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Abstract

Research efforts have shown strength of FPGA accelerators in a wide range of ap-

plication domains where compute kernels can execute efficiently on an FPGA device.

Despite these advantages, FPGAs have not yet been ready for mainstream comput-

ing. One reason is that design productivity remains a major challenge, restricting

the effective use of FPGA accelerators to niche disciplines involving highly skilled

hardware engineers. Coarse-grained FPGA overlay architectures have been shown

to be effective when paired with general purpose processors, offering software-like

programmability, fast compilation, application portability and improved design pro-

ductivity. These architectures enable general purpose hardware accelerators, allowing

hardware design at a higher level of abstraction, but at the cost of area and perfor-

mance overheads. This report presents an analysis of compute kernels (extracted

from compute-intensive applications) and effect of DSP-aware composition on DFG

characteristics. We observe up-to 65% reduction in the number of nodes, up-to 32%

reduction in the number of edges and up-to 42% reduction in the graph depth us-

ing DSP aware-composition. We perform design space exploration of linear dataflow

overlay architectures by modeling programmability cost as a function of overlay de-

sign parameters. For the composite graphs, we present experiments to compare the

programmability cost of island-style overlay with linear dataflow overlay. We observe

upto 77% reduction in cost for sets using ASAP scheduling based approach and upto

81% reduction using proposed approach compared to island-style overlays. Finally,

we evaluate the performance of overlay architecture against a set of commercial de-

vices, such as 16-core EPIPHANY device and dual-core ARM cortex-A9, for a set of

compute kernels.
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Chapter 1

Introduction

1.1 Motivation

While the performance benefits of reconfigurable computing over processor based

systems have been well established [8, 9, 10], such platforms have not seen wide

use beyond specialist application domains such as digital signal processing and com-

munications. Poor design productivity has been a key limiting factor, restricting

their effective use to experts in hardware design [11]. Even as High Level Synthesis

(HLS) tools improve in efficiency [12, 13], prohibitive compilation time (specifically

place and route time) still limits productivity and mainstream adoption of reconfig-

urable platforms. Coarse-grained FPGA overlay architectures [14, 15, 3, 4, 1, 6, 5, 16]

have been shown to be effective when paired with general purpose processors, offering

software-like programmability, fast compilation, application portability and improved

design productivity. These architectures enable general purpose hardware accelera-

tors, allowing hardware design at a higher level of abstraction, but at the cost of

area and performance overheads. In our work, we aim to conduct an analysis of com-

pute kernels (extracted from compute-intensive applications) and effect of DSP-aware

composition on Data Flow Graph (DFG) characteristics. We also aim to compare the

programmability cost of island-style overlay with linear dataflow overlay by model-

ing programmability cost of linear dataflow overlay as a function of overlay design

parameters.

2
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1.2 Contribution

We first present analysis of compute kernels by extracting DFG using a C to DFG

generator and then we present the effect of DSP-aware composition on DFG charac-

teristics. Python graph library have been used for analyzing DFGs and DSP-aware

composition. We perform design space exploration of linear data-flow style overlay

architectures by modeling programmability cost as a function of overlay design param-

eters. In this, we first describe an approach for minimizing programmability cost by

finding overlay design parameters for a set of compute kernels using sequenced DFGs

by As Soon As Possible (ASAP) scheduling. We then present a novel approach for

further reduction in programmability cost for the same set of compute kernels using

DFGs sequenced by List scheduling algorithm where different DFGs can be sched-

uled using different resource constraints. Finally we compare the programmability

cost of island-style and linear-data flow style overlays for a set of compute kernels.

We also present an automated tool flow to provide a mechanism of finding optimal

overlay design parameters for a set of compute kernels. We also evaluate the per-

formance of overlay architecture against a set of commercial devices, such as 16-core

EPIPHANY device and dual-core ARM cortex-A9 for a set of compute kernels. The

main contributions can be summarized as follows:

� The analysis of compute kernels using a data flow graph based approach and

the effect of DSP-aware composition on DFG characteristics

� Design space exploration of linear data-flow style overlay architectures by mod-

eling programmability cost as a function of overlay design parameters

� Programmability cost comparison of island-style and linear-data flow style over-

lays for a set of compute kernels

� An automated tool flow that takes C description of a compute kernels and

provide optimal overlay design parameters for reducing programmability cost

� Performance evaluation of overlay architecture against a set of commercial de-

vices
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1.3 Organization

The remainder of the report is organized as follows: Chapter 2 presents background

information on computer kernels and overlay architectures. Chapter 3 studies current

state of the art overlays and techniques for application mapping. In chapter 4, we

present the analysis of compute kernels and the effect of DSP-aware composition on

DFG characteristics In chapter 5, we present design methodology of linear dataflow

overlay architectures for a set of compute kernels and compare the programmability

cost with island-style overlays. Chapter 6, presents performance evaluation of overlay

architecture against a set of commercial devices, such as 16-core EPIPHANY device

and dual-core ARM cortex-A9 for a set of compute kernels. We conclude in chapter

7 and discuss future work.



Chapter 2

Background

2.1 Execution of Compute Kernels

In a typical signal processing application, 20% of the program code consumes 80%

of the application execution time. This short section of code generally contains com-

pute intensive arithmetic operations which we refer to as compute kernel. Fig. 2.1

illustrates this concept.

Figure 2.1: Typical Signal Processing Application

A General Purpose Processor (GPP) can be used for the execution of compute ker-

nels by describing their functionality using C or C like programming languages. With

the advancements in technology, parallel processing architectures such as multi-cores

CPUs and DSPs, GPUs, Massively parallel processor arrays, FPGA based accelera-

tors (as shown in Fig. 2.2) are gaining popularity for accelerated execution of kernels.

5



6 CHAPTER 2. BACKGROUND

Figure 2.2: Execution Platforms for Compute Kernels

Silicon technology will continue to provide an exponential increase in the avail-

ability of raw transistors. Effectively translating this resource into application per-

formance, however, is an open challenge that conventional processor designs will not

be able to meet. On the other hand, Field Programmable Gate Array (FPGA) de-

vices provide a substrate for implementing kernels as high performance fully parallel

and pipelined designs [17]. Just to provide the clear understanding of the concept,

we explain the execution of kernels on general purpose processors and FPGA based

specialized accelerators in the following sections.

2.1.1 Execution on General Purpose Processors

As mentioned earlier, a general purpose processor can be used for the execution of

compute kernels by describing their functionality using C or C like programming lan-

guages. A compiler then generates a list of instructions for the processor to execute

sequentially. For example, C description of a compute kernel is shown in Table 2.1

which is then converted to a list of operations (GIMPLE description) using GCC

compiler. Since the processor executes the list of operations sequentially, the execu-

tion time of the kernels increases on increasing the complexity of the kernel. Fig. 2.3

shows the high level view of kernel program execution on a general purpose processor.
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Table 2.1: Compute Kernel Code Descriptions

(a) C description (b) GIMPLE description
#include <math.h>

#define SIZE 1000

#ifdef KERNEL

int kernel(int x){

int temp = 16*x;

return (x*(x*(temp*x-20)*x+5));

}

#endif

#ifndef KERNEL

int main(void){

int i;

int in[SIZE];

int out[SIZE];

for (i=0; i<SIZE; i++){

out[i] = kernel(in[i]);

}

return 0;

}

#endif

kernel (int x)

gimple_bind <

int D.2404;

int D.2405;

int D.2406;

int D.2407;

int D.2408;

int D.2409;

int temp;

gimple_assign <mult_expr , temp , x, 16>

gimple_assign <mult_expr , D.2405, temp , x>

gimple_assign <plus_expr , D.2406, D.2405, -20>

gimple_assign <mult_expr , D.2407, D.2406, x>

gimple_assign <mult_expr , D.2408, D.2407, x>

gimple_assign <plus_expr , D.2409, D.2408, 5>

gimple_assign <mult_expr , D.2404, D.2409, x>

gimple_return <D.2404 >

>

Figure 2.3: Kernel Execution on General Purpose Processor

2.1.2 Execution on FPGA based Specialized Accelerators

Usage of specialized accelerators is becoming significantly important in accelerating

compute kernels. These accelerators are normally deployed as an Application Specific

Integrated Circuit (ASIC) block alongside a general purpose processor. This limits

the flexibility and increases time to market since developing an ASIC is still a complex

and time consuming process. On the other hand, FPGAs are becoming popular for

rapid-prototyping of accelerators.
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For more than a decade, researchers have shown that FPGAs can accelerate a wide

variety of software, in some cases by several orders of magnitude compared to state-

of-the-art general purpose processors [18, 19]. To understand the execution of kernels

on FPGAs, we must first understand how FPGA architectures differ from general

purpose processor architectures. The most fundamental difference is that general-

purpose processors provide functionality to execute a list of instructions sequentially,

whereas FPGA architectures implement compute kernels by providing numerous re-

sources such as configurable logic blocks, DSP blocks for logic and arithmetic and

on-chip Block RAMs for storage. These resources are generally interconnected via

a programmable island-style routing network which can be programmed to create

specialized datapaths as shown in Fig. 2.4(a).

To use an FPGA for accelerating compute kernels, designers typically start by

manually converting the compute kernel into an fully pipelined datapath as shown

in Fig. 2.4, specified using Hardware description language (HDL). Fig. 2.4(b) shows

the datapath of the kernel previously shown in Table 2.1. A fully pipelined datapath

on FPGA results in maximum performance by producing output data at every clock

cycle. However this performance comes at the cost of designer effort.

(a) Datapath Generation

add Imm 5 N8

O0 N9

I0 N1

mul N2

mul N3

mul Imm 16 N4

mul N5

mul N6

sub Imm 20 N7

(b) Datapath of the
compute kernel

Figure 2.4: FPGA based Specialized Accelerators



2.1. EXECUTION OF COMPUTE KERNELS 9

FPGA accelerators are normally designed at a low level of abstraction (typically

Register Transfer Level (RTL)) in order to obtain an efficient implementation, and

this can consume more time and make reuse difficult when compared with a similar

software design. As such, design productivity remains a major challenge, restricting

the effective use of FPGA accelerators to niche disciplines involving highly skilled

hardware engineers. Designers must specify the entire structure of the data path and

must also define control for reading inputs from memories into buffers, stalling the

data path when buffers are full or empty, writing outputs to memory, and so on. For

a typical FPGA board, a fully pipelined datapath implementation of the several lines

of C code may require more than 1,000 lines of HDL code. Such complexity leads to

the frequent question: if compilers can extract parallelism from high-level code for

multicores and GPUs, why cant they map a compute kernel spatially onto FPGAs in

an automated fashion? For more than a decade, researchers have worked toward this

goal with HLS tools.

