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Abstract

Research efforts have shown the strength of FPGA-based acceleration in a wide

range of application domains where compute kernels can execute efficiently on an

FPGA device. Due to the complex process of FPGA-based accelerator design, the

design productivity is a major issue, restricting the effective use of these accelerators

to niche disciplines involving highly skilled hardware engineers. Coarse-grained FPGA

overlays, such as VectorBlox MXP and DSP block based overlays, have been shown

to be effective when paired with general purpose processors, offering software-like

programmability, fast compilation, application portability and improved design pro-

ductivity. These architectures enable general purpose hardware accelerators, allowing

hardware design at a higher level of abstraction. This report presents an analysis of

compute kernels (extracted from compute-intensive applications) and their implemen-

tation on multiple hardware accelerators, such as GPU, Altera OpenCL (AOCL) gen-

erated hardware accelerator and FPGA-based overlays. We experiment with simple

and easy programming models like Open Computing Language (OpenCL)/Overlay

APIs and produce a hardware-accelerated design with software like abstractions.

To begin we analyze two existing use-cases of hardware acceleration where one of

them highlights the performance benefits obtained by use of compiler optimizations.

We see that compiler optimizations can provide almost a 16× improvement in execu-

tion time on the ARM processor of the zedboard. This is because of the use of SIMD

NEON engine which accelerated the execution. The use of MXP overlay for the same

application provides an even higher improvement in the execution time compared to

SIMD NEON engine. The other hardware acceleration case study analyses the feasi-

bility of dynamic loading of tasks to the FPGA fabric and the effect on the execution

time. We use AOCL to create accelerators for multiple tasks and then using the soft-

ware API, we perform the dynamic reconfiguration. We show that the use of overlay

is preferable in such a scenario due to their ease of use, simple programming model

and dynamic task loading without actual reconfiguration of the FPGA fabric. When
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the same task was executed on an overlay it ran much faster as there is no need to

reconfigure the FPGA fabric with a new bitstream.

We present experiments to compare the performance of a naive implementation of

few compute kernels with their hardware accelerated versions that were built either

using OpenCL or using Overlay APIs. We observe up to 10× improvement in timing

performance in certain applications like 12-Tap FIR filtering when accelerated using

hardware and almost 100× in certain applications like 2D Convolution. These perfor-

mance improvements were obtained by using very basic and naive implementation of

hardware accelerators generated at a high level of programming abstractions (Open-

CL/Overlay APIs). With optimizations, the performance can surely be improved,

this would be one of the key areas of future research work beyond this thesis. Finally,

we make the case for hardware virtualization by using the cloud and demonstrate

how by means of a simple web browser we can program remote computing platforms

connected to the cloud servers. Such virtualization methods could be used in teaching

labs and for hardware evaluations.
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Chapter 1

Introduction

1.1 Motivation

The Moore’s law has almost come to an end and not much performance up gradation

can be achieved just by upgrading hardware generations. The methods of frequency

scaling and core multiplication have reached their maximum limits of exploitation and

cannot be explored further. This gives rise to the need for heterogeneous computing.

Heterogeneous computing refers to systems that use more than one kind of processor

or cores. These systems gain performance or energy efficiency not just by adding the

same type of processors, but by adding dissimilar coprocessors, usually incorporating

specialized processing capabilities to handle particular tasks.

There are a number of heterogeneous devices that are readily available off the shelf,

some of them as commercially available system on chips (SoCs) and can be easily

accessible to the average embedded software programmer. One of the example is

Xilinx Zynq. These heterogeneous devices incorporate hardware accelerators, such as

GPUs and FPGAs. The advantages of having multiple types of hardware accelerators

within a system on chip are many, such as high-performance gains and specificity of

tasks performed. One of the major issues is the exotic programming model that each

hardware accelerator brings along with it.

FPGAs bring along the requirement to write accelerators using hardware descrip-

tion language (HDL) at a very low level of abstraction (register transfer level) which

2



1.2. CONTRIBUTION 3

has a really steep learning curve, extremely long compilation/place and route timings

and are relatively difficult to debug. GPUs have their own programming languages

and until a few years ago GPUs were used predominantly for graphics processing as

the name suggests. However off late, with computing problems of large sizes and

datasets, a lot of computations are being off-loaded to the GPU due to its benefit

in parallel execution. Modern GPUs support programming models like OpenCL and

CUDA.

Even with a great number of devices available, the difference in programming

models makes it difficult to truly use all these devices in unison. Even with these

multitudes of methods available for hardware acceleration, it is still not possible for

software developers to adopt and use these devices as part of their daily routine for

hardware acceleration. In order to achieve the full potential of hardware acceleration,

multiple heterogeneous devices within the same SoC must be programmable using a

single programming model and also the programming model must be portable across

devices without loss of functionality. The aim of this thesis is to investigate and

benchmark novel heterogeneous devices and methods by which we can use heteroge-

neous devices with a fairly limited learning curve.

1.2 Contribution

The main contributions can be summarized as follows:

• Proposed an approach for performing hardware acceleration by means of soft-

ware based high-level design.

• Developing an understanding of compute kernels and their benchmarking with

hardware acceleration on overlay and GPU architectures with detailed perfor-

mance evaluation of these devices.

• Performance comparison of different platforms and analysis of the effect of hard-

ware acceleration in each case.

• Proposal and proof of concept of hardware virtualization by means of a cloud

server with an online lab on a cloud programming model.
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1.3 Organization

The remainder of the report is organized as follows: Chapter 2 presents background

information on computer kernels, overlay architectures and various accelerators that

have been studied. In chapter 3.1 and 3.2, we perform case studies using the 12-Tap

FIR filter as the benchmark and port the algorithm to the DSP overlay, Vectorblox

MXP, and Altera Cyclone V device using AOCL. In Chapter 4, we perform a number

of experimental benchmarks on various platforms with hardware acceleration and have

compared multiple programming models. The performance of the hardware platforms

in terms of execution time and Operations per Cycle (OPC) has been measured and

compared highlighting the ease of programming with hardware acceleration. Chapter

5 illustrates how virtualization of embedded hardware can be done and implemented

on a cloud-based platform.



Chapter 2

Background

2.1 Heterogenous Computing Platforms

A heterogeneous computing platform is one which has multiple processing units in-

stead of one single processing unit on the same SoC. The multiple processing units

are designed such that each unit is tuned to perform a specific task, such as Signal

processing, graphics processing. The most common element found in any embedded

hardware platform is a CPU (Central Processing Unit) which is generally a Gen-

eral Purpose Processor (GPP) and the other co-processing units that are used are

GPUs, FPGAs DSPs etc. The heterogeneous computing devices that are going to be

extensively used in this thesis are the following:

2.1.1 Zedboard with a Zynq SoC

The Zedboard is an FPGA based heterogeneous platform that is made by avnet[3]

and has a Xilinx Zynq SoC[3]. The SoC has a dual core ARM processor clocked at 667

MHz and also has a programmable logic which is connected to the CPU through the

AXI bus[3]. The Zedboard is pretty widely used in academia as well as industry and

is a proven platform. Some of the wide applications where the Zynq SoC has been

used ranges from Software defined Radios[4] and extends even to data processing

applications in space satellites[4]. This wide range of applications has made the

5



6 CHAPTER 2. BACKGROUND

Zedboard an ideal candidate for heterogeneous computing experiments in this thesis.

2.1.2 DE0-Nano-SoC with a Cyclone V SoC

The DE0-Nano-SoC is another heterogeneous computing platform that is similar to

the Zedboard. The DE0-Nano-SoC board has an Altera Cyclone V SoC. This SoC has

a dual core ARM processor clocked at 995 MHz and has a programmable logic fabric

as well. The DE0-NANO stands out from the Zedboard due to its compatibility with

all Arduino Shield boards, This makes it a more popular choice amongst hobbyists

and makers since hardware can be easily interfaced to the DE0-NANO also, the

board ships with a custom open-source Arduino hardware design built into the FPGA

which gives it full Arduino capability and possibility of functionality scaling. Also,

the Cyclone V supports Altera’s OpenCL SDK which makes it easier to use by the

regular software programmer.

