cost)

def directed_search_expand_neighbour (heap, net,current,target,astar_fac):
bb_min_coord = []
bb_max_coord = []
bb_min_coord, bb_max_coord = net.getBBCoord()

for node_neighbour in current.neighbours():

if node_neighbour.x > bb_max_coord.x or node_neighbour.y > bb_max_coord.y or node_neighbour.x < bb_min_coord.x or
node_neighbour.y < bb_min_coord.y:
continue

if type(node_neighbour) == Ipin and node_neighbour.blk != target:
continue

new_back_pcost = 0

if bend_cost!= 0:
if (current.type == "CHANY" and node_neighbour.type == "CHANX") or (current.type == "CHANX" and node_neighbour.
type == "CHANY"):
new_back_pcost += bend_cost

new_tot_cost = new_back_pcost +astar_fac*get_directed_search_expected_cost(node_neighbour, target_node)
node_info = getNodeinRRNodeInfo(neighbour_node)

node_info.total_cost = new_tot_cost

node_to_heap(node_neighbour,new_tot_cost)

02

Table B.2: Python Functions for Routing

def directed_search_route_net(net,mst_net):

#Start the Directed Search Algorithm to route a particular net
num_sinks = len(net.target_list)
heap = BinHeap()
target = mst_net[0][1]
directed_search_add_source_to_heap(net,target, astar_fac)

#do some more stuff.............
#Maze router is invoked num_sinks times to complete all the connections

for i in range(num_sinks):
#Since heap is emptied after a sink is found....
#in the first iteration the heap head contains the source node
target_node = mst_net[i][1]
directed_search_expand_trace_segment ()
#In the first iteration, the source node is the head of the heap
current = getHeapHead(heap) # current node is head of the heap

if current == None:
print "\n_Infeasible routing"
inode = current

#Expanding the wavefront from source node till target node is reached. Nodes are retrieved from the
#heap. The head of the heap contains the neighbour with minimum cost........
while inode != target_node:

rrnode_info = getNodeinRRNodeInfo(current.node)

old_tcost = rrnode_info.total_cost

new_tcost = current.cost

#0ld_back_cost = rrnode_info.backward_path_cost

#new_back_cost = current.backward_path_cost

if old_tcost >new_tcost:# and old_back_cost > new_back_cost:

directed_search_expand_neighbour(heap,net,current,target_node,astar_fac)
old_cur = heap.heapList[1]
current = heap.getHeapHead()

if current == None:
reset_path_costs()
return -1

#End of while loop
#After a sink is found..
updateTraceback()
pathfinderUpdateOneCost ()
empty_heap()
reset_path_costs()

#get head from the Heap

def isFeasibleRouting():
print "
return -1

def doRouting():

iter = 0

num_nets = len(net_list)

pres_fac = first_iter_pres_fac

#Do NUM_ITERATIONS iterations

while iter <= NUM_ITERATIONS:
#Reset RRNodeInfo[] items to default values at the start of every iteration
The values keep updating until routing of all nets is attempted
del rr_node_info_list[:]

for inet in range(O,num_nets):
#First, get the MST of the net - holds info about the source and sinks.
mst_net = buildMST(net)
directed_search_route_net(net,pres_fac,0,mst_net)
#if the net is not routable return to
if isRoutable(nets[inet]) ==
return -1

if isFeasibleRouting() == 1:
#the routing is complete
return 1
else
if iter ==
pres_fac = initial_pres_fac
pathfinderUpdateCost (pres_fac, 0)
else:
pres_fac *= pres_fac_mult
pathfinderUpdateCost (pres_fac,acc_fac)

93

Bibliography

1]

2]

3]

[4]

O.T. Albaharna, P. Y K Cheung, and T.J. Clarke. On the viability of FPGA-
based integrated coprocessors. In IEEE Symposium on Field-Programmable Cus-
tom Computing Machines (FCCM), pages 206215, 1996.

Russell Tessier, Kenneth Pocek, and Andre DeHon. Reconfigurable computing
architectures. Proceedings of the IEEE, 103(3):332-354, 2015.

Stephen M Trimberger. Three ages of FPGAs: A retrospective on the first thirty
years of FPGA technology. Proceedings of the IEEE, 103(3):318-331, 2015.

Andre DeHon. Fundamental underpinnings of reconfigurable computing archi-
tectures. Proceedings of the IEEE, 103(3):355-378, 2015.

A. George, H. Lam, and G. Stitt. Novo-g: At the forefront of scalable reconfig-
urable supercomputing. Computing in Science Engineering, 13(1):82-86, 2011.

Katherine Compton and Scott Hauck. Reconfigurable computing: a survey of

systems and software. ACM Computing Survey, 34:171-210, June 2002.

Stephen Neuendorffer and Fernando Martinez-Vallina. Building zynq accelera-
tors with vivado high level synthesis. In Proceedings of the International Sym-
posium on Field Programmable Gate Arrays (FPGA), pages 1-2, 2013.