High-level synthesis (HLS) has been proposed as a way of addressing the lim-

ited design productivity and manpower capabilities associated with hardware de-

sign [12, 13]. Advancements in HLS tools have helped raise the level of programming

abstraction from RTL to high level languages, such as C or C++. However, achiev-

ing desired performance often still requires detailed low-level design engineering effort

that is hard for non-experts. Even as HLS tools improve in efficiency, prohibitive com-

pilation times (specifically the place and route times in the backend flow) still limit

productivity and mainstream adoption [11]. Hence, there is a growing need to make

FPGAs more accessible to application developers who are accustomed to software

API abstractions and fast development cycles [20].

Coarse grained configurable overlay architectures have been proposed as a method

to overcome some of these issues [14, 15, 3, 4, 1, 16]. Overlays can be used for reducing

the prohibitive compilation time required to map an application to the conventional

fine-grained FPGA fabric. Overlays have also been shown to be effective when paired

with general purpose processors [2, 15] as this allows the hardware fabric to be viewed

as a software-managed hardware task, enabling more shared use. We describe FPGA

Overlay architectures in the next section.
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2.2 FPGA Overlay Architectures

Overlay architectures consist of a regular arrangement of coarse grained routing and

compute resources. The key attraction of overlay architectures is software-like pro-

grammability through mapping from high level descriptions, application portability

across devices, design reuse, fast compilation by avoiding the complex FPGA imple-

mentation flow, and hence, improved design productivity. Another main advantage is

rapid reconfiguration since the overlay architectures have smaller configuration data

size due to the coarse granularity. Accelerators can be described at a higher level of

abstraction and compiling it for overlays is several orders of magnitude faster than for

the fine grained FPGAs. Researchers have proposed fine [21], [22] and coarse grained

[14], [15], [3], [4], [16], [23] overlay architectures to abstract FPGA fabric resources.

2.2.1 Architecture

As shown in Fig. 2.5, coarse grained FPGA overlay architecture is a two-dimensional

array of reconfigurable tiles, implemented on top of a commercial FPGA device.

Coarse grained tiles contains programmable processing elements (PEs) which are

Overlay

FPGA fabric

Coarse Grained Logic Blocks (DSPs)

Coarse Grained Array of Tiles

Figure 2.5: FPGA Overlay Architecture
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interconnected using programmable interconnect (PI) and the functions of the PE

and the PI are controlled by configuration data. The overlay overcomes the need

for a full cycle through the vendor implementation tools, instead presenting a much

simpler problem of programming an interconnected array of processing elements.

The possible configuration space and reconfiguration data size is much smaller

than for direct FPGA implementation of kernels because of the coarser granularity of

the overlay. An overlay provides a leaner mechanism for hardware task management

at runtime as there is no need to prepare distinct bitstreams in advance using vendor-

specific compilation (synthesis, map, place and route) tools. Instead, the behaviour

of the overlay can be modified using software defined overlay configurations.

2.2.2 Host Processor Interface

Despite having the implementation of the overlay architecture and its performance

gain, there is no guarantee that it will surely provide reduction in kernel execution

time. It depends heavily on how the overlay is interfaced to the host processor,

communication mechanism between overlay, host processor and the external memory,

communication bandwidth and latencies etc. Researchers have shown the effective

use of coarse grained overlay architectures by pairing them with host processors as

a coprocessor [24, 2] or as a part of the processor’s pipeline [25]. Fig. 2.6 shows the

integration of DySER [25, 26] overlay into the pipeline of a processor.

Figure 2.6: DySER Interfacing with Host Processor [1]
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Integrating an overlay within a processor pipeline can provide huge performance

and energy efficiency at the expense of complete redesign of processor micro-architecture.

Another possible approach is to interface the overlay (as a co-processor) with the

host processor via standard communication interfaces. To address possible bottle-

neck problems, particularly in providing high bandwidth transfers between the host

procesor and the co-processor implemented on the FPGA fabric [27], it has been pro-

posed to more tightly integrate the processor and the FPGA fabric. A number of

tightly coupled architectures have resulted [28, 29], including vendor specific systems

with integrated hard processors. One example of pairing the overlay (Intermediate

Fabric (IF) Overlay [3]) with a high performance ARM processor via an Advanced

eXtensible Interface (AXI) interface in a commercial computing platform (the Xilinx

Zynq[30]) is shown in Fig. 2.7. Zynq platform partition the hardware into a Process-

ing system (PS), containing one or more processors along with peripherals, bus and

memory interfaces, and other infrastructure, and the Programmable Logic (PL) where

custom hardware can be implemented. The two parts are coupled together with high

throughput interconnect to maximize communication bandwidth. The Xilinx-Zynq

consists of a dual-core ARM Cortex A9 processor equipped with a double-precision

Floating Point Unit (FPU), commonly used peripherals and reconfigurable fabric.

DDR

ARM Processor

DDR 
Controller

Hard DMA

HP PortGP Port

Central 
Interconnect

M M S S S S S S

PS

PL

BRAM BRAM BRAM BRAM...

IF Region
Static 

Region

AXI4

AXI-Lite

Figure 2.7: Intermediate Fabric (IF) Interfacing with Host Processor [2]
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2.2.3 Runtime Management

When paired as a coprocessor, run-time management, including overlay configura-

tion loading, data communication, can be carried out using an operating system

(Linux) [24] and also using a commercial hypervisor [31]. Firstly, user needs to iden-

tify a kernel, as described in Table 2.2, to be implemented on top of overlay. Then

DFG can be extracted after compiling this code using compiler front-end. After that a

place and route tool can be used to map the DFG on top of overlay. After generating

configurations based on the placement and routing, kernel code can be transformed

in the code containing overlay APIs as shown in Table 2.2.

Table 2.2: Source Code Transformation

(a) Original C description (b) Modified C description
1 #include <math.h>

2 #define SIZE 1000

3
4 #ifdef KERNEL

5 int kernel(int x)

6 {

7 int temp = 16*x;

8 return (x*(x*(temp*x-20)*x+5));

9 }

10 #endif

11
12 #ifndef KERNEL

13 int main(void)

14 {

15 int i;

16 int in[SIZE];

17 int out[SIZE];

18 for (i=0; i<SIZE; i++){

19 out[i] = kernel(in[i]);

20 }

21 return 0;

22 }

23 #endif

1 #include <overlay.h>

2 #include <math.h>

3 #define SIZE 1000

4
5 void kernel(int *a, int *b, int length){

6 // allocate BRAM as overlay memory

7 memory_a = overlay_malloc(size_a);

8 memory_b = overlay_malloc(size_b);

9 //load overlay configuration for the task

10 load_configuration ();

11 //copy inputs

12 overlay_transfer_data(a, memory_a , size_a);

13 // Trigger overlay to process data

14 overlay_process ();

15 // copy_outputs

16 overlay_transfer_data(memory_b , b, size_b);

17 }

18 int main(void){

19 int in[SIZE];

20 int out[SIZE];

21 kernel(in, out , SIZE);

22 return 0;

23 }

The working of modified C description is pretty straight-forward as shown in code

listing 2.2. First it allocates input and output BRAMs as overlay memory. Then it

loads the overlay configuration for the task. After that it transfers the input data

to input BRAM and triggers the overlay. Finally, the Overlay starts processing the

input data in a streaming fashion and transfer the processed data to output BRAMs.
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2.3 Kernel Compilation on Overlays

Programming for Overlays can be done at a higher level (normally C/C++ or DFG

level) and the high level description of kernel can be compiled onto overlay using an

automated mapping tool-flow. There are normally two main steps associated with

kernel compilation to overlays. Firstly, a compiler front-end extracts the DFG out of

a high level description of the application [28],[32]. After that the DFG gets mapped

to the overlay after going through a process of operation scheduling and placing and

routing [33],[14],[4]. The work in this report uses HercuLeS front-end compiler for

DFG generation and Python-graph library for further analysis on DFGs. We describe

these here as follows.

2.3.1 HercuLeS Front-end Compiler

HercuLeS is a high-level synthesis tool that automatically transforms C description to

RTL implementation of compute kernels. It translates GIMPLE (Intermediate Repre-

sentation (IR) of GCC ) to NAC. It has two main components: a frontend (nac2cdfg)

and a backend (cdfg2hdl). We use front-end (shown in Fig. 2.8)to generate DFGs

of compute kernel. C description is passed to GCC for GIMPLE dump generation,

which is then processed by gimple2nac and finally nac2cdfg converts it to data flow

graph (dot file format). We process the data flow graph using Python-graph Library.

Figure 2.8: Front-end Compilation of Kernels
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2.3.2 Python-graph Library

Python-graph is a library (containing a set of APIs) for working with graphs in

Python. It provides suitable data structure for representing graphs and an imple-

mentation of important algorithms. It is a pretty useful development environment

for developers interested in exploring graph algorithms for data flow graph (DFG)

analysis. The most important feature which we have used is digraph class and the

APIs are listed in Fig. 2.9.

Figure 2.9: Useful APIs for DFG processing

Using the set of APIs provided by this library, we developed a set of python

modules containing implementation of frequently used graph scheduling algorithms.

We implemented ASAP, As Late As Possible (ALAP) and List Scheduling algorithms,

described later in this report.



Chapter 3

Literature Survey on FPGA

Overlays

In the area of coarse grain overlay architectures, the compute the routing logic can

either perform the same operation over the time, or can loop over a short list of

instructions or can execute a fully fledged instruction stream. Based on this variety,

researchers have proposed both spatially and temporally programmed overlays that

are mapped to the fine grained fabrics of modern FPGAs. In spatially programmed

overlays, the compute logic and routing of the overlay are unchanged while a compute

kernel is executing while in temporally programmed overlays, the compute logic and

routing of the overlay change on a cycle by cycle basis while a compute kernel is

executing [16, 34, 35]. In this report, we focus on spatially programmed overlays.

Spatially programmed overlays normally have a single instruction register within

each Functional Unit (FU) and hence FU behaves like a data flow processing element.