2.1.3 The Intel CPU-GPU Platform

In order to demonstrate code portability across multiple devices, the conventional

Intel CPU-GPU compute platform has also been considered. The Intel CPU used in

this thesis is the Intel Core i7 clocked at 1.6 GHz and the Intel iris 6100 GPU clocked

at 1.1 GHz. These devices are certainly not within the embedded domain but are part

of this thesis for the purposes of comparison and demonstration of code portability

and ease of hardware acceleration in conventional hardware devices as well.

2.2 Hardware Acceleration

Hardware acceleration is a process by which the GPP on an embedded hardware

platform off-loads specialized types of computations to specialized cores that are

optimized for doing that specific task. This method of off-loading specialized tasks to

specific units on the same SoC leads to faster execution of the tasks and also allows

the CPU to proceed with any other task in the mean time thus giving rise to task

level parallelism.
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A GPP can be used for the execution of compute kernels by describing their

functionality using C or C-like programming languages. With the advancements in

technology, parallel processing architectures such as multi-cores CPUs and Digital

signal processing (DSP)s, GPUs, Massively parallel processor arrays, FPGA-based

accelerators (as shown in Fig. 2.1) are gaining popularity for accelerated execution

of kernels.

Figure 2.1: Execution Platforms for Compute Kernels

Silicon technology will continue to provide an exponential increase in the avail-

ability of raw transistors. Effectively translating this resource into application per-

formance, however, is an open challenge that conventional processor designs will not

be able to meet. On the other hand, Field Programmable Gate Array (FPGA) and

Graphics Processing Unit (GPU) devices provide a substrate for implementing ker-

nels as high performance fully parallel and pipelined designs [5]. Just to provide the

clear understanding of the concept, we explain the execution of compute kernels on

general purpose processors, FPGAs and GPUs in this thesis.

As mentioned earlier, a general purpose processor can be used for the execution of

compute kernels by describing their functionality using C or C++ like programming

languages. A compiler then generates a list of instructions for the processor to execute

sequentially. Since the processor executes the list of operations sequentially, the

execution time of the kernels increases on increasing the complexity of the kernel. Fig.
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2.2 shows the high-level view of program execution on a general purpose processor.

Figure 2.2: Compute Kernel Execution on General Purpose Processor

Having an extremely powerful GPP might not always be advantageous. Special-

ized tasks might need highly specialized compute units in order to perform the task

efficiently. For example signal processing tasks are best done by a DSP, graphics pro-

cessing is best done when offloaded to a GPU. Also by keeping on making the CPU

more and more powerful, silicon manufacturers have reached the peak of voltage scal-

ing as well as frequency scaling[6][7]. This effectively makes the case for hardware

accelerators like FPGAs and GPUs to come into the picture.

The case for FPGA-based heterogeneous computing: FPGAs are be-

coming popular for rapid-prototyping of accelerators. For more than a decade, re-

searchers have shown that FPGAs can accelerate a wide variety of software, in some

cases by several orders of magnitude compared to state-of-the-art general purpose

processors [8, 9]. To understand the execution of kernels on FPGAs, we must first

understand how FPGA architectures differ from general purpose processor architec-

tures. The most fundamental difference is that general-purpose processors provide

functionality to execute a list of instructions sequentially, whereas FPGA architec-

tures implement compute kernels by providing numerous resources such as config-

urable logic blocks, DSP blocks for logic and arithmetic and on-chip Block RAMs for

storage. These resources are generally interconnected via a programmable island-style

routing network which can be programmed to create specialized data paths as shown

in Fig. 2.3.

Also as mentioned in [6] the most efficient solution to the frequency scaling prob-

lem, is the creation of customized data paths which can be efficiently done on an
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Figure 2.3: Highlighting Datapath Formation in FPGA

FPGA. FPGA accelerators are normally designed at a low level of abstraction (typi-

cally Register Transfer Level (RTL)) in order to obtain an efficient implementation,

and this can consume more time and make reuse difficult when compared with a

similar software design. As such, design productivity remains a major challenge, re-

stricting the effective use of FPGA accelerators to niche disciplines involving highly

skilled hardware engineers. In order to tackle issues with design productivity, we high-

light certain key methods in this thesis which allow even novice engineers to make

use of FPGA resources. The three methods by which we demonstrate programming

FPGAs are :-

• High-Level Synthesis

• OpenCL To Hardware Design

• FPGA Overlays

These methods are described and their efficiency is demonstrated in the experi-

ments section in chapter 4.

The case for GPU-based heterogeneous computing: GPUs have been

there in SoCs for a long time and have been extensively used in high-end graphics

and gaming systems. With the improvement in fabrication technologies, GPUs have

become only smaller and much more powerful. GPUs have become an integral part of
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modern SoC’s right from high-end server racks to tiny mobile devices, we can find a

GPU on almost every SoC. The modern GPU is not only a powerful graphics engine

but also a highly parallel programmable processor which is fully capable of performing

massively parallel mathematical and statistical problems [10]. Due to its wide usage

nowadays in non-graphics applications, a new term GPGPU has been coined which

stands for General Purpose GPU. The architecture of a GPU is shown in figure 2.4

Figure 2.4: High Level GPU Architecture

As shown in the figure 2.4 the GPU has its own device memory and a set of thread

processors. Essentially when a computation is offloaded to a GPU, it is divided into

a number of threads and executed in parallel in the thread processors shown. This

parallelism results in an overall speed-up of the task that has been off-loaded to the

GPU. This type of GPU architecture is extremely useful when we have an extremely

large number of computations that are of the same type or operation without any

data dependency with each other for example matrix multiplication of large matrices.
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In large matrix multiplications, it is only a repeated process of addition and mul-

tiplication on a large set of numbers and many of these computations can be done

entirely in parallel, on a CPU each computation in matrix multiplication must wait

for the previous computation to finish before it gets executed. The example of how

GPU helps in parallel execution of computations is shown in figure 2.5.

Figure 2.5: Acceleration Mechanism of Mathemetical Computations on GPU

The basic difference between a GPU and an FPGA is that the architecture inside

the GPU is always fixed and will have a similar kind of programming model and data

flow all through its lifetime. FPGA, on the other hand, gives the user flexibility to

modify and change the hardware design inside the SoC as per application in order to

extract maximum efficiency from the customized data flow path.
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2.3 Programming Models For Hardware Acceler-

ators

There are a number of programming models that are used for hardware acceleration

with different devices. In the case of FPGAs, the most common programming lan-

guages are Hardware description language (HDL) eg:- Verilog and VHDL. To use an

FPGA for accelerating compute kernels, designers typically start by manually con-

verting the compute kernel into a fully pipelined data path as shown in Figure 2.3,

specified using HDL. A fully pipelined datapath on FPGA results in maximum per-

formance by producing output data at every clock cycle. However, this performance

comes at the cost of designer effort. The various design challenges faced by this type

of FPGA programming model is listed:

• High learning curve for HDL

• Large compilation times

• Code for large designs becomes very complex to read and manage

In order to tackle these problems of HDL design, we have analyzed alternate

programming models that could also be effectively used for hardware acceleration

with much shorter learning curves and more importantly without the use of HDL. It

is to be noted here that this thesis does not discourage the use and benefits of HDL.

The analyses were done and methods experimented with are ones that use a form

of high level translation/synthesis of traditional software code to hardware designs.

FPGA designs using HDL are out of the scope of this thesis.

2.3.1 GPU

As mentioned in subsection 2.2 GPGPUs are very common in most modern SoCs.