Andrew Canis, Jongsok Choi, Mark Aldham, Victor Zhang, Ahmed Kammoona,
Jason H. Anderson, Stephen Brown, and Tomasz Czajkowski. LegUp: high-level
synthesis for FPGA-based Processor/Accelerator systems. In Proceedings of the

o4

BIBLIOGRAPHY 95

[10]

[11]

[12]

[13]

[14]

[15]

International Symposium on Field Programmable Gate Arrays (FPGA), pages
33-36, 2011.

Yun Liang, Kyle Rupnow, Yinan Li, and et. al. High-level synthesis: productiv-
ity, performance, and software constraints. Journal of Electrical and Computer
Engineering, 2012(649057):1-14, January 2012.

Walid Najjar and Jason Villarreal. FPGA code accelerators - the compiler per-

spective. In Proceedings of the Design Automation Conference, 2013.

J. Villarreal, A. Park, W. Najjar, and R. Halstead. Designing modular hardware
accelerators in ¢ with ROCCC 2.0. In IEEFE Symposium on Field-Programmable
Custom Computing Machines (FCCM), pages 127-134, 2010.

C. Plessl and M. Platzner. Zippy - a coarse-grained reconfigurable array with
support for hardware virtualization. In Proceedings of the International Con-
ference on Application-Specific Systems, Architecture Processors (ASAP), pages
213-218, 2005.

Neil W. Bergmann, Sunil K. Shukla, and Jrgen Becker. QUKU: a dual-layer
reconfigurable architecture. ACM Transactions on Embedded Computing Systems
(TECS), 12:63:1-63:26, March 2013.

J. Coole and G. Stitt. Intermediate fabrics: Virtual architectures for cir-
cuit portability and fast placement and routing. In Proceedings of the In-

ternational Conference on Hardware/Software Codesign and System Synthesis

(CODES+ISSS), pages 13-22, October 2010.

Davor Capalija and Tarek S. Abdelrahman. A high-performance overlay ar-
chitecture for pipelined execution of data flow graphs. In Proceedings of the
International Conference on Field Programmable Logic and Applications (FPL),
pages 1-8, 2013.

Venkatraman Govindaraju, Chen-Han Ho, Tony Nowatzki, Jatin Chhugani, Na-
dathur Satish, Karthikeyan Sankaralingam, and Changkyu Kim. Dyser: Unifying

o6

[17]

[18]

[19]

[21]

BIBLIOGRAPHY

functionality and parallelism specialization for energy-efficient computing. IFEFE
Micro, 32(5):38-51, 2012.

A. K. Jain, S. A. Fahmy, and D. L. Maskell. Efficient overlay architecture based
on DSP blocks. In IEEE Symposium on FPGAs for Custom Computing Machines
(FCCM), 2015.

A. K. Jain, X. Li, S. A. Fahmy, and D. L. Maskell. Adapting the DySER architec-
ture with DSP blocks as an Overlay for the Xilinx Zynq. In International Sympo-
sium on Highly-Efficient Accelerators and Reconfigurable Technologies (HEART),
2015.

Cheng Liu, C.L. Yu, and H.K.-H. So. A soft coarse-grained reconfigurable array
based high-level synthesis methodology: Promoting design productivity and ex-
ploring extreme FPGA frequency. In IEEE Symposium on Field-Programmable
Custom Computing Machines (FCCM), pages 228228, 2013.

Jason Cong, Hui Huang, Chiyuan Ma, Bingjun Xiao, and Peipei Zhou. A fully
pipelined and dynamically composable architecture of cgra. In IEEE Symposium
on FPGAs for Custom Computing Machines (FCCM), pages 9-16, 2014.

G. Grewal M. Xu and S. Areibi. Starplace: A new analytic method for fpga
placement. Integration, the VLSI Journal, 43(1):1-33, January 2011.

	Introduction
	Motivation
	Contribution
	Organization

	Background
	Placement
	Simulated Annealing Method
	Analytical Method

	Routing
	Geometric Routing Algorithm and Rip-up and Re-route
	Maze Routing Algorithm
	A* Search Routing
	The Pathfinder

	Versatile Place and Route (VPR)
	Python-graph Library

	Placement and Routing of DFG nodes on Island-style Overlay
	Island-style Overlay Architecture
	Switch Boxes
	Connection Boxes
	Channels

	Automated Mapping Tool
	Data Flow Graph (DFG) Generation
	DFG to VPR Compatible Netlist Conversion
	Placement and Routing onto the Overlay

	Detailed Description of the Placement
	Flow of the Placement

	Detailed Description of the Routing
	Initialization of the Routing
	Cost Functions in Routing
	Flow of the Routing
	Directed Search Algorithm in the Routing
	Routing Demonstration

	Fault Tolerance

	Conclusions and Future Work
	Conclusions
	Future work

	Appendix Python Implementation of Placement Algorithm
	Appendix Python Implementation of Routing Algorithm
	Bibliography