An array of such a data flow processing element, interconnected via a island style

or Nearest Neighbor (NN) style programmable interconnect, can be considered as a

Spatially programmed overlay architecture. This type of overlay fits well in a scenario

where performance in terms of throughput is a primary objective given the rich logic

resources. With the exponential increase of logic density on FPGA devices, it is now

possible to accommodate a massive number of FUs on an FPGA which allows to map

all of the operations in a compute kernel spatially on the array of FUs to exploit

16
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the parallelism available. The throughput under this mapping would be one kernel

iteration per cycle since the initiation interval would be one. The primary target in

such a scenario would no longer be hardware sharing given the limited area constraint,

but rather achieving the highest performance in terms of throughput under the rich

logic resources. The key feature of such an array is the ability to exploit large amount

of physical hardware resources to deliver scalable performance for data-parallel and

throughput oriented applications.

3.1 Intermediate Fabrics

An overlay architecture, referred to as an intermediate fabric (IF) [3], [36] was pro-

posed to support near-instantaneous placement and routing. Standard VPR [37]

algorithms were used for placement and routing of compute kernels. It consists of 192

heterogeneous functional units comprising 64 multipliers, 64 subtracters, 63 adders,

one square root unit, and five delay elements with a 16-bit datapath and supported

the fully parallel, pipelined implementation of compute kernels.

Figure 3.1: Intermediate Fabrics as Island-style Overlay [3].

Unlike a physical device, whose architecture must support many applications, IFs

have been specialized for particular domains or even individual applications. Such

specialization hides the complexity of fine-grained Commercial Off-the-shelf (COTS)

devices, thus enabling fast place and route (700x speedup over vendor tools) at the

cost of significant area (34% - 44%) and performance (7%) overhead when imple-

mented on an Altera Stratix III FPGA [36]. However, the IF only achieved an Fmax
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of 125 MHz resulting in low throughput for the application benchmarks tested. Area

overhead comes into picture mainly because of virtual interconnect logic which com-

prised of multiplexers based routing. This overhead was reduced by 48% - 54% by

reducing flexibility of routing in [38], while improving speed by 24% with a mod-

est routability overhead of 16%. Based on the above mentioned work on IFs, an

end-to-end tool flow was presented for FPGA-accelerated scientific computing [39].

3.2 Mesh of FU based Overlay

This overlay executes a given DFG by mapping the graph nodes to the FUs and by

configuring the routing logic to establish inter-FU connections that reflect the graph

edges [4]. Multiple instances of the DFGs are then executed in a pipelined fashion on

the overlay to achieve high performance. In addition to integer arithmetic, overlay also

used floating point processing elements. It consisted of a 24×16 overlay with a nearest-

neighbor-connected mesh of 214 routing cells and 170 heterogeneous functional units

(FU) comprising 51 multipliers, 103 adders and 16 shift units. When implemented

on an Altera Stratix IV FPGA, the overlay consumed 75% of the total device ALMs,

with the routing network consuming 90% of the ALM resource used. An Fmax of

355 MHz and a peak throughput of 60 GOPS was reported. A placer and router was

also developed by customizing VPlace [40] and PathFinder [41], respectively.

Figure 3.2: Nearest-neighbor connected Mesh of Functional units [4].
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3.3 DySER Architecture

DySER [1, 26] was proposed as a coarse grained overlay architecture for improving

the performance of general purpose processors. It was originally designed as a het-

erogeneous array of 64 functional units interconnected with a circuit-switched mesh

network and implemented on ASIC. The DySER architecture was then improved

and prototyped, along with the OpenSPARC T1 RTL, on a Xilinx XC5VLX110T

FPGA [25]. However, due to excessive LUT consumption, it was only possible to fit

a 2x2 32-bit DySER, a 4x4 8-bit DySER or an 8x8 2-bit DySER on the FPGA. An

adapted version of a 6x6 16-bit DySER was implemented on a Xilinx Zynq-7020 [5].

The larger DySER array was achieved by using a DSP block as the compute logic,

thus better targeting the architecture to the FPGA.
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3.4 DSP Block based Overlay Architecture

An overlay architecture with the FU based on the DSP blocks found in Xilinx FPGAs

was recently proposed [6]. This overlay combines multiple operations in a compute

kernel and maps them to the DSP block, resulting in a significant reduction in the

number of processing nodes required. An Fmax of 370 MHz with throughputs better

than that achieved by directly implementing the benchmarks onto the fabric using

Xilinx Vivado HLS were reported.
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3.5 VDR Overlay

The VDR overlay [7] was proposed as an array of coarse-grained heterogeneous PEs in-

terconnected by a set of programmable switches. The VDR overlay Fmax was 172 MHz

on an Altera Stratix III FPGA and achieved a 9× improvement in performance over

a NIOS II soft processor. Primary objective was not only to reduce the compilation

time, but also to improve the performance of soft processors.

Figure 3.7: VDR Overlay as Linear Dataflow Machine [7].

Figure 3.8: DFG execution on VDR Overlay [7].



Chapter 4

Analysis of Compute Kernels

In this chapter, we give the detailed analysis of compute kernels extracted from

compute-intensive applications. We have compiled a benchmark set (shown in Table

4.2) containing a number of compute kernels from [3], [42], [43] and [44]. The idea is

to find out the characteristics of kernels by extracting the data flow graphs (DFGs)

using a C to DFG generator and a DFG analyzer. We have used frontend of Her-

cuLeS HLS tool as C to DFG generator and a set of python modules for generating

the characteristics. The DFG consists of nodes that represent operations and edges

that represent the flow of data between operations. We perform DFG transforma-

tion from graph of operations to graph of composite operations where each composite

operation can be mapped to a DSP block. Finally we generate and compare the

characteristics of DFGs and DSP-aware DFGs using a set of python modules. The

characteristics include number of arithmetic operations, number of edges, number of

I/O interfaces, graph depth, graph width and average parallelism etc. The complex-

ity of the graph can be reduced by composition since the it results in reducing the

number of nodes and edges. The DSP-aware DFG can be used for efficient mapping

on spatially programmed DSP block based overlays.

22
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Table 4.1: Compute Kernel Code Descriptions

(a) C description (b) DFG description

1 #include <math.h>

2 #define SIZE 1000

3
4 int kernel(int x){

5 int temp = 16*x;

6 return (x*(x*(temp*x-20)x+5));

7 }

8
9 int main(void){

10 int i;

11 int in[SIZE];

12 int out[SIZE];

13 for (i=0; i<SIZE; i++){

14 out[i] = kernel(in[i]);

15 }

16 return 0;

17 }

1 digraph kernel {

2 N8 [ntype="operation", label="add_Imm_5_N8"];

3 N9 [ntype="outvar", label="O0_N9"];

4 N1 [ntype="invar", label="I0_N1"];

5 N2 [ntype="operation", label="mul_N2"];

6 N3 [ntype="operation", label="mul_N3"];

7 N4 [ntype="operation", label="mul_Imm_16_N4"];

8 N5 [ntype="operation", label="mul_N5"];

9 N6 [ntype="operation", label="mul_N6"];

10 N7 [ntype="operation", label="sub_Imm_20_N7"];

11 N8 -> N2;

12 N1 -> N5;

13 N1 -> N6;

14 N1 -> N2;

15 N1 -> N3;

16 N1 -> N4;

17 N2 -> N9;

18 N3 -> N6;

19 N4 -> N5;

20 N5 -> N7;

21 N6 -> N8;

22 N7 -> N3;

23 }

4.1 C to DFG Generation

We have used frontend of HercuLeS HLS tool as C to DFG generator. C description

of compute kernels are taken from https://bitbucket.org/abhishekntu/kernelbench.

DFG generator uses gcc compiler for generating gimple representation of kernel and

then uses gimple2nac for generating a kind of intermediate representation and finally

uses nac2cdfg for generating the DFG. For example, starting with a C description of

the compute kernel, DFG generator transforms this to a DFG description, as shown

in Table 4.1. Fig. 5.3(a) shows the nodes and edges in an example DFG.

4.2 DSP-aware DFG Generation

The operations in the DFG can be executed on a arithmetic operator or on a func-

tional unit having a combination of arithmetic operators. One such example is Xilinx

DSP block which offer area, performance, and power advantages over the equivalent

function implemented directly in the logic fabric. Since the DSP block consists of an

https://bitbucket.org/abhishekntu/kernelbench
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add/sub module, a multiplier and an ALU and can be used to consolidate up-to three

operation, we explore the feasibility of mapping the combination of operations onto

DSP blocks. We find the composite operations in the DFG as shown in Fig. 5.3(c) and

replace them with a single node as shown in Fig. 5.3(e). We refer to the final graph
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as DSP-aware DFG. For example, we can use multiply-subtract and multiply-add to

collapse N5-N7 and N6-N8 in Fig. 5.3(a) into N5 and N6 of Fig. 5.3(e), respectively.

As a result, DSP-aware DFG contains only 5 nodes instead of the 7 nodes. Fig. 4.2

shows the composite operations supported by DSP block.

Table 4.2: DFG characteristics of Benchmark set

Benchmark Characteristics

No. Name i/o graph op graph average graph

nodes edges nodes depth parallelism width

1. chebyshev 1/1 12 7 7 1.00 1

2. sgfilter 2/1 27 18 9 2.00 4

3. mibench 3/1 22 13 6 2.16 3

4. qspline 7/1 50 26 8 3.25 7

5. poly1 2/1 15 9 4 2.25 4

6. poly2 2/1 14 9 5 1.80 3

7. poly3 6/1 17 11 5 2.20 4

8. poly4 5/1 13 6 4 1.50 2

9. poly5 3/1 43 27 9 3.00 6

10. poly6 3/1 72 44 11 4.00 11

11. poly7 3/1 62 39 13 3.00 10

12. poly8 3/1 51 32 11 2.90 8

13. fft 6/4 24 10 3 3.33 4

14. kmeans 16/1 39 23 9 2.55 8

15. mm 16/1 31 15 8 1.88 8

16. mri 11/2 24 11 6 1.83 4

17. spmv 16/2 30 14 4 3.50 8

18. stencil 15/2 30 14 5 2.80 6

19. conv 24/8 40 16 2 8.00 8

20. radar 10/2 18 8 3 2.66 4

21. arf 26/2 58 28 8 3.50 8

22. ewf 21/5 73 34 14 2.43 4

23. fir2 17/1 47 23 9 2.55 8

24. hornerbezier 12/4 32 14 4 3.50 5

25. motionvenctor 25/4 52 24 4 6.00 12

26. smoothtriangle 29/14 88 37 6 6.16 18

4.3 Characteristics of DFGs and DSP-aware DFGs

We use a set of python modules to process DFG and DSP-aware DFG to find out

the number of operation nodes, I/O nodes, edges, graph depth and width, average

parallelism etc. Table 4.2 and 4.3 shows the characteristics for DFGs and DSP-aware

