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Abstract

In the quest for hardware acceleration of applications, embedded reconfigurable plat-

forms have emerged with significant potential for addressing the demand for perfor-

mance at low power consumption. Research efforts have shown strength of these

platforms in a wide range of application domains where compute intensive tasks

gets executed efficiently on reconfigurable fabric. Despite these advantages, these

platforms have not yet been ready for mainstream computing due to the lack of ab-

stractions. Overlay architectures, such as intermediate fabrics, have been evolved

as a computation abstraction to provide application portability and scalability. In-

tegration of overlay architecture with a memory subsystem and with an embedded

processor is crucial to enable management and sharing of limited overlay resources.

This report presents a memory subsystem around streaming overlay architectures

and OS support for the communication abstraction in an embedded reconfigurable

platform, the Xilinx Zynq. We provide support of available hard IP blocks such as

embedded ARM Cortex-A9 processor cores and AXI interfaces for streaming overlay

architectures. We first present experiments to quantify the communication overhead

and to characterize the AXI interfaces using bare metal SW applications. For AXI

general purpose (GP) interfaces, we observe a maximum throughput of 640 Mb/s and

200 Mb/s per interface, with and without using PS-DMA, respectively. For AXI high

performance (HP) interfaces and ACP interfaces, we observe a maximum throughput

of 8.4 Gb/s per interface while theoretical maximum throughput is 9.6 Gb/s. After

that, in order to study the overheads associated with OS abstraction, we conducted

experiments using Xillybus system and observed high throughput (up to 80 MS/s)

for large data streaming (above 4K samples) but low throughput (2-650 KS/s) for

small data streaming (below 4K samples) through overlay because of high latency

associated with the system. We then integrated our own developed custom core and

estimated a sustained high throughput (3 MS/s) which can be further improved by

using device drivers for DMA controllers for small data streaming (below 4K samples).
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Chapter 1

Introduction

1.1 Motivation

Hardware acceleration is an emerging domain in embedded systems which has at-

tained prominence due to the emergence of embedded reconfigurable platforms. These

platforms have added advantages of low power consumption, isolated execution of

tasks and scalability. However, lack of suitable abstractions prevents the use of these

platforms commercially. Poor design productivity has been a key limiting factor, re-

stricting their effective use to experts in hardware design [10]. Abstractions can be

employed at various levels, from computation, interfaces, to management and pro-

gramming. Overlay architectures, such as intermediate fabrics[11], have evolved as a

computation abstraction to provide application portability and scalability. Integra-

tion of overlay architecture with a memory subsystem and an embedded processor is

crucial to enable management and sharing of limited overlay resources. Since memory

sub-system and communication interfaces affect the performance of the system heav-

ily, these components need to be studied and designed very carefully. In our work, we

aim to study communication overheads and keep them as small as possible while em-

ploying abstractions. Objective is to develop and maximize performance of abstract

memory subsystem around overlay architecture, supported by OS abstraction.

2
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1.2 Contribution

This report focuses on building a memory subsystem around an overlay architecture

and providing OS support for the communication abstraction in an embedded re-

configurable platform, the Xilinx Zynq[3]. Zedboard[12] have been used for all the

experiments. It is a complete development kit for designers interested in exploring

Zynq based system designs. The board contains all the necessary interfaces and

supporting functions to enable a wide range of applications. The different methods

to interface the processor, main memory and a streaming overlay architecture are

explored in order to identify the method with maximum bandwidth and minimum

communication latency. We first present experiments to quantify the communica-

tion overhead and to characterize the AXI interfaces of Zynq platform using bare

metal SW applications. After that, in order to study the overheads associated with

OS abstraction, we conducted experiments using Xillybus system and observed high

throughput for large data streaming but low throughput for small data streaming

through overlay because of high latency associated with the system. We then in-

serted our own developed custom core to support high throughput and low latency

for small data streaming through overlay.

1.3 Organization

The remainder of the report is organized as follows: Chapter 2 presents background

information. Chapter 3 studies current state of the art techniques in memory subsys-

tems and their OS support. In chapter 4, we present and describe Xillybus system

architecture and our custom core and its features. In chapter 5, we present exper-

iments conducted to characterize ZynQ communication ports using bare metal SW

applications. Chapter 6, presents the experiments conducted using Xillybus system

and performance estimation of our custom core under the control of Linux. We con-

clude in chapter 7 and discuss future work.



Chapter 2

Background

2.1 Hardware Acceleration

The method of using specialized and scalable computational hardware to execute

some compute intensive functions faster than a General Purpose Processor (GPP) is

generally known as hardware acceleration. Hardware acceleration is one of the meth-

ods of improving performance of sequential GPPs by placing one or more specialized

functional units alongside a GPP. These dedicated functional units, also known as co-

processors, can provide dramatic acceleration[13]. Examples include video decoding

acceleration , functionality implemented as an embedded video decoder in a smart

phone.

Figure 2.1: Typical