The specialty of GPGPUs is that they are general purpose in nature and can be

programmed with a common programming language that can be used to program

multiple applications onto the GPU. The two most common programming languages
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for the GPU are OpenCL and CUDA [11]. The CUDA programming was made for

programming NVIDIA GPUs and the language can only be used to program NVIDIA

GPUs and hence its application is pretty limited. On the other hand, OpenCL is

an open standard that can be used to program CPUs, GPUs, and other devices

from different vendors. OpenCL is a framework for writing programs that execute

across heterogeneous platforms consisting of CPUs, GPUs, DSPs, FPGAs and other

processors or hardware accelerators [12].

This thesis shall focus on using OpenCL to program the Intel Iris 6100 GPU

which generally ships with many common Intel CPU’s inside the same SoC. This

thesis focuses more on the OpenCL C API. The C API for OpenCL is maintained by

Khronos group[13]. In OpenCL programming model, there are two parts of the code

namely the host and the kernel. The host code is written in C while the kernel is a

C-like representation of the computation that needs to be offloaded onto the GPU.

The host code and kernel code are compiled separately. The host code is compiled

to the CPU while the kernel is compiled for the GPU. The host is responsible for

transferring the data to be processed upon to the device memory and read back the

results from the device memory and triggering the device to start executing the kernel.

Figure 2.6 shows the high-level flow of how OpenCL can be used to accelerate kernels

on a GPU.

Figure 2.6: OpenCL Flow for Computations on GPU
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2.3.2 FPGA

The methods of programming an FPGA without the use of HDL are many but in this

thesis, we shall discuss mainly three methods of hardware acceleration sans the use

of HDL. Though HDL may be the most efficient way of programming an FPGA but

alternate methods that will be discussed further in this section will enable almost all

novice programmers write code and run it on an FPGA. The three alternate methods

of programming FPGA’s mentioned in 2.2 are detailed below.

High-Level Synthesis:

High-level synthesis (High Level Synthesis (HLS)) is an increasingly popular ap-

proach that is being used nowadays to generate digital circuits to be instantiated on

FPGA’s[1]. When HDL is used the designer must translate the designs from the al-

gorithmic level all the way up to the RTL level. With the use of high-level synthesis,

this step is abstracted to a few steps above the RTL level. To illustrate this differ-

ence between the RTL flow and the HLS flow has been illustrated by Wim Meeus

et. al. in [1] using the Gasjki-Kuhn Y-chart[14]. In the Y-Chart for the RTL flow,

the designer manually converts the high-level system specifications all the way to the

RTL level after which automatic place and route of the RTL takes place. In the case

of HLS flow, the designer converts the system specification into an algorithmic repre-

sentation usually in C/C++ or any high-level programming language which is then

automatically translated from the algorithmic level all the way to the actual hardware

generation after place and route. This concept has been highlighted by figure 2.7.

Some of the popular tools for High-Level Synthesis are Xilinx Vivado HLS and

Xilinx SDSoC. Even though HLS is a very compelling tool, this thesis shall not

evaluate HLS but shall look into a subset of HLS that is explained in the next section.

OpenCL:

Due to the increasing popularity of OpenCL as a programming language, a number

of FPGA vendors have shown interest towards this by developing OpenCL SDK

for FPGA-based SoCs. Two of the most famous OpenCL SDKs for FPGAs are

the SDAccel tool built by Xilinx for their PCIe based FPGAs [15], and the Altera

OpenCL(AOCL) SDK developed by Altera primarily for its Cyclone V devices [16].

This thesis focuses more on analyzing and benchmarking of AOCL on Cyclone V
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Figure 2.7: RTL Vs HLS Design Flow[1]

devices as this fits more the embedded context.

In this thesis, specifically, the DE0-NANO-SOC board has been used which houses

a Cyclone V SoC. As explained in subsection 2.3.1 the OpenCL programming language

consists of a host code which manages thread launch on the GPU and data transfer

to and from the GPU while the kernel is the actual computation workload that is

accelerated. Using the same principle the AOCL uses a host code that runs on the

CPU of the SoC which is responsible for data transfers/DMA’s and execution control

while the kernel is translated into hardware design using a similar HLS approach as

explained in figure 2.7. AOCL, in particular, gives a lot of scope for tweaking and

modifying the kernel in order to place and route efficiently to the FPGA, for example

in the kernel we can use pragmas to drive the optimization in the way we want. For

example, we could create more than one hardware implementations of the same kernel

within the same FPGA and enable parallel processing. The AOCL SDK has been

used with the DE0-NANO-SOC and a number of benchmarks and applications have

been tested, results of which are detailed in the experiments section4. The AOCL

OpenCL flow is almost similar to the OpenCL Flow for GPUs with the following

caveats. The kernel is compiled beforehand using AOCL SDK. Secondly, the kernel

is compiled offline and the bitstream to program the FPGA is generated. Figure 2.8

shows the AOCL programming flow for the Cyclone V SoC.
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Figure 2.8: AOCL programming flow for Cyclone V Device

2.3.3 FPGA Overlays

Overlay architectures consist of a regular arrangement of coarse-grained routing and

compute resources. The key attraction of overlay architectures is software-like pro-

grammability through the mapping from high-level descriptions, application porta-

bility across devices, design reuse, a fast compilation by avoiding the complex FPGA

implementation flow, and hence, improved design productivity. Another main advan-

tage is rapid reconfiguration since the overlay architectures have smaller configuration

data size due to the coarse granularity. Accelerators can be described at a higher level

of abstraction and compiling it for overlays is several orders of magnitude faster than

for the fine-grained FPGAs. Researchers have proposed fine [17], [18] and coarse

grained [19], [20], [21], [22], [23], [24] overlay architectures to abstract FPGA fabric

resources. Coarse-grained configurable overlay architectures have been proposed as a

method to overcome some of these issues [19, 20, 21, 22, 25, 23]. Overlays can be used

for reducing the prohibitive compilation time required to map an application to the

conventional fine-grained FPGA fabric. Overlays have also been shown to be effec-

tive when paired with general purpose processors [26, 20] as this allows the hardware

fabric to be viewed as a software-managed hardware task, enabling more shared use.

Two overlays have been studied in this thesis, one of them is an FU-based DSP

overlay made with DSP blocks as proposed in [2]. The other overlay is a more popular

one known as MXP made by Vectorblox[27]. The Vectorblox overlay is a soft vector

processor with 16 Vector lanes and this was instantiated on the FPGA fabric of the

Zedboard. Detailed descriptions of these overlays are below:
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DSP Overlay: An overlay architecture with the Functional Unit(FU) based

on the DSP blocks found in Xilinx FPGAs was recently proposed [2]. This overlay

combines multiple operations in a compute kernel and maps them to the DSP block,

resulting in a significant reduction in the number of processing nodes required. An

Fmax of 370 MHz with throughputs better than that achieved by directly implementing

the benchmarks onto the fabric using Xilinx Vivado HLS were reported.
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Figure 2.10: DSP Block based architecture as Island-style overlay.

This DSP overlay has been used to accelerate FIR filtering and has been detailed

in chapter 3.1.

Vectorblox MXP Overlay: The VectorBlox MXP Matrix Processor[27] is an

FPGA-based soft processor that supports parallel execution of computations. It can
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be programmed entirely in C and C++[27]. The MXP processor is built to handle

data-parallel software algorithms at hardware-like speeds. MXP’s parameterized de-

sign lets the user specify the amount of parallelism required, ranging from 1 to 128

or more parallel ALUs. Key features of the MXP include a parallel-access scratch-

pad memory to hold vector data and a high-throughput DMA engine. It excels at

applications like image processing where every pixel in a large set of data is sub-

jected to the same sequence of calculations. With just a single instruction, the MXP

can apply an operation to a vector, matrix, submatrix, volume, or sub-volume of

data. The architecture of the mxp processor instantiated on the Zedboard is shown

in figure 2.11.

Figure 2.11: AOCL programming flow for Cyclone V Device

The MXP, in particular, has been compared with both the DE0-NANO and the

DSP overlay in two case studies that have been detailed in chapters 3.1 and 3.2.