DFGs respectively. Graph depth is the critical path length of the graph and graph

width is the maximum number of nodes that can execute concurrently. Average

parallelism is the ratio of total number of op nodes and the graph depth.
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Table 4.3: DSP-aware DFG characteristics of Benchmark set

Benchmark Characteristics

No. Name i/o graph DSP graph average graph

nodes edges nodes depth parallelism width

1. chebyshev 1/1 10 5 5 1.00 1

2. sgfilter 2/1 19 10 5 2.00 3

3. mibench 3/1 14 6 4 1.50 3

4. qspline 7/1 46 22 7 3.14 7

5. poly1 2/1 12 6 3 2.00 4

6. poly2 2/1 10 6 3 2.00 3

7. poly3 6/1 13 7 3 2.30 4

8. poly4 5/1 9 3 2 1.50 2

9. poly5 3/1 28 14 6 2.3 6

10. poly6 3/1 51 25 9 2.77 10

11. poly7 3/1 44 21 8 2.62 7

12. poly8 3/1 35 17 5 3.40 8

13. fft 6/4 22 8 3 2.66 4

14. kmeans 16/1 36 20 7 2.85 8

15. mm 16/1 24 8 8 1.00 1

16. mri 11/2 20 7 5 1.40 2

17. spmv 16/2 24 8 4 2.00 2

18. stencil 15/2 24 8 3 2.66 4

19. conv 24/8 32 8 1 8.00 8

20. radar 10/2 16 6 3 2.00 2

21. arf 26/2 50 20 8 2.50 4

22. ewf 21/5 56 18 8 2.25 5

23. fir2 17/1 32 8 8 1.00 1

24. hornerbezier 12/4 22 8 3 2.66 4

25. motionvector 25/4 40 12 3 4.00 4

26. smoothtriangle 29/14 76 25 5 5.00 14

We observe that average parallelism varies from 1 to 8 for DFGs and DSP-aware

DFGs in benchmark set-I. Benchmark set-I DFGs contains up-to 44 op nodes and 88

edges while DSP-aware DFGs contains up-to 25 op nodes and 76 edges. Benchmark

set-I DFGs exhibits a depth of up-to 14 and a width of up-to 18 while DSP-aware

DFGs exhibits a depth of up-to 9 and a width of up-to 14. Number of I/Os remains

same for DFGs and DSP-aware DFGs.

4.4 Effect of composition

The purpose of composition is to reduce the complexity of the graph so that it can

be mapped to a light weight overlay architecture with low programmability overhead.

Fig. 4.3 shows the effect of composition on the number of nodes, edges and also on

the average parallelism for each benchmark.
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Figure 4.3: Effect on kernel characteristics using composite operations

We observe up-to 65% reduction in the number of nodes, up-to 32% reduction in

the number of edges and up-to 42% reduction in the graph depth. It is clear from the
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results that the complexity of the graph can be reduced drastically using composite

operations. We use DSP-aware DFGs in the next chapter to implement on top of

overlay architectures.
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Fig. 4.4 shows the distribution of kernels by plotting the depth and average

parallelism of kernel on a two dimensional space. The kernels on bottom-left quadrant

shows small depth and parallelism and we can assume that a low cost overlay can

be used to support these kernels. However, the kernels on top right quadrant shows

large depth and parallelism and we can assume that an overlay of high cost would

be required for supporting them. We conduct experiments in the next chapter to

validate our assumptions.



Chapter 5

Implementation on FPGA Overlays

In this chapter, we present the implementation methodology of compute kernels on

FPGA overlay architectures. We map the compute kernels on two types of FPGA

overlay architectures, linear dataflow overlay and island-style overlay. We make use

of python-graph library to develop a set of tools for finding overlay design parameters

for a set of compute kernels. We focus on efficient and cost-effective implementation

of overlay architectures by performing a detailed analysis of kernels using proposed

tools. The detailed discussion is shown in the following sections.

5.1 Linear Data Flow Overlay

As discussed in the previous section, DSP-aware DFGs contains DSP block as nodes

which can be mapped spatially on a programmable architecture designed using DSP

block as a functional unit. The array of functional units (DSP blocks) can be in-

terconnected using different kind of programmable interconnect architectures such

as island-style or linear dataflow-style (LDF-style). We use LDF-style for intercon-

necting functional units as shown in the Fig. 5.1. This LDF-style overlay facilitates

an efficient and cost effective implementation of compute kernels. We calculate the

programmability cost of LDF-style overlay for implementing a set of benchmarks and

compare it with the cost of island-style overlay.

29
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5.1.1 Architecture

As shown in Fig. 5.1, LDF-style overlay is a linear array of programmable tiles where

each tile contains a programmable routing network and a cluster of DSP blocks and

delay lines (DLs). Delay lines are required in each cluster for bypassing inputs of the

tile to the outputs by delaying them equivalent to the latency of DSP blocks. The

number of DSP blocks, delay lines and the complexity of routing network in each tile

can be customized according to the set of benchmarks. Hence customized overlays

can be designed with a low programmability cost for a set of benchmarks.

Tile-1

Programmable Routing Network

DLs DSP DSPDSP

Programmable Routing Network

DLs DSP DSPDSP

Tile-2

Programmable Routing Network

DLs DSP DSPDSP
Tile-N

Data inputs

Data outputs

Figure 5.1: Block diagram of linear dataflow overlay.
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5.1.2 Programmability-cost Modelling

For each tile, number of DSP blocks, delay lines and the routing network complexity

can be decided based on a set of benchmarks. The complexity of routing network in

nth tile depends on the resources (number of DSP blocks and delay lines) of nth tile

and (n + 1)th tile. If Xn and Yn are the number of DSP blocks and delay lines in nth

tile, The routing network can be designed using (Xn+Yn) x (4∗Xn+1 +Yn+1) crossbar

switch, where Xn and Yn are the number of DSP blocks and delay lines in nth tile and

Xn+1 and Yn+1 are the number of DSP blocks and delay lines in (n+1)th tile. If Ln is

the number of LUTs/bit to design (Xn +Yn):1 multiplexer, the programmability cost

of the overlay network would be equal to
N−1∑
n=1

(Ln ∗(4∗Xn+1 +Yn+1)) LUTs/bit, where

N is the number of tiles in the overlay. If the overlay needs to support immediate data

for operations as well, the DSP inputs needs to support an additional muxing input

and the network complexity can be calculated as a (Xn +Yn +1) x (4∗Xn+1) crossbar

switch and a (Xn +Yn) x (Yn+1) crossbar switch. Assuming worst case scenario which

is 1/2 LUT/bit increase on increasing additional muxing input, the (Xn + Yn + 1):1

multiplexer would consume (Ln +1/2) LUTs/bit and hence the programmability cost

of the overlay network would be equal to
N−1∑
n=1

(Ln ∗ (4 ∗ Xn+1 + Yn+1) + 2 ∗ Xn+1)

LUTs/bit. Fig. 5.2 shows the LUT requirement on scaling the size of multiplexers.

Finding overlay design parameters (N, Xn and Yn) for a set of graphs:

Given a set G of M graphs, each graph can be scheduled using well known scheduling

techniques (ASAP, ALAP, LIST etc.) to generate sequenced graph which can be used

to find out the number of nodes and crossing edges in each stage. We refer to the

number of nodes in nth stage as gmxn, total stages as Ngm and crossing edges as gmyn

in mth graph Gm. Xn and Yn can be found out using equation 2.1 and 2.2.

Xn = max(g1xn, g2xn, g3xn, ...gMxn) (5.1)

Yn = max(g1yn, g2yn, g3yn, ...gMyn) (5.2)

N = max(Ng1, Ng2, Ng3, ...NgM) (5.3)
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Figure 5.2: LUTs/bit for Xn + Yn:1 Multiplexer

For generating the minimum value of N, Xn and Yn, each graph have to be first

scheduled optimally (each graph can be scheduled using different scheduling technique

or even using different scheduling parameteres). Design space exploration is quite

large in such a scenario and hence we started with some simple experiments. We

decided to use ASAP scheduling for all graphs to generate overlay design parameters.

5.2 Set-specific cost calculation using ASAP schedul-

ing

In this section, we calculate overlay design parameters and programmability cost

using ASAP scheduling of a set of graphs We considered an example set of composite

DFGs as shown in Table 5.1 to demonstrate the process of finding the parameters.

The example set contains five small polynomials requiring up-to 7 DSP blocks as

shown in Fig. 5.3. So ideally a network of 7 DSP blocks should be able to map all

of the kernels in the example set. Most obvious way of designing the overlay is to

have similar tiles having same number of DSP blocks and delay lines. This technique

would result in a wastage of resources since the number of operation nodes decreases

on moving from one stage to next stage.
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Table 5.1: Composite DFG characteristics of Benchmark set-I

Benchmark Characteristics

No. Name i/o graph DSP graph average graph

nodes edges nodes depth parallelism width

1. poly1 2/1 12 6 3 2.00 4

2. poly2 2/1 10 6 3 2.00 3

3. poly3 6/1 13 7 3 2.30 4

4. poly4 5/1 9 3 2 1.50 2

5. chebyshev 1/1 10 5 5 1.00 1

N8

O0 N9

I0 N1I1 N2

N3

N4

N5

N6

N7

(a) Poly1

N12

N13

N10

N11

O0 N14

N8 N9

I0 N1

I1 N2I2 N3 I3 N4

I4 N5

I5 N6

N7

(b) Poly3

N8

O0 N9

I0 N1I1 N2

N3

N4 N5

N6N7

(c) Poly2

N8

O0 N9

I0 N1 I1 N2

I2 N3

I3 N4

I4 N5

N6

N7

(d) Poly4

I0 N1

N2

N3

N4

N5

N6

O0 N7

(e) Chebyshev

Figure 5.3: Example set of graphs for generating overlay parameters.

In order to analyze the graphs and to find a valid schedule, we use a python module

to implement ASAP scheduling algorithm as shown in the Fig. 5.4. It is important

to note that only 40 lines of code is required to implement the ASAP scheduling

algorithm. As shown in the code, we have used an API (graph.incidents(node)) from

python-graph library to find the parents of the node. asap schedule can be used as

an API as part of the DFG scheduling library. The input to this API is a graph and

the output of the API is a sequenced graph and the minimum latency. With the help
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of the sequenced graph, we can find out the maximum number of nodes in each stage

as well as the number of bypass lines required.

1 def asap_schedule(graph):

2 #scheduling starts here...

3 top_level_nodes = []

4 scheduled_nodes = []

5 unscheduled_nodes = graph.nodes()

6 sequencing_graph = []

7 l=1;

8
9 for node in graph: #for each node

10 if graph.incidents(node) == []: #if node is at the top level

11 graph.set_level(node, l) #schedule the node by setting its level l = 1

12 top_level_nodes.append(node) #push this node in the list of top level nodes

13 scheduled_nodes.append(node) #push this node in the list of scheduled nodes

14 unscheduled_nodes.remove(node) #remove this node from the list of unscheduled nodes

15
16 sequencing_graph.append(top_level_nodes) #push all top level nodes in sequencing graph

17 make_node_working = 1

18
19 while unscheduled_nodes != []: #repeat while the list of unscheduled nodes gets empty

20 working_nodes = [] #initialize list of nodes which will contain the next level nodes

21 l = l + 1

22 make_node_working = 1

23
24 for node in unscheduled_nodes: #select a node from the list of unscheduled nodes

25 predecesors = graph.incidents(node) #make a list of all precesessor nodes of this node

26 make_node_working = 1

27 for predecessor in predecesors: #check each predecessor node if it is already scheduled

28 if predecessor in unscheduled_nodes:

29 make_node_working = 0

30
31 if(make_node_working == 1): #if yes, then

32 working_nodes.append(node) #push this node in the list of working nodes

33
34 sequencing_graph.append(working_nodes) #push next level of nodes into sequencing graph

35 for node in working_nodes:

36 graph.set_level(node,l)

37 scheduled_nodes.append(node)

38 unscheduled_nodes.remove(node)

39
40 return [sequencing_graph, l]

Figure 5.4: Code for ASAP Scheduling.

For example, the sequenced graph of the kernel ”Poly3” is:

� Input Stage: [N1, N2, N3, N4, N5, N6]

� Stage1 : [N12, N10, N7, N13]

� Stage2 : [N8, N9]
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� Stage3 : [N11]

� OutputStage : [N14]

We can find out xn and yn for graphs using the information of the sequenced

graph. For example, for Poly3, xn is (4, 2, 1, 1, 0) and yn is (0, 1, 0, 0, 0). We use

ASAP scheduling for all the graphs in example set and generate the results as shown

in Table 5.2. We find Xn as (4, 2, 1, 1, 1) and Yn as (2, 3, 1, 1, 0) from the Table 5.2.

Table 5.2: Calculation of Overlay Parameters

(a) Calculation of Xn (b) Calculation of Yn

Xn g1xn g2xn g3xn g4xn g5xn max

X1 4 3 4 2 1 4
X2 1 2 2 1 1 2
X3 1 1 1 1 1 1
X4 1 1 1 0 1 1
X5 0 0 0 0 1 1

Yn g1yn g2yn g3yn g4yn g5yn max

Y1 1 0 0 2 1 2
Y2 3 2 1 0 1 3
Y3 0 0 0 0 1 1
Y4 0 0 0 0 1 1
Y5 0 0 0 0 0 0

We use Xn and Yn to calculate the cost of the overlay designed specifically for the

example set of graphs. The cost can be calculated as
N−1∑
n=1

(Ln ∗ (4 ∗ Xn+1 + Yn+1))

LUTs/bit. By feeding the values of Xn and Yn in the equation, we find the cost as

920 LUTs for a 16-bit overlay.

5.3 Resource-budget based set-determination us-

ing ASAP scheduling

Now since we can calculate set-specific cost, we determine the set of graphs which

can be accommodated within a specified resource budget. We start with all of the

graphs in benchmark set and calculate the cost for the same. We call the graph whose

removal from the set results in maximum reduction in cost as dominant graph and

plot the cost for the multiple sets as shown in Fig. 5.5. The Y axis of the graphs

shows the programmability cost, the number of LUTs, and the X axis presents the

dominant graph for the set containing graph lying on the right side of the dominant

graph. For example, the programmability cost is 920 LUT for the set which is having
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mibench as dominant graph and the set as poly4, poly1, poly3, poly2, chebyshev. It

is clear from the Fig. 5.5 that an overlay can be designed for all of the benchmarks

with a programmability cost of 33480 LUTs.
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Figure 5.5: Programmability cost for multiple set of graphs

Now from the Fig. 5.5 we can find out the set for a given resource budget as shown

in Table 5.3. For example, resource budget of 1000 LUTs can allow a set of 5 graphs

which were shown in Fig. 5.3. We can further reduce the programmability cost of the

sets using our proposed parameter finding approach.

Table 5.3: Resource-budget based set determination

Resource budget Benchmark Set Overlay Cost

1000 set 1 (poly1, poly2, poly3, poly4, chebyshev) 920

2000 set 2 (set 1, mibench, sgfilter, radar) 1904

4000 set 3 (set 2, stencil, HornerBezier, mri) 3248

8000 set 4 (set 3, poly5, poly8, conv, kmeans, poly7, fft) 7712

16000 set 5 (set 4, qspline, spmv, MotionVector, mm, fir2, arf) 15656

32000 set 6 (set 5, poly6, ewf) 25144
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5.4 Finding optimal overlay design parameters for

reducing cost

As we have seen from the previous section, the programmability cost of the overlay

designed for the graphs in set-1 is 920 LUTs using ASAP scheduling for generating

sequenced graph. We can further reduce this cost by using different scheduling for

different graphs in the set and that can be done by efficiently moving nodes within

stages by putting a constraint on maximum number of nodes in a stage.

1 def alap_schedule(graph):

2 #scheduling starts here...

3 bottom_level_nodes = []

4 scheduled_nodes = []

5 unscheduled_nodes = graph.nodes()

6 sequencing_graph = []

7 l=10;

8
9 for node in graph: #for each node

10 if graph.neighbors(node) == []: #if node is at the bottom level

11 graph.set_level(node, l) #schedule the node by setting its level l = 10

12 bottom_level_nodes.append(node) #push this node in the list of bottom level nodes

13 scheduled_nodes.append(node) #push this node in the list of scheduled nodes

14 unscheduled_nodes.remove(node) #remove this node from the list of unscheduled nodes

15
16 sequencing_graph.append(bottom_level_nodes) #push all bottom level nodes in sequencing graph

17 make_node_working = 1

18
19 while unscheduled_nodes != []: #repeat while the list of unscheduled nodes gets empty

20 working_nodes = [] #initialize an empty list of nodes which will contain the next level

nodes

21 l = l - 1

22 make_node_working = 1

23
24 for node in unscheduled_nodes: #select a node from the list of unscheduled nodes

25 successors = graph.neighbors(node) #make a list of all successors nodes of this node

26 make_node_working = 1

27 for successor in successors: #check each successor node and check if all are scheduled

28 if successor in unscheduled_nodes:

29 make_node_working = 0

30
31 if(make_node_working == 1): #if yes, then

32 working_nodes.append(node) #push this node in the list of working nodes which contains

nodes of level l-1

33 sequencing_graph.append(working_nodes) #push next level of nodes into sequencing graph

34 for node in working_nodes: #

35 graph.set_level(node,l)

36 scheduled_nodes.append(node)

37 unscheduled_nodes.remove(node)

38 return sequencing_graph

Figure 5.6: Code for ALAP Scheduling.
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List scheduling actually does something similar in which we provide a resources

constraint and then generate the sequenced graph. While doing the list scheduling,

we use the sequencing graph of the ASAP scheduling and schedule the nodes in each

stage based on the mobility of the node. If the number of nodes in a stage are

less than the resources available then the sequencing graph is similar to that of an

ASAP. But if the maximum number of nodes in a stage are greater than the resources

available then the nodes are scheduled based on their mobility. Mobility of a node

indicates the range of node in which it can be scheduled. Operations with smaller

mobility are given higher priority as they have fewer stages in which the operation

can be scheduled. To find the mobility, we initially perform the ASAP and ALAP

schedule of the graph and find the difference of the stages for a node scheduled in

ASAP and ALAP. This gives the mobility for a specific node and becomes a criteria

for List scheduling. The code for ASAP and ALAP is shown in Fig. 5.4 and Fig. 5.6

respectively.

For example if we consider, the scheduling of Poly3 graph on a resource constraint

architecture. We get the results as shown in the table 5.4. The API list schedule is

created which performs the list scheduling on the graph given as an input along with

the scheduling parameter. Scheduling parameter can be described as the resource

constraint in each stage. It is clear from the table that on constraining the resources

in a stage the depth increases.

Table 5.4: List Scheduling of Poly3 Graph

(a) Resource Constraint = 2

Stage SequencingGraph

Input [′N1′,′N2′,′N3′,′N4′,′N5′,′N6′]
1 [′N12′,′N10′]
2 [′N7′,′N13′]
3 [′N8′,′N9′]
4 [′N11′]

Output [′N14′]

(b) Resource Constraint = 3 (c) Resource Constraint = 4

Stage SequencingGraph

Input [′N1′,′N2′,′N3′,′N4′,′N5′,′N6′]
1 [′N12′,′N10′,′N7′]
2 [′N13′,′N8′,′N9′]
3 [′N11′]

Output [′N14′]

Stage SequencingGraph

Input [′N1′,′N2′,′N3′,′N4′,′N5′,′N6′]
1 [′N12′,′N10′,′N7′,′N13′]
2 [′N8′,′N9′]
3 [′N11′]

Output [′N14′]
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To explain our approach of finding optimal overlay parameters, let S equal to

[maximum graph width - 1] among G number of graphs present in the set. We can

set a resource constraint varying from 2 to S + 1 while scheduling each graph using

list scheduling. This means that S sequencing graphs can be generated for each graph

present in the set. Now we can generate SG programmability costs for all the possible

combinations of graphs and their scheduling choices. For example, in case of set-1,

S = 3 and G = 5. Thus there are 35 possible choices for overlay parameters. We

find the cost for all the possible combinations and consider the minimum cost for the

specific set of values of Xn and Yn. These values of X and Y enable us to design an

overlay which will fit all the the graphs in a set. We have considered an example for set

- 1 and their parameters are shown in Table 5.5 We have not considered inputs while

doing the calculation. The maximum number of scheduling that can be considered

are 4 as maximum utilization of a graph in a stage is 4, therefore the sequencing

graph will be same as ASAP if we consider more resources for this particular set.