2.4 Summary

This chapter touches upon at a high level all the hardware platforms that will be

covered in this thesis and details some of the advantages and disadvantages of the

same. The next two chapters deal with a few of the case studies performed on some

of the devices and comparisons with existing work. The experiments section discusses

and analyses a number of applications and benchmarks run on the various hardware

platforms and their performance benchmarks.



Chapter 3

Hardware Acceleration Use Cases

3.1 A Case Study On FIR Filter Execution

This chapter presents a case for hardware acceleration using bare metal execution

on embedded devices, specifically on Xilinx Zynq. To examine the communication

overheads, we use three simple 4, 8 and 12 tap FIR filter implementations which we

have an implementation on ARM processor, MXP overlay and DSP overlay [26]. The

original implementation of the filter is taken from [26] and the naive un-optimized

results are shown in Table 3.1. Ttask shows the time in µs which is the sum of data

communication time (to and from the accelerator) and the data processing time. For

each filter, there are three different implementations, first uses ARM processor for

data processing, second uses DSP overlay for data processing where ARM processor

is involved in data transfer from external memory to the overlay (communication

bandwidth only 25 Mbytes/second), third also uses DSP overlay where hard DMA is

involved in data transfer to provide higher communication bandwidth (a maximum of

80 Mbytes/second). More details are given in the experiment section of [26]. These

small examples were chosen as they better demonstrate the overheads of the hybrid

system, without task execution time dominating. It is possible to expand these tasks

to more practical, larger ones with minimal effort. The operating frequency of the

ARM processor, MXP overlay, and the DSP overlay is 667 MHz, 100 MHz, and 100

MHz, respectively.

19
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Table 3.1: Ttask in µs for Non-DMA based, Hard DMA based and ARM only
implementation of FIR filters

Number of 4-tap 8-tap 12-tap

Samples ARM Non Hard ARM Non Hard ARM Non Hard

DMA DMA DMA DMA DMA DMA

64 19.62 17.05 24.40 36.73 20.10 27.56 55.380 23.87 30.72

128 38.98 29.53 28.55 73.01 32.26 31.71 109.92 36.23 34.87

256 77.41 54.50 37.58 145.67 56.57 40.74 219.32 61.18 43.9

512 153.32 101.85 55.56 292.83 105.19 58.72 438.27 108.69 61.88

1024 307.56 198.57 89.33 587.27 199.89 92.49 872.10 205.40 95.65

As seen in Table 3.1, the DSP overlay implementation of the FIR filter performs

much better than the ARM processor on the Zedboard in the case when hard DMA

is involved in the data communication. For example, in the case of 12 tap FIR filter,

a speed up of ≈ 10× was achieved when 1024 samples are processed. It is to be

noted here that these results have been obtained without the use of any compiler

optimizations.

3.1.1 Effects Of Compiler Optimizations

The same implementations were taken for the 4,8 and 12-Tap FIR filtering and was

accelerated using compiler optimizations. This was done to analyze how well the

compiler optimizations improve the overall performance of the filter algorithm. The

compiler optimizations were used such that auto-vectorization of the existing code

was enabled in order to make use of the SIMD NEON vector engine in the Zynq

device. After performing compiler optimization, the results are obtained and shown

in table 3.2.

Table 3.2: Ttask in µs for Non-DMA based, Hard DMA based and ARM only
implementation of FIR filters with compiler optimizations

Number of 4-tap 8-tap 12-tap

Samples ARM ARM Non HARD ARM ARM Non HARD ARM ARM Non HARD

BM LIN DMA DMA BM LIN DMA DMA BM LIN DMA DMA

64 1 1.3 15 14 2 2.4 18 17 3 4.5 21 21

128 3 3.5 25 16 5 5.8 28 19 7 9 31 23

256 6 5 46 20 8 9.6 49 23 14 17 52 27

512 10 10 88 31 18 19 91 34 28 37 94 37

1024 21 17 152 48 28 33.5 155 51 53 66 158 53
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As we can see from Table 3.2 the compiler optimization allows fast execution. In

the first case, where ARM processor is used for data processing, we observe ≈ 16×
speed-up. This is due to the effective use of SIMD NEON engine for vector processing

which outperforms the DSP overlay implementation in almost every case. It can be

inferred from this experiment that hardware acceleration as proposed in [26] becomes

ineffective when the number of samples to be processed are very less (less than 1K

samples). Although DSP overlay (given a high-speed communication interface around

the overlay) can provide a performance of 700 MOPS, 1500 MOPS and 2300 MOPS

in the case of 4, 8 and 12-tap filter, respectively, the performance of the design

in [26] is limited by the use of low performance general purpose (GP) port for data

communication. We observe a performance of up to 550 MOPS for NEON SIMD

engine which is calculated based on the fact that 1K samples are processed using a

12-tap filter (12 multiplication and 11 addition operations per sample) in 53 µs, in

other words, 23K operations are performed in 53 µs. We believe that a high-speed

communication interface around DSP overlay would be able to give us 4× performance

speed-up compared to SIMD NEON engine.

3.1.2 Implementation on the VectorBlox MXP

The VectorBlox MXP overlay[27] is a vector processor implemented on top of FPGA

fabric. It uses multiple ALU lanes to process data streams in an SIMD fashion.

The most important part is the communication interface and scratchpad memory

around multiple ALU lanes which is optimized heavily to provide high bandwidth

(≈ 800 Mbytes/sec) data communication between external memory and MXP over-

lay execution units. It uses high performance (HP) ports of Zynq device for data

communication between external memory and the overlay. Theoretically, in each cy-

cle, 8 Bytes of data can be transferred through the HP port. In order to explore

the performance benefits we implement the filtering benchmarks on the MXP over-

lay. Since the MXP overlay that we use consists of 16 ALUs and runs at 100 MHz,

the maximum performance should be limited to 1600 MOPS due to which we expect

MXP to outperform SIMD NEON engine. We FIR filters on the MXP overlay which
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runs on top of the FPGA fabric. The results are shown below in Table 3.3.

Table 3.3: Vectorblox MXP based implementation of FIR filters with compiler
optimizations

Samples 4-Tap 8-Tap 12-Tap

64 3 4 5
128 6 6 7
256 12 12 13
512 24 23 24
1024 41 41 45

As seen from table 3.3, in the case of the 12-tap filter, the MXP overlay performs

20% better than the SIMD NEON engine. The small gain in the performance is

due to the use of a small number of data samples. MXP overlay generally performs

well when the number of data samples to be processed is high. The case-study in

this chapter shows that FPGA-based overlays (MXP and DSP overlay) have the

potential to outperform hard vector processing engine (SIMD NEON). However, the

performance benefits would be satisfactory when processing a large amount of data

samples including a high-speed communication interface.

3.2 A Case Study On Dynamic Loading of tasks

One of the major benefits of FPGA as a rapidly reconfigurable hardware accelerator in

a heterogeneous computing platform is to utilize the ability to dynamically reconfigure

the functionality of the FPGA fabric. We consider Altera SoC device (Cyclone V on

DE0-Nano-SoC kit) as a heterogeneous computing platform in this chapter to explore

the feasibility of dynamic loading of tasks to FPGA fabric.

The Cyclone V SoC on DE0-Nano-SoC kit has the capability of being reconfigured

on the fly. This method of runtime reconfiguration opens up the possibilities of

dynamically loading new tasks in order to solve different parts of a large application.

This especially is advantageous when the accelerator designed for a large application

does not fit on the FPGA fabric. The bit-streams for multiple tasks can be stored in
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a persistent storage medium like an SD Card or an internal flash memory and can be

swapped onto the fabric when necessary.

In this chapter, we perform a small case study on the Cycle V FPGA device to

test the capabilities of runtime reconfiguration of the FPGA. The application chosen

was FIR filtering where the input samples were first run through a 4-Tap FIR filter

and then through an 8-Tap FIR filter and finally through a 12-Tap FIR filter. A

visual representation of the computation is shown in figure 3.1. The assumption here

is that all of the filters can not fit simultaneously onto the FPGA fabric and due to

which we have to perform runtime reconfiguration.