Table 5.5: Calculation of Overlay Parameters

(a) Chebyshev with RC = 2 (b) Poly1 with RC = 2 (b) Poly1 with RC = 3 (d) Poly1 with RC = 4

N Xn Yn

1 1 1
2 1 1
3 1 1
4 1 1
5 1 0
6 1 0

N Xn Yn

1 2 2
2 2 3
3 1 3
4 1 0
5 1 0
6 0 0

N Xn Yn

1 3 2
2 2 2
3 1 0
4 1 0
5 0 0
6 0 0

N Xn Yn

1 4 1
2 1 3
3 1 0
4 1 0
5 0 0
6 0 0

(e) Poly2 with RC = 2 (f) Poly2 with RC = 3 (g) Poly3 with RC = 2 (h) Poly3 with RC = 3

N Xn Yn

1 2 1
2 2 1
3 1 3
4 1 0
5 1 0
6 0 0

N Xn Yn

1 3 0
2 2 2
3 1 0
4 1 0
5 0 0
6 0 0

N Xn Yn

1 2 4
2 2 2
3 2 1
4 1 0
5 1 0
6 0 0

N Xn Yn

1 3 2
2 3 0
3 1 0
4 1 0
5 0 0
6 0 0

(i) Poly3 with RC = 4 (j) Poly4 with RC = 2

N Xn Yn

1 4 0
2 2 1
3 1 0
4 1 0
5 0 0
6 0 0

N Xn Yn

1 2 2
2 1 0
3 1 0
4 0 0
5 0 0
6 0 0
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To find the minimum cost of this set we have to consider one scheduling of each

graph and thus we will have 35 possible sets each giving a programmable cost for that

specific set. In Table 5.5 we have the values of Xn and Yn, thus by forming various

sets of each schedule for a graph we can find the X (Max of Xn) and Y (Max of Yn)

for a specific set and further calculate the cost. There would be some repetitive cases

while considering the scheduling for graphs. As in chebyshev the graph width is 1 so

all the schedules in chebyshev will be similar to its ASAP schedules as it has only one

node in each stage.

Figure 5.7: Output Screenshot for a set of graphs

For set − 1 we will have 1 unique schedule for chebyshev, 3 unique schedules

for poly1, 2 unique schedules for poly2, 3 unique schedules for poly3 and 1 unique

schedule for poly4. Thus there would be 1×3×2×3×1 = 18 unique costs for set− 1.

X and Y of these 10 schedules are shown in Table 5.5. All these combinations are

handled by our tool and it gives the minimum cost for a set of graph. The input

given to this tool are the number of graphs, Max graph width and the dot files of

the graphs. The output of this tool is the Min cost, Max cost and ASAP cost along

with the value of X, Y and the Schedule Paramater. This output can be seen in Fig

5.7 and the code for finding the Min, Max and ASAP cost can be seen in Fig 5.12.

Fig 5.8 shows the cost of various possible sets of overlay parameters for set - 1. As

explained earlier, there would be maximum of 18 unique cost for this set of graph

which can be seen in Fig 5.8.
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From the graph we see that Max cost is greater than the ASAP cost. There could

be some combinations of graphs with certain schedulability such as one graph has

more operations at the initial stages whereas the other graph in a set has most of its

operations in the mid stage, then the max cost of such a set would definitely be more

than ASAP. Max cost would be always be equal to or greater than ASAP cost. Thus

the schedule corresponding the max cost is a worst way of designing an overlay that

can fit the desired set of graph.
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Figure 5.8: All possible costs for set - 1

After finding the minimum cost for a specific set of graph, we considered all the

benchmarks and found out the most dominating graph among the lot and then the

cost after removing the same. Dominating graph is the one whose removal from the

set results in maximum decrease in the cost of the set. This helped us in finding out

the most dominating graph in a set of benchmark which would be mostly responsible

for the large overlay design relatively as compared to other graphs in a set. Thus

if we have a resource constraint and our goal is to fit maximum number of graphs

from a set of benchmarks then we would eliminate the most dominating graphs from

the set until we meet the resource constraint. Thus elimination of dominating graphs



42 CHAPTER 5. IMPLEMENTATION ON FPGA OVERLAYS

from the set would result in effective utitlization of resources rather than randomly

removing graphs from a set.

1 from scheduler import asap_schedule

2 from scheduler import alap_schedule

3 from scheduler import list_schedule

4 graphlist = ['chebyshev', 'poly1', 'poly2', 'poly3', 'poly4']

5 #graphlistcopy = graphlist

6 mylist = list(graphlist)

7 mydict = {}

8 dominantdict = {}

9 num = 4

10 while(num > 3):

11 print '\nFinding cost in the set of', num, 'graphs : '

12 for each in graphlist:

13 mylist.remove(each)

14 command = 'python app.py ' + str(num) + ' 2 12';

15 for bench in range(0, num):

16 command = command + ' ' + mylist[bench]

17 [status, cost] = commands.getstatusoutput(command)

18 print ,each, cost

19 mylist = [];

20 mylist = list(graphlist)

21 mydict[each] = int(cost)

22 mincost = min(mydict.values())

23 print "Dominating graph and the cost without dominating graph : "

24 print mydict.keys()[mydict.values().index(mincost)], mincost,"\n\n\n\n\n"

25 domi_graph = mydict.keys()[mydict.values().index(mincost)]

26 dominantdict[domi_graph] = mincost

27 graphlist.remove(domi_graph)

28 num = num - 1;

Figure 5.9: Code for finding the dominating graph and cost for the set of graph.

Fig 5.9 shows the code for finding the dominating graph among the set of bench-

marks and the cost after removing the same. The output of the code is shown in Fig

5.10.

Figure 5.10: Output Screenshot showing the dominating graph along with the cost
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We see that in a set of 5 graphs : chebyshev, poly1, poly2, poly3 and poly4 the

most dominaing one is poly4 as there is maximum reduction in cost by removing the

same from the set. Thus cost for set - 1 is 920 and cost after removing poly4 is 752.

This is the minimum resource requirement if we want to fit 4 graphs from set - 1

by using minimum resources. Same approach has been used to create the Fig 5.11.

We initially considered a set of 26 graphs and then kept on removing the dominating

graph and found the cost after removing the same. Cost reduction is shown in Table

5.14
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Figure 5.11: Programmability cost using new approach for multiple set of graphs

Table 5.6: Cost reduction using proposed approach

benchmark set Overlay Cost (ASAP approach) Overlay Cost (new approach)

set 1 (poly1, poly2, poly3, poly4, chebyshev) 920 752

set 2 (set 1, mibench, sgfilter, radar) 1904 1536

set 3 (set 2, stencil, HornerBezier, mri) 3248 2704

set 4 (set 3, poly5, poly8, conv, kmeans, poly7, fft) 7712 5296

set 5 (set 4, qspline, spmv, MotionVector, mm, fir2, arf) 15656 11216

set 6 (set 5, poly6, ewf) 25144 17312
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1 # Read the dot file and create a graph

2 g_num = int(sys.argv[1]);

3 G = []; G = create_listof_graph()

4 s_num = int(sys.argv[2]); S = [];

5 for count in range(2, 1+s_num):

6 S.append(count + int(sys.argv[3]))

7 s_num = s_num - 1;

8 A_x_3 = [[[]]]; A_x_2 = [[]]; A_x_1 = []; A_x_3.pop(0); B_x_3 = [[[]]]; B_x_2 = [[]]; B_x_1 = []; B_x_3.pop(0)

9 A_y_3 = [[[]]]; A_y_2 = [[]]; A_y_1 = []; A_y_3.pop(0); B_y_3 = [[[]]]; B_y_2 = [[]]; B_y_1 = []; B_y_3.pop(0)

10 N_list = [];

11 for g_iter in range(0, g_num):

12 for s_iter in range(0,s_num):

13 blocks = []; edges = []

14 [blocks, edges, N] = list_schedule(G[g_iter], S[s_iter])

15 A_x_2.append(blocks); A_y_2.append(edges);

16 N_list.append(N)

17 A_x_2.pop(0); A_y_2.pop(0)

18 A_x_3.append(A_x_2); A_y_3.append(A_y_2);

19 A_x_2 = [[]]; A_y_2 = [[]];

20 Nmax = max(N_list)

21 for g_iter in range(0, g_num):

22 for s_iter in range(0, s_num):

23 loop_count_x = max(N_list) - len(A_x_3[g_iter][s_iter])

24 for count_x in range(0, loop_count_x):

25 A_x_3[g_iter][s_iter].append(0)

26 loop_count_y = max(N_list) - len(A_y_3[g_iter][s_iter])

27 for count_y in range(0, loop_count_y):

28 A_y_3[g_iter][s_iter].append(0)

29 temp_list_1 = []; temp_list_2 = []

30 for final_iter in range(0, pow(s_num,g_num)):

31 for g_iter in range(0, g_num):

32 x = g_iter;

33 y = final_iter/(pow(s_num, ((g_num - 1) - g_iter))) % s_num;

34 temp_list_1.append(x); temp_list_2.append(y)

35 B_x_2.append(A_x_3[x][y]); B_y_2.append(A_y_3[x][y])

36 B_x_2.pop(0); B_y_2.pop(0)

37 B_x_3.append(B_x_2); B_y_3.append(B_y_2);

38 B_x_2 = [[]]; B_y_2 = [[]];

39 temp_list_x = []; temp_list_y = []

40 list_x = []; list_x_all = [[]]; list_x_all.pop(0); list_y = []; list_y_all = [[]]; list_y_all.pop(0)

41 for final_iter in range(0, pow(s_num,g_num)):

42 for count in range(0, Nmax):

43 for g_iter in range(0,g_num):

44 temp_list_x.append(B_x_3[final_iter][g_iter][count])

45 temp_list_y.append(B_y_3[final_iter][g_iter][count])

46 list_x.append(max(temp_list_x));list_y.append(max(temp_list_y))

47 temp_list_x = []; temp_list_y = []

48 list_x_all.append(list_x);

49 list_y_all.append(list_y)

50 list_x = [[]]; list_y = [[]]

51 list_x.pop(0); list_y.pop(0)

52 cost = []; val = 0;

53 for final_iter in range(0, pow(s_num,g_num)):

54 val = 0;

55 for count in range(0, Nmax):

56 x = list_x_all[final_iter][count]

57 y = list_y_all[final_iter][count]

58 c = LutsRequired(x, y);

59 val = val + c

60 cost.append(val)

61 min_cost = min(cost); max_cost = max(cost); min_cost_idx_list = []; max_cost_idx_list = []

62 for iter in range(0, pow(s_num,g_num)):

63 if min_cost == cost[iter]:

64 min_cost_idx_list.append(iter)

65 if max_cost == cost[iter]:

66 max_cost_idx_list.append(iter)

67 min_cost_idx = min_cost_idx_list[0]; max_cost_idx = max_cost_idx_list[0]

68 scheduling_min_list = []; scheduling_max_list = []

69 for g_iter in range(0,g_num):

70 val = (min_cost_idx/(pow(s_num,(g_num - 1 - g_iter)))) % s_num

71 scheduling_min_list.append(S[val])

72 val = (max_cost_idx/(pow(s_num,(g_num - 1 - g_iter)))) % s_num

73 scheduling_max_list.append(S[val])

74 mincost = min(cost)

Figure 5.12: Code for minimum Cost Calculation for a set of graph.
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5.5 Comparison with Island-style FPGA Overlay

We analyze the mapping of kernels on DSP block based island-style overlay and

compare the programmability cost with linear overlay. Table 5.7 shows the required

size of island-style overlay for each benchmark.

Table 5.7: Analysis of kernels on island-style overlay

Benchmark Benchmark Characteristics

No. Name i/o op DSP % Savings Required size

nodes nodes nodes

1. chebyshev 1/1 7 5 28% 3×3 (CW=2)

2. sgfilter 2/1 18 10 44% 4×4 (CW=2)

3. mibench 3/1 13 6 53% 3×3 (CW=2)

4. qspline 7/1 26 22 15% 5×5 (CW=2)

5. poly1 2/1 9 6 33% 3×3 (CW=2)

6. poly2 2/1 9 6 33% 3×3 (CW=2)

7. poly3 6/1 11 7 36% 3×3 (CW=2)

8. poly4 5/1 6 3 50% 2×2 (CW=2)

9. poly5 3/1 27 14 48% 4×4 (CW=2)

10. poly6 3/1 44 25 43% 6×6 (CW=2)

11. poly7 3/1 39 21 50% 5×5 (CW=2)

12. poly8 3/1 32 17 46% 5×5 (CW=2)

13. fft 6/4 10 8 20% 3×3 (CW=2)

14. kmeans 16/1 23 20 13% 5×5 (CW=2)

15. mm 16/1 15 8 46% 6×6 (CW=2)

16. mri 11/2 11 7 36% 4×4 (CW=2)

17. spmv 16/2 14 8 42% 5×5 (CW=2)

18. stencil 15/2 14 8 42% 5×5 (CW=2)

19. conv 24/8 16 8 50% 8×8 (CW=2)

20. radar 10/2 8 6 25% 3×3 (CW=2)

21. arf 26/2 28 20 28% 8×8 (CW=2)

22. ewf 21/5 34 18 47% 10×10 (CW=2)

23. fir2 17/1 23 8 65% 10×10 (CW=2)

24. hornerbezier 12/4 14 8 42% 4×4 (CW=2)

25. motionvenctor 25/4 24 12 50% 8×8 (CW=2)

26. smoothtriangle 29/14 37 25 32% 11×11 (CW=2)

According to this table, we calculate the programmability cost of graphs sets

described in the previous section. A programmability cost of 440 LUTs per tile was

shown in [6] based on which we calculate the cost for the sets. Table 5.8 shows the

required overlay size for the sets and programmability cost comparison.
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Table 5.8: Programmability cost comparison

benchmark set Required Size Island-Cost ASAP/proposed (linear cost)

set 1 (poly1, poly2, poly3, poly4, chebyshev) 3×3 (CW=2) 3960 920/752

set 2 (set 1, mibench, sgfilter, radar) 4×4 (CW=2) 7040 1904/1536

set 3 (set 2, stencil, HornerBezier, mri) 5×5 (CW=2) 11000 3248/2704

set 4 (set 3, poly5, poly8, conv, kmeans, poly7, fft) 8×8 (CW=2) 28160 7712/5296

set 5 (set 4, qspline, spmv, MotionVector, mm, fir2, arf) 10×10 (CW=2) 44000 15656/11216

set 6 (set 5, poly6, ewf) 10×10 (CW=2) 44000 25144/17312

The data in Table 5.8 is shown in Fig. 5.13 and it is clear from the table that the

programmability cost can be reduced drastically using linear dataflow style overlays.

We observe upto 77% reduction in cost for sets using ASAP based approach and upto

81% reduction using proposed approach as shown in Fig 5.14.
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Figure 5.13: Programmability cost using new approach for multiple set of graphs
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Figure 5.14: Cost reduction using new approach for multiple set of graphs
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5.6 Summary

In this chapter, we presented linear dataflow overlay architecture, programmabil-

ity cost modelling, cost calculation using sequenced graphs (ASAP scheduled), cost

reduction by proposed approach, cost comparison with island-style overlays. We ob-

serve upto 77% reduction in cost for sets using ASAP based approach and upto 81%

reduction using proposed approach compared to island-style overlays.



Chapter 6

Experiments

In this chapter, we present experiments to evaluate the performance of overlay archi-

tecture against a set of commercial devices, such as 16-core EPIPHANY device and

dual-core ARM cortex-A9 for a set of compute kernels.

6.1 Performance Evaluation of Parallella Platform

6.1.1 16-core EPIPHANY device

The Parallela SoC houses the EPIPHANY co-processor, which is a many core, shared-

memory, parallel computing fabric. It consists of a 2D array of compute nodes con-

nected by a mesh network-on chip with dedicated Floating Point Unit and a local 32

KB memory on each node. The EPIPHANY chip works with an ARM Cortex A9

host which offloads computation to it. The EPIPHANY chip has either 16 or 64 cores

but is scalable to a larger number of cores. All cores share a 1 GB of offchip shared

RAM. These cores can communicate with each other using the on-chip mesh network.

The Parallellas SDK provides direct read and write access to the local memory of a

core from any other core using this network-on-chip.

Fig 6.1 and Fig 6.2 shows the EPIPHANY Architecture and eMesh Network-On-

Chip Architecture respectively. We see that EPIPHANY has 16 cores running at

600 MHz so it would be interesting to see the performance of the benchmarks on

48
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Figure 6.1: EPIPHANY Architecture

Figure 6.2: eMesh Network-On-Chip Architecture

Parallella. One noticeable thing about Parallella is that its local cores has only 32KB

of On-Chip Memory. Thus we have to use the local memory very efficiently as 16

KB of the memory is used as Stack and Program memory (However this is flexible

but in total we have only 32KB of local memory for each core). It provides 1 GB of

Shared RAM as well but eCore to Shared RAM bandwidth is very less as compared

to local bandwidth and thus we have considered only local memory for performing

the experiments so as to achieve better performance.
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Table 6.1: Performance of Benchmarks on EPIPHANY

No. Name Effective Time Samples Computation Time M DFGs/s operations MOPs

1. chebyshev 14 32000 480 66.67 7 467

2. sgfilter 22 19200 424 45.28 18 815

3. mibench 21.5 16000 341 46.92 13 610

4. qspline 32 8000 258 31.01 26 806

5. poly1 17 19200 332 57.83 9 520

6. poly2 20 19200 356 53.93 9 485

7. poly3 24 8000 185 43.24 11 476

8. poly4 20 9600 185 51.89 6 311

9. poly5 26 16000 424 37.74 27 1019

10. poly6 36 16000 572 27.97 44 1231

11. poly7 34 16000 553 28.93 39 1128

12. poly8 30 16000 480 33.33 32 1067

13. fft 31 6400 203 31.53 10 315

14. kmeans 48.1 3840 185 20.76 23 477

15. mm 38.2 3840 147 26.12 15 392

16. spmv 67.2 3840 258 14.88 14 208

17. stencil 38.2 3840 147 26.12 14 366

18. conv 57.8 1920 111 17.30 16 277

19. radar 28.7 5120 147 34.83 8 279

20. arf 67.7 1920 130 14.77 28 414

21. ewf 69.1 2400 166 14.46 34 492

22. fir2 52.6 3520 185 19.03 23 438

23. hornerbezier 38.5 4000 166 24.10 14 337

24. motionvector 90.6 2240 203 11.03 24 265

25. smoothtriangle 140 1440 203 7.09 37 262

We conducted the experiments by running the compute kernels on EPIPHANY

device and results are shown in Table 6.1. Initially host sends data to the core which

becomes the input for the graph. Same data is being written in the local memory of

each core with the help of e write API. If each data width is four bytes then maximum

number of data that can be sent to the core is 4000 (16KB/4B) samples. For each

graph the number of inputs and outputs may vary, thus if we have P number of inputs

and Q number of outputs then the maximum number of samples that can run with

the data in local memory is equal to 4000/(P + Q) iterations. We can run 4000/(P

+ Q) iterations of each graph on each core and total of 64000/(P + Q) iterations if

we run the same graph on 16 cores. Max iterations that we can run for a unique set
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1 int main(void)

2 {

3 // Local Variables

4 e_platform_t platform;

5 e_epiphany_t dev;

6 e_mem_t emem;

7 e_init(NULL); //initialize device

8 e_reset_system();

9 e_get_platform_info(&platform);

10 e_open(&dev, 0, 0, platform.rows, platform.cols); // Open a workgroup

11 //papi Declarations

12 int events[2]={PAPI_TOT_CYC, PAPI_TOT_INS}, ret;

13 long_long t0_dataLoad, t1_dataLoad, t0_programLoad, t1_programLoad, t0_compute, t1_compute, t0_total, t1_total, t0_read,

t1_read;

14 int i, j, k;

15 float array[INPUT_SIZE], value;

16 unsigned time = 0, doneFlag = 0;

17 for (k = 0; k < INPUT_SIZE; k++)

18 {

19 array[k] =(float)(1*k);

20 }

21 t0_total = PAPI_get_virt_usec();

22 t0_dataLoad = PAPI_get_virt_usec();

23 for(i = 0; i < 4; i++)

24 {

25 for (j = 0; j < 4; j++)

26 {

27 e_write(&dev, i, j, (off_t)INPUT_ADDR, (unsigned*)&array[0], INPUT_SIZE * sizeof(float));

28 }

29 }

30 t1_dataLoad = PAPI_get_virt_usec();

31 t0_programLoad = PAPI_get_virt_usec();

32 // Load PE side and start SMVM

33 e_load_group("pe.srec", &dev, 0, 0, platform.rows, platform.cols, E_FALSE);

34 e_start_group(&dev);

35 t1_programLoad = PAPI_get_virt_usec();

36 t0_compute = PAPI_get_virt_usec();

37 while(doneFlag != 1)

38 {

39 e_read(&dev, 0, 0, (off_t)0x5FFC , &doneFlag, sizeof(unsigned));

40 }

41 t1_compute = PAPI_get_virt_usec();