Figure 3.1: Visual Representation of the FIR filtering computation

The computation is shown in the Fig 3.1 was implemented using Altera OpenCL

(AOCL) SDK on a DE0-Nano-SOC kit. The three kernels for each phase of the FIR

filtering are translated into hardware designs using the AOCL SDK. The run-times

for execution as well as reconfiguration of the FPGA are as shown in table 3.4.

Table 3.4: 4,8 and 12-Tap FIR Filtering on DE0-NANO-FPGA timing results with
re-configuration

Samples 4-Tap 8-Tap 12-Tap 1st Re-
config

2nd Re-
config

64 80 232581 231425 376166 349106
128 81 232955 234140 375742 376857
256 85 234432 234516 375938 349158
512 86 234455 235146 376001 375311
1024 94 262807 271443 375922 348984

It is clear from the table that significantly large time is taken for the reconfigura-

tion of the FPGA. As a next step, we perform the same experiment using an overlay,

in this case, MXP overlay. The results are shown in Table 3.5.
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Table 3.5: 4,8 and 12-Tap FIR Filtering on Vectorblox MXP timing results with
re-configuration

Samples 4-Tap 8-Tap 12-Tap

64 2.689 2.721 2.76
128 5.25 5.27 5.37
256 10.36 10.4 10.44
512 20.6 20.64 20.67
1024 41.08 41.12 41.16

It is clear from the Table 3.5 that the vectorblox MXP overlay is much better at

handling this type of workloads with ease as there is no need of actual reconfiguration

of the FPGA. This chapter concludes that the overlay architectures can be preferred

due to their ease of use, simple programming model and dynamic task loading without

actual reconfiguration of the FPGA fabric.



Chapter 4

Experiments

In this chapter, we present experiments to evaluate the performance of various bench-

marks (in terms of computation time and operations per cycle(OPC)). The data

presented here would help judge as to how each application performs when run on

different platforms under different acceleration criteria. In order to perform bench-

marking, the following applications were identified and chosen for comparison.

• 12-Tap FIR Filter

• 2D Convolution

• Kmeans

• atax

• bicg

Table 4.1: Hardware Platforms

CPU GPU FPGA

Intel Core i7 Intel Iris 6100 Terasic DE0-NANO-SOC (Altera Cyclone
V)

Avnet Zedboard (Arm v7) Avnet Zedboard (Zynq 7000)
Terasic DE0-NANO-SOC (Cortex A9)

The first three applications have been developed by us while the last two have

been taken from a standard benchmark suite known as polybench [28]. Table 4.1

shows the hardware platforms used for benchmarking.

25
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4.1 12-Tap FIR Filter

OpenCL Implementation:

The 12-Tap FIR filter was implemented in OpenCL and the following graphs show

the performance gaps between the various platforms. Table 4.2 shows the execution

time for different number of samples.
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Table 4.2: Execution time of 12-Tap FIR Filter (OpenCL) on different platforms

Samples Intel Core i7 Intel Iris
6100

Zedboard
ARM v7

DE0-NANO
FPGA

64 27 20 387 74
128 35 20 405 81
256 45 21 424 85
512 52 29 460 133
1024 65 36 497 147

Fig. 4.1 shows the timing gaps between the different platforms shown. It can

be clearly seen that the GPU is leading with the least execution time due to the

parallelism involved and the execution time is very high in case of Zedboard ARM

processor. Use of AOCL generated hardware tries to improve the performance of
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Table 4.3: OPC for 12-Tap FIR Filter (OpenCL)

Samples Intel Core i7 Intel Iris
6100

Zedboard
ARM v7

DE0-NANO
FPGA

64 0.034 0.0669 0.00570 0.1301
128 0.0525 0.1338 0.01089 0.2378
256 0.08177 0.25489 0.0208 0.4532
512 0.1415 0.3691 0.0383 0.5793
1024 0.2264 0.59474 0.0710 1.0483

Altera Cyclone V ARM processor by offloading the OpenCL kernel execution on

the accelerator. However, Intel Core i7 and Intel Iris 6100 GPU always outperform

embedded platform (Cyclone V ARM processor with AOCL generated accelerator).

This is not surprising as the operating frequency of Intel CPU and GPU is way too

high compared to embedded platform.

If we look at operations per cycle(OPC) in Figure 4.2, the embedded platform

outperforms others by crunching much more operations as compared to the other

platforms in a fixed period of time. This could be attributed to the highly efficient

hardware design of the OpenCL kernel offloaded to the FPGA fabric.

C implementation: When the same application was implemented in ANSI C

and was run on the hardware platforms, the results obtained are as shown in figure

4.3 and 4.4. In the ANSI C benchmarking we have introduced the Vectorblox MXP

overlay as well as it can be easily programmed using a set of C APIs. The timing

performance clearly shows the Intel CPU performing better than the Vectorblox MXP

overlay. On the contrary, when considered OPC, the Vectorblox MXP overlay defeats

all other platforms by a considerably large margin as shown in the graph. The high

OPC of the Vectorblox MXP overlay can be attributed to its efficient implementation

on the FPGA fabric and use of HP ports on the Zynq for communication.
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Table 4.4: Execution time of 12-Tap FIR Filter (C) on different platforms

Samples Intel Core i7 ARM BM ARM VBX ARM Linux

64 1.097 3 2.7 4.439
128 1.239 4 5.2 8.718
256 2.035 8 10.4 17.4
512 3.2 15 20 34.69
1024 7.4 35 41 69.305

Table 4.5: 12-Tap FIR Filter(C Implementation) OPC on different platforms

Samples Intel Core i7 ARM BM ARM VBX ARM Linux

64 0.838 0.735 5.451 0.497
128 1.485 1.103 5.661 0.506
256 1.808 1.103 5.661 0.507
512 2.3 1.177 5.888 0.508
1024 1.989 1.008 5.744 0.509
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4.2 2D Convolution

2D Convolution is a matrix operation that involves processing a large number of data

samples usually pixels of an image and is an application that needs to be done in

real time. The results obtained when the 2D Convolution application was accelerated

using OpenCL for different image sizes is shown in figures 4.5 and 4.6.

OpenCL Implementation:
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Table 4.6: 2D Convolution(OpenCL) Execution Time on different Platforms

Samples Intel Core i7 Intel Iris
6100

Zedboard
ARM v7

DE0-NANO
FPGA

64 30 40 903 1178
128 80 88 2415 4470
256 120 160 8607 17442
512 300 604 3346 69561
1024 11944 2370 137799 238270

In the timing performance as shown in figure 4.5 the intel core i7 CPU and GPU

perform almost the same, this could be attributed to the increased number of compu-

tations involved in convolution. The FPGA performs the worst in the case of timing
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Table 4.7: 2D Convolution(OpenCL) OPC on different platforms

Samples Intel Core i7 Intel Iris
6100

Zedboard
ARM v7

DE0-NANO
FPGA

64 1.450 1.582 0.1156 0.3867
128 1.088 1.4386 0.0864 0.2038
256 1.4506 1.5825 0.0485 0.1044
512 1.1605 0.838 0.0249 0.0523
1024 0.0582 0.4273 0.0121 0.0257

performance due to the high amount of communication time to transfer data in and

out of the FPGA. If we look at Ops per cycle in figure 4.6, the GPU, and CPU per-

form really well for image sizes lower than 256x256 but with higher image sizes all

platforms seem to be processing fewer operations per cycle. This could be attributed

to the higher time taken for data movement when larger sample sizes are processed.

C implementation:
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Figure 4.7: C Execution Time for 2D
Convolution
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Figure 4.8: C OPC for 2D Convolution

The results of the 2D convolution benchmarks are really interesting primarily

due to the performance demonstrated by the vectorblox matrix processor. If we see

figure 4.7 every other hardware platform scales up in computation but the vectorblox

processor takes more time than the other platforms when the sample count is low but
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Table 4.8: 2D Convolution(C Implementation) Execution Time on Various
Platforms

Samples Intel Core i7 ARM BM ARM VBX ARM Linux

64 29 112.82 344.96 184
128 119 459.1 514.68 958
256 532 1845.612 928.134 6912
512 2858 12673.48 2077.785 52555
1024 16706 54087.19 6643.45 210588

Table 4.9: 2D Convolution(C Implementation) OPC on Various Platforms

Samples Intel Core i7 ARM BM ARM VBX ARM Linux

64 1.500 0.925 2.018 0.567
128 0.731 0.454 2.705 0.217
256 0.327 0.226 3.009 0.0604
512 0.121 0.065 2.681 0.015
1024 0.041 0.030 1.676 0.007

as the sample count is increased the vectorblox starts performing much better than

the other platforms. In Ops per cycle performance shown in figure 4.8 as well the

vectorblox seems to be churning out far more Ops per cycle as compared to the other

platforms. This behavior could again be attributed to the highly efficient design of

the Vectorblox engine.
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4.3 Kmeans

The Kmeans algorithm is a unique algorithm as its a map reduce type computation.

The specialty of a map-reduces algorithm is that it has a lot of branching which tends

to break the parallelism when accelerated using parallel threads in OpenCL.

OpenCL Implementation:
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Figure 4.9: OpenCL Execution Time for
Kmeans
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Figure 4.10: OpenCL OPC for Kmeans

Table 4.10: Kmeans(OpenCL) Execution Time on Various Platforms

Samples Intel Core i7 Intel Iris
6100

Zedboard
ARM v7

DE0-NANO
FPGA

64 35 7 361 72
128 37 7.5 369 72.3
256 44 8.08 387 72.9
512 50 10 406 75
1024 55 19 424 80

As you can see when executed with OpenCL the GPU still performs the best as it

has multiple threads spawned but the CPU and FPGA performance is really low, this

could be attributed to the single threaded operations on the CPU and the low clock

frequency of the FPGA. On comparing operations per cycle, it’s clearly seen that the
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Table 4.11: Kmeans(OpenCL) OPC on Various Platforms

Samples Intel Core i7 Intel Iris
6100

Zedboard
ARM v7

DE0-NANO
FPGA

64 0.026 0.1911 0.00611 0.1337
128 0.0497 0.3568 0.0119 0.2664
256 0.0836 0.6624 0.02281 0.5284
512 0.1472 1.0705 0.0434 1.0273
1024 0.267 1.126 0.083 1.926

CPU performance does not scale with increasing number of operations but in the case

of the GPU and FPGA scale up in operations per cycle and the DE0-NANO FPGA

scales the highest with increasing samples to be processed. The FPGA performance

in the case of operations per cycle can be attributed to highly efficient kernel design

routed to the fabric.

C implementation:
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Figure 4.11: C Execution Time for
Kmeans
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Figure 4.12: C OPC for Kmeans

As mentioned earlier since Kmeans is a map reduce algorithm, it tends to break

parallelism after a few stages and hence as seen in figure 4.11 the intel CPU performs

the best in this case due to lack of parallelism in the application. A similar trend is

seen when Ops per cycle of the C implementation is compared.
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Table 4.12: Kmeans (C Implementation) Execution Time on Various Platforms

Samples Intel Core i7 ARM BM ARM VBX ARM Linux

64 3 7.44 72.79 18
128 5 14.79 149.898 19
256 8 30.774 304.512 55
512 13 77.037 612.924 129
1024 30 186.666 1267.569 258

Table 4.13: Kmeans (C Implementation) OPC on Various Platforms

Samples Intel Core i7 ARM BM ARM VBX ARM Linux

64 0.306 0.296 0.202 0.122
128 0.368 0.298 0.196 0.232
256 0.46 0.286 0.193 0.160
512 0.566 0.229 0.192 0.136
1024 0.490 0.189 0.185 0.136
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4.4 ATAX

The ATAK kernel is a linear algebra kernel which is a part of the Poly Bench bench-

mark suite and is written in OpenCL and calculates the following equation:-

y = ATAX (4.1)

As seen in equation 4.1 the computation involves a lot of operations involving

matrix transpose and matrix multiplications and hence can be categorized as compute

intensive in nature. Thus accelerating such an algorithm makes a lot of sense. The

application was run on the previously mentioned hardware platforms and the results

are shown in figure 4.13 and 4.14.

OpenCL Implementation:
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Figure 4.13: OpenCL Execution Time for
ATAX
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Figure 4.14: OpenCL OPC for ATAX

As we can see from the timing performance shown in figure 4.13 the CPU performs

better than both the GPU and FPGA, this could be attributed to the high clock

frequency at which the CPU is operating. The FPGA is really slow here and its

stunted performance can be attributed to the much lower frequency at which it is

operating. If we look at the operations per cycle performance both the CPU and

GPU follow a kind of a bell curve pattern where they begin by computing much

lesser operations per cycle for lower samples, reach a peak of operations per cycle
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Table 4.14: ATAX(OpenCL) Execution Time on Various Platforms

Samples Intel Core i7 Intel Iris
6100

DE0-NANO
FPGA

128 164 434 803
256 234 601 1762
512 315 915 5782
1024 954 2533 22453
2048 11197 15172 89182

Table 4.15: ATAX(OpenCL) OPC on Various Platforms

Samples Intel Core i7 Intel Iris
6100

DE0-NANO
FPGA

128 0.249 0.137 0.534
256 0.7001 0.396527 0.973476349
512 2.080507937 1.041804272 1.186624232
1024 2.747840671 1.505331084 1.222297476
2048 0.936479414 1.00527383 1.230932037

following which they drop down again. The FPGA, on the other hand, begins with

a much higher operations per cycle output and remains constant with increase in

samples and scales in a slightly linear fashion and in the end still ends up producing

more operations per cycle as compared to the CPU and GPU, again this can be

attributed to the highly specialized hardware implementation of the kernel on the

FPGA.

C implementation:

The C Implementation of the atax algorithm was done on hardware platforms and

the results are as shown in figure 4.15 and 4.16. In the timing performance the Intel

CPU performs the best while the ARM CPU on the DE)-NANO performs better than

the ARM CPU on the zedboard, this can be attributed to the higher clock frequency

of the arm processor on the DE0-NANO board. The intel CPU also outperforms the

others in terms of Ops per cycle as shown in figure 4.16.
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Figure 4.15: C Execution Time for ATAX
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Figure 4.16: C OPC for ATAX

Table 4.16: ATAX (C Implementation) Execution Time on Various Platforms

Samples Intel Core i7 Zedboard
ARM

DE0-NANO
ARM

128 64 590 320
256 160 1760 1135
512 475 6525 4332
1024 1861 25970 17714
2048 7400 106151 75466

Table 4.17: ATAX (C Implementation) OPC on Various Platforms

Samples Intel Core i7 Zedboard
ARM

DE0-NANO
ARM

128 0.64 0.166 0.221
256 1.024 0.2233 0.249
512 1.379 0.240 0.261
1024 1.408 0.242 0.255
2048 1.416 0.236 0.240
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4.5 BICG

The biconjugate gradient method is an algorithm to solve systems of linear equations

of types as shown :-

Ax = b (4.2)

Unlike the conjugate gradient method, this algorithm does not require the matrix ”A”

to be self-adjoint, but instead one needs to perform multiplications by the conjugate

transpose.

The BICG algorithm was implemented in OpenCL and C and the results are as

shown below.