42 t0_read = PAPI_get_virt_usec();

43 for(i = 0; i < OUTPUT_SIZE; i++)

44 {

45 e_read(&dev, 0, 2, (off_t)(unsigned*)(OUTPUT_ADDR + 4*i), &value, sizeof(float));

46 }

47 t1_read = PAPI_get_virt_usec();

48 t1_total = PAPI_get_virt_usec();

49 printf("Samples : %d \n", SAMPLES);

50 printf("Data Load Time : %lld uSec\n", t1_dataLoad-t0_dataLoad);

51 printf("Program Load Time : %lld uSec\n", t1_programLoad-t0_programLoad);

52 printf("Compute Time : %lld uSec\n", t1_compute-t0_compute);

53 printf("Read Time : %lld uSec\n", t1_read-t0_read);

54 printf("Total Time : %lld uSec\n", t1_total-t0_total);

55 e_read(&dev, 0, 0, (off_t)0x5FF8 , &doneFlag, sizeof(unsigned));

56 printf("Computation time using Core Timer : %f uSec\n", (float)doneFlag/600.0);

57 e_close(&dev); // Close the workgroup

58 e_finalize(); //Finalize e-platform connection

59 return 0;

60 }

Figure 6.3: Parallella Host code for Chebyshev Benchmark

of data is 32000 which is possible when we have P = 1 and Q = 1, which is the case

for chebyshev. Thus the number of samples depend on the input and output of the

graph as the memory is limited (32KB) and we can see in Table 6.1 that the graph

with less number of samples have more I/O. Fig 6.3 shows the host code and Fig 6.4

shows the code for chebyshev benchmark which runs on each core.
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1 #include <stdint.h>

2 #include "e_lib.h"

3 #include "stdlib.h"

4 #include "string.h"

5 #include "e_lib.h"

6 #include <e_coreid.h>

7 #include "matrix.h"

8
9 // global memory management -- stack start address, giving 8KB of stack

10 asm(".global __stack_start__;");

11 asm(".set __stack_start__,0x6000;");

12 asm(".global __heap_start__;");

13 asm(".set __heap_start__,0x0000;");

14 asm(".global __heap_end__;");

15 asm(".set __heap_end__,0x1fff;");

16
17 volatile e_barrier_t barriers[16];

18 e_barrier_t *tgt_bars[16];

19
20 float *data = (float*)INPUT_ADDR;

21 float *output = (float*)OUTPUT_ADDR;

22
23 int main()

24 {

25 // Timer Variables

26 e_irq_mask(E_TIMER0_INT, E_TRUE);

27 e_ctimer_set(E_CTIMER_0, E_CTIMER_MAX);

28 unsigned time_e, time_s;

29 unsigned* clock = (unsigned*)0x5FF8;

30 unsigned* doneFlag = (unsigned*)0x5FFC;

31 *doneFlag = 0;

32 *clock = 0;

33 unsigned k=0,j=0,l=0;

34 float result, input;

35
36 //initialize barriers

37 e_barrier_init(barriers, tgt_bars);

38 e_barrier(barriers, tgt_bars);

39
40 e_ctimer_start(E_CTIMER_0, E_CTIMER_CLK);

41 time_s = e_ctimer_set(E_CTIMER_0, E_CTIMER_MAX);

42
43 while(k<INPUT_SIZE)

44 {

45 input = *(data + k);

46 *(output + j) = (input * (input * (16 * input * input - 20) * input + 5));

47 k = k + INPUTS;

48 j = j + OUTPUTS;

49 }

50 e_barrier(barriers, tgt_bars);

51 time_e = e_ctimer_get(E_CTIMER_0);

52 //e_barrier(barriers, tgt_bars);

53 *clock = time_s - time_e;

54 e_barrier(barriers, tgt_bars);

55 *doneFlag = 1;

56 return 0;

57 }

Figure 6.4: Parallella Core code for Chebyshev Benchmark

6.1.2 Dual-core ARM Cortex-A9

We conducted another experiment to observe the performance of dual-core ARM

Cortex-A9 processor. Results are shown in Table 6.2. After performing the experi-

ments on ARM and EPIPHANY, we calculated the MDFGs per second and Million

Operations Per Second (MOPS) for the same set of benchmarks. Results are shown

in Fig 6.5 and Fig 6.6. We observe MDFGs per second ranging from 7 to 67 and
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MOPS ranging from 262 to 1231 for EPIHANY device. We observe MDFGs per

second ranging from 3 to 18 and MOPS ranging from 73 to 250 for dual-core ARM

Cortex-A9.

Table 6.2: Performance of Benchmarks on Dual-core ARM Cortex-A9

No. Name Effective Time Samples Computation Time M DFGs/s operations MOPs

1. chebyshev 70.78 100000 7078 14.13 7 99

2. sgfilter 97.14 100000 9714 10.29 18 185

3. mibench 74.65 100000 7465 13.40 13 174

4. qspline 216.02 100000 21602 4.63 26 120

5. poly1 76.5 100000 7650 13.07 9 118

6. poly2 76.86 100000 7686 13.01 9 117

7. poly3 104.7 100000 10470 9.55 11 105

8. poly4 82.21 100000 8221 12.16 6 73

9. poly5 196.5 100000 19650 5.09 27 137

10. poly6 254 100000 25400 3.94 44 173

11. poly7 246.25 100000 24625 4.06 29 118

12. poly8 225.6 100000 22560 4.43 32 142

13. fft 54.38 100000 5438 18.39 10 184

14. kmeans 156.3 100000 15630 6.40 23 147

15. mm 117.4 100000 11742 8.52 15 128

16. spmv 87.18 100000 8718 11.47 14 161

17. stencil 56.03 100000 5603 17.85 14 250

18. conv 87.5 100000 8755 11.42 16 183

19. radar 57.33 100000 5733 17.44 8 140

20. arf 249.76 100000 24976 4.00 28 112

21. ewf 266.34 100000 26634 3.75 34 128

22. fir2 189.48 100000 18948 5.28 23 121

23. hornerbezier 145.98 100000 14598 6.85 14 96

24. motionvector 227.27 100000 22727 4.40 24 106

25. smoothtriangle 324.77 100000 32477 3.08 37 114

6.2 Performance Evaluation of FPGA Overlays

Overlay architectures can execute one DFG iteration each cycle by using fully pipelined

functional units. One such overlay was demonstrated in [6] which was able to execute

DFGs at a frequency of above 300 MHz. In order to have a fair comparison of perfor-

mance, we choose a practically feasible frequency of 250 MHz for overlays, resulting
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Figure 6.5: Comparison of MDFGs on EPIPHANY and ARM
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Figure 6.6: Comparison of MOPs on EPIPHANY and ARM

in 250 MDFGs per second, and estimate MOPS for the compute kernels ranging from

1500 to 11000 MOPS. We show the comparison of MOPS in Fig. 6.7. Y axis shows

the natural log of MOPS. It is clear from the figure that overlays running at 250 MHz

can provide an order of magnitude better performance assuming that the required

I/O interfaces are present on the physical platform.
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Figure 6.7: Performance Comparison with Overlays

6.3 Summary

In this chapter, we presented experiments to evaluate the performance of overlays

against set of commercial devices and observed that ARM, EPIPHANY and FPGA

overlays provide a performance of upto 250, 1231 and 11000 MOPS, respectively.



Chapter 7

Conclusions and Future Work

This chapter concludes and summarizes this report. Furthermore, in this chapter we

discuss future research directions in detail.

7.1 Conclusions

This report proposed an approach for designing area efficient overlay architectures by

reducing programmability cost for a set of compute kernels. Use of programmabil-

ity cost modeling provided the base for finding optimal design parameters of overlay

for a set of kernels. This work included developing an understanding of compute

kernels, hardware acceleration concept, overlay architectures, terminologies and tech-

niques, detailed performance evaluation of overlays and commercial multi-core de-

vices. Experiments were designed to characterize the compute kernels, model the

programmability cost, evaluate the cost for a set of graph, optimize the cost using

proposed overlay parameter finding approach, compare the programmability cost of

linear dataflow overlay with island-style overlay. A set of python modules were devel-

oped for different scheduling algorithms and were used to find the sequenced graphs

which were then used to find the optimal overlay design parameters. Before we could

begin finding the optimal overlay design parameters, an in-depth knowledge of the

current trends and previous efforts in the field of overlay architectures were studied

to compare and contrast their features.
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An analysis of compute kernels and effect of DSP-aware composition were pre-

sented in chapter 4. We observe up-to 65% reduction in the number of nodes, up-to

32% reduction in the number of edges and up-to 42% reduction in the graph depth us-

ing DSP aware-composition. For the composite graphs, experiments were conducted

to compare the programmability cost of island-style overlay with linear dataflow over-

lay and results were presented in chapter 5. We observe upto 77% reduction in cost

for sets using ASAP based approach and upto 81% reduction using proposed ap-

proach compared to island-style overlays. The performance of commercial multi-core

devices were evaluated for the compute kernels and were presented in 6. We esti-

mated the performance of overlays and showed that it can achieve a performance

of 11000 MOPS. Furthermore, the approach presented in this report facilitates high

level application developers to use area-efficient overlays for hardware acceleration of

compute kernels at significantly higher performance.

7.2 Future work

Some of the main future research directions are overlay designs for low programma-

bility cost, automated RTL generation of overlays for kernel sets, overlay integration

with host processor and a run time management system for overlays. We describe

these directions in detail as follows:

� Alternative routing network architectures for programmability cost

reduction: The programmability cost of the overlays can be further reduced

by carefully designing the routing network architecture. Some of the possible

choices are multistage switching networks, hierarchical routing network and

omega network etc.

� Automated RTL generation of overlays for different sets of kernels:

From the overlay parameters, it is possible to develop an RTL generator for

overlay architectures.

� Integration of overlay with a host processor on a heterogeneous com-

puting platform: Integration of overlay with a host processor is crucial for
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effective runtime management of overlays

� Mapping of a large kernel on overlays supporting cycle by cycle tile

reconfiguration capability: DSP blocks can be reconfigured on a cycle by

cycle basis and hence overlays can be designed to support large kernels by

temporally mapping operations on tiles.

� A python library for graph scheduling algorithms: Using Python-graph

library, we developed basic graph scheduling algorithms which can be used

further to develop python modules for advance graph scheduling techniques.

Finally, with these initiatives we hope to develop overlay architecture based accel-

erator design methodology where compute kernels can be compiled on area-efficient

high performance overlays at runtime within a heterogeneous computing platform.
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