OpenCL Implementation:
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Figure 4.17: OpenCL Execution Time for
BICG
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Figure 4.18: OpenCL OPC for BICG

The performance, as well as operations per cycle results for BICG, are pretty

similar to the ATAX performance results, this can be attributed to the similarity in

the type of operations performed being matrix multiplications. In the case of BICG

as well the CPU and GPU perform much better in the case of timing operations while

the FPGA take much more time for computation which can be attributed to its low

frequency of operation. In Operations per cycle performance, the CPU and GPU

again take a bell curve appearance with the lesser number of operations per cycle

produced when sampling size increases while the FPGA Operations per cycle scales
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Table 4.18: BICG(OpenCL) Execution Time on Various Platforms

Samples Intel Core i7 Intel Iris
6100

DE0-NANO
FPGA

128 132 686 1123
256 175 862 1940
512 485 1190 7187
1024 1393 1899 29595
2048 11685 23950 112997

Table 4.19: BICG(OpenCL) OPC on Various Platforms

Samples Intel Core i7 Intel Iris
6100

DE0-NANO
FPGA

128 0.31030303 0.086848662 0.381848915
256 0.936228571 0.276464881 0.884157385
512 1.351257732 0.801051184 0.954648853
1024 1.881866475 2.007900809 0.92732709
2048 0.897369277 0.63682733 0.9715035

almost constantly with an increase in samples.

C implementation:
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Figure 4.19: C Execution Time for BICG
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Figure 4.20: C OPC for BICG

As mentioned in the previous section due to the application similarity to the
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Table 4.20: BICG (C Implementation) Execution Time on Various Platforms

Samples Intel Core i7 Zedboard
ARM

DE0-NANO
ARM

128 88 627 292
256 285 2304 1059
512 1108 8995 4112
1024 4409 35833 16795
2048 15419 143273 68177

Table 4.21: BICG (C Implementation) OPC on Various Platforms

Samples Intel Core i7 Zedboard
ARM

DE0-NANO
ARM

128 0.465 0.156 0.242
256 0.574 0.170 0.267
512 0.591 0.174 0.275
1024 0.594 0.175 0.269
2048 0.680 0.175 0.266

ATAX application the performance benchmarking look almost similar as shown in

figures 4.19 and 4.20. The Intel CPU performs better than the other platforms in

both cases.
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4.6 Summary

To summarize the results of these experiments, we have the key takeaways from each

of the benchmark applications as below.

12-Tap FIR Filter: The iris GPU gives much lower execution time as compared to

the FPGA for the FIR filter operation but the FPGA overtakes all the other devices

with higher OPC with 2x greater OPC as compared to the iris GPU. This could be

attributed to the fact that the FPGA runs a fully pipelined customized datapath

which does not suffer from the overheads of software scheduling that takes place in

case of the GPU. In the case of C Implementation, the Vectorblox gives the highest

OPC which is almost 5x greater than the ARM processor.

2D Convolution: The Vectorblox MXP processor overtakes all other platforms in

both execution time as well as OPC due to its highly efficient vector lane architecture.

This benchmark clearly shows that image processing tasks which require a lot of SIMD

operations, the MXP is the best bet. The AOCL implementation on the DE0 performs

much slower here due to the nature of the application which involves a number of

data transfers to and from the FPGA.

Kmeans: Since Kmeans is an application where SIMD parallelism is broken due

to the nature of the application. This is the primary reason why the Vectorblox

MXP and the GPU do not perform that well. The CPU performs the best here. An

interesting fact in Kmeans is that the execution time on the DE0-NANO FPGA is

15x faster than the vectorblox MXP, this clearly shows that the MXP processor is

really not good when the computation cannot be expressed in a SIMD form.

ATAX: The ATAX application which is more sequential in nature performs ex-

tremely well in the CPU. Even though a dedicated datapath is created on the FPGA,

it still fails to outperform the CPU, this could be attributed to the low operating

frequency of the DE0-NANO.
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BICG: The performance, as well as OPC results for BICG, are pretty similar to

the ATAX performance results, this can be attributed to the similarity in the type of

operations performed being matrix multiplications. In the case of BICG as well the

CPU and GPU perform much better in the case of timing operations while the FPGA

take much more time for computation which can be attributed to its low frequency

of operation.

As seen in the application benchmarks in this chapter, it’s evident that hardware

acceleration is certainly possible by means of software like abstractions like C and

OpenCL. Efforts made by Vectorblox and AOCL in the domain promotes this notion

of hardware design using software abstractions. Advantages of these abstractions are

that they enable software engineers to make hardware designs in a simple and easy

manner. Unlike methods using HDL which take a steep learning curve to master,

these abstractions have a relatively smaller learning curve and hence improve de-

sign productivity to a great extent. It is also seen from the experiments that not

all applications result in an accelerated version when ported to a hardware design,

this could be one of the pitfalls of an abstracted hardware design also the software

abstractions result in some degree of reduced performance as compared to designing

HDL-based hardware with a fully customized data path, for example, software ab-

stractions severely limit the maximum frequency with which we can run the hardware.

Acceleration with fixed hardware devices like GPU result in a great performance for

floating point operations but its to be noted that we might not always need floating

point accuracy at all times this results in GPU hardware being left idle. Neverthe-

less, this approach could be great especially when the application is of such a nature

where the high-level design is constantly changing. In these cases maintaining HDL

and constant modifications might be a challenging task and hence having high-level

software abstractions make sense.



Chapter 5

Hardware Virtualization And Lab

On The Cloud

As we saw in the previous chapters, there are a number of ways in which hardware

acceleration can be made possible, and these methods are only a few that have been

explored till now. There is a great need for design space exploration in this area and

only with extensive experimentation and demand for these tools and methods can the

efficiency of these methods be improved. One approach is to provide easy and inex-

pensive access to these hardware platforms in an abstracted manner to their target

customers to increase the popularity of these methods of hardware acceleration. Hard-

ware virtualization is the way to go where computing platforms should be abstracted

from the user and can be accessed remotely for the acceleration of compute-intensive

applications. Giving end customers a real feel of coding on the actual hardware is

a much more convincing method of getting them to adopt a technology than giving

them a presentation or demo about it.

5.1 Existing Work

There have been a number of cases where hardware virtualization has already been

used especially in the field of high performance computing as mentioned in section 5.2.

43
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One of the service providers of FPGA based virtualized hardware on cloud is Sci-

Engines [29]. SciEngines offers a number of reconfigurable computing (RC) hardware

for large-scale scientific analysis. Modules with 1 to 8 FPGAs each are combined to

form computers and clusters with a number of FPGAs for high performance comput-

ing (HPC) applications [29]. Having an FPGA on a server being used for HPC is

great but this demands the involvement of a PC to continually reconfigure the whole

FPGA with a new bitstream. But now, with the application of the Xilinx partial-

reconfiguration technology, its feasible to design FPGA-based clients for a distributed

computing network. A team at the Hamburg University of Applied Sciences created

a prototype for such a client and implemented it in a single FPGA [30]. Also with

the recent acquisition of major FPGA manufacturer Altera by Intel, there have been

plans for the intel Xeon server chip to ship with an inbuilt FPGA. Intel sees FPGAs

as the key to designing a new generation of products to address emerging customer

workloads in the data center sector, as well as the Internet of Things (IoT) [31].

Though all these existing developments are quite interesting most of them focus on

virtualizing FPGA hadware for HPC. Most of the hardware is high power and bulky

units of hardware. There hasnt been much development in virtualizing hardware for

the embedded market. Section 5.2 tries to make the case for virtualizing embedded

hardware devices to the cloud and its key areas of application.

5.2 The Case for Embedded Hardware Virtualiza-

tion

Virtualization hides the physical characteristics of a computing platform from the

users, presenting instead another abstract computing platform[32]. Hardware plat-

forms are generally expensive and to explore and assess a set of platforms for a par-

ticular application might end up becoming an expensive task. Thus in this chapter,

we have explored virtualization of embedded hardware platforms.

One of the applications for hardware virtualization is in the field of academic labs.

In most labs, large chunks of lab room, real estate, staff and dedicated resources are
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allocated to maintain hardware labs in colleges, universities. This could result in

really high installation and maintenance costs for these labs. Virtualizing these labs

or putting these ”Labs on the Cloud” would result in a great reduction of costs.

There could be central servers to which a farm or cluster of hardware platforms

could be connected to a cloud server and people could log into them from a remote

machine and use the hardware attached to the server. One existing example of this

type of virtualization is dispatch of heavy compute jobs to high-performance servers

which can be rented at a small fee such as Google cloud engine, Amazon AWS.

Extending this concept to embedded computing devices would change the paradigm

of hardware labs and also could be applied to product selection and deployment

analysis by commercial vendors as well. The basic idea of virtualizing embedded

hardware platforms by making use of the cloud is highlighted in figure 5.1.

Figure 5.1: Basic Hardware Virtualization Using Cloud

5.3 The Cloud9 based virtualization for Embed-

ded Hardware

As seen in the experiments sections a lot of benchmarks have been performed on the

Vectorblox MXP overlay on the Zedboard. To assess the ease of setup and use of

hardware virtualization, we choose the Zedboard as the target device that would be

virtualized. In order to put the Zedboard online, we connected it to an Ubuntu Server
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which acted as the host for the Zedboard connected which acted as the slave. The

server-device setup is shown in figure 5.2.

Figure 5.2: The Zedboard-Server Setup

5.3.1 The Cloud9 IDE

Cloud9 IDE is an online integrated development tool, published as open source soft-

ware from its version 3.0. It supports a lot of programming languages, including

PHP, Ruby, Perl, Python with Node.js, and Go. In our case, we use only C/C++. It

enables developers to get started with their coding immediately with pre-configured

cloud-based workspaces, and the web development features like a live preview of the

code and web browser compatibility and testing [33]. The Cloud9 IDE source code

was used to spawn a server based on node.js [33] and the node server is used to

graphically display all the project workspaces and code that is required to program

the Vectorblox MXP overlay instantiated on the FPGA at the Zedboard.
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5.3.2 Node.js and the Cloud9 Server Setup

The Cloud9 IDE is entirely built in javascript and can be hosted online by spawning a

node server. The node server that is spawned makes the Cloud9 IDE available online

in the form of a web application. In order to spawn the node server, node.js needs to

be installed in the system where the node server is intended to be spawned. Node.js

can be installed from its official website : https://nodejs.org

In order to spawn a server in node.js we need to prepare a server script and bind

it to the web application that we need to put online, in case of Cloud9 the server script

can be found along with their web application source code in :- https://github.com/c9/core.

The following code in figure 5.3 is a bare minimum structure of a node.js server code

that makes use of HTTP ports.

Figure 5.3: Basic Node Server Script

As seen in the code snippet, the node server listens on a HTTP port which is

generally accessed by an IP address and when any request comes on that IP address

it re-directs the request to the Cloud9 Web application in the background.

https://nodejs.org
https://github.com/c9/core
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The node server is spawned on the host Ubuntu machine via terminal as shown

in figure 5.4.

Figure 5.4: Spawning The Node Server
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5.3.3 The Lab On Cloud Web Application

Once the node server is started, and the IP address of the node server is online, a

web page is generated by the Cloud9 IDE which can be viewed by going to the IP

address at which the node server has been spawned. The screen-shot of the web page

generated has been shown in figure 5.5.

Figure 5.5: The Cloud9 IDE Webpage

As seen in the screen-shot in figure 5.5 the Cloud9 IDE makes it really easy to

program and write code for hardware in remote servers via a web browser. As you

can see in the web browser, there is a window present to edit code and a sidebar

with all the project folders where different projects are present that can be run on

the MXP overlay. Once the code is finalized, we can use the run button as shown in

figure 5.5 to run the code. This action triggers an internal script in the node server

which then triggers the compilation of the code on the Ubuntu server followed by the

transfer of the executable binary to the Zedboard. Once the Zedboard finishes the

computation, the results are read back through the serial port and displayed in the

results window as shown in figure 5.5.
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Apart from setting up workspaces, the online web application can also be used to

customize various project settings as shown in figure 5.6.

Figure 5.6: The Cloud9 IDE project customization

Custom project settings gives the advanced users freedom to design their own

build system for the project that they run and also put in compiler optimizations etc.

Thus this method of hardware virtualization using web pages could give access to

hardware from anywhere and could be used by researchers and academia for course

labs as well as research experiments. The applications could also be extended to

commercial vendors who would like to test their applications on multiple embedded

hardware targets.



Chapter 6

Conclusions and Future Work

This chapter concludes and summarizes this report. Furthermore, in this chapter we

discuss future research directions in detail.

6.1 Conclusions

This report proposed an approach for performing hardware acceleration by means of

software based high-level design (using MXP overlay and Altera OpenCL framework)

and quantifying performance benefits. The first case study in chapter 3.1 shows us

that by merely using compiler optimizations it is possible to accelerate the applica-

tions on an embedded device, Xilinx Zynq since compiler optimization enable the use

of SIMD NEON engine. From the data tabulated in chapter 3.1 we observe ≈ 20×
improvement in the performance of the ARM processor by merely turning on the

compiler optimizations (enabling the use of SIMD NEON engine). We observe a

performance of up to 550 MOPS for NEON SIMD engine which is calculated based

on the fact that 1K samples are processed using a 12-tap filter (12 multiplication

and 11 addition operations per sample) in 53 µs, in other words, 23K operations

are performed in 53 µs. Although DSP overlay (given a high-speed communication

interface around the overlay) can provide a performance of 700 MOPS, 1500 MOPS

and 2300 MOPS in the case of 4, 8 and 12-tap filter, respectively, the performance

of the design in [26] is limited by the use of low performance general purpose (GP)
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port for data communication. We believe that a high-speed communication interface

around DSP overlay would be able to give us 4× performance speed-up compared to

SIMD NEON engine. We also observed that the MXP overlay performs 20% better

than the SIMD NEON engine. The small gain in the performance is due to the use

of a small number of data samples. MXP overlay generally performs well when the

number of data samples to be processed is high. The case-study demonstrated that

FPGA-based overlays (MXP and DSP overlay) have the potential to outperform hard

vector processing engine (SIMD NEON). However, the performance benefits would be

satisfactory when processing a large amount of data samples including a high-speed

communication interface.

The second case study in chapter 3.1 demonstrated dynamic reconfiguration of the

FPGA by use of the Altera OpenCL runtime. The dynamic reconfiguration case could

be very useful when there are multiple hardware designs that need to be accelerated

on the FPGA but there is not enough area in the fabric to fit them all. We conclude

that the vectorblox MXP overlay is much better at handling this type of workloads

with ease as there is no need of actual reconfiguration of the FPGA.

This work included developing an understanding of compute kernels and their

benchmarking using hardware acceleration on overlay and GPU architectures with

detailed performance evaluation of these devices including AOCL generated acceler-

ators and commercial multi-core devices. Use of programming abstractions for hard-

ware design have helped improve the design productivity and example designs were

experimented with for a set of kernels. Experiments were designed with a number

of compute kernels and were accelerated using Overlay architectures and AOCL gen-

erated accelerators. A performance comparison was done for these algorithms when

run on different platforms and it was analyzed how hardware acceleration affects the

performance in each case.

Finally, this thesis concludes with an exotic demonstration of hardware virtual-

ization by using the cloud. With all these methods of hardware acceleration, virtual-

ization of hardware could be a great method to give access to a large community of

developers to experiment with and learn the alternative methods of hardware accel-

eration.
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6.2 Future work

Some of the main future research directions that could be considered are towards

making this technology easier and more portable across devices. Some of the key

areas have been listed below:

• Mature firmware and drivers to integrate overlays with the host pro-

cessor: In order to use the various overlay architectures efficiently, it is nec-

essary to interface them properly with a host processor system, drivers, and

firmware that control the overlay must work really fast in order to avoid per-

formance drops due to communication.

• OpenCL Support for overlays: Dynamic loading of OpenCL kernels to

overlays by providing OpenCL support for overlays.

Finally, with these initiatives like hardware virtualization, it is possible to reach

hundreds of thousands of developers worldwide and give them a platform and frame-

work to program and code such devices and also develop their skills which would

eventually lead to a paradigm shift of many people adopting these methods.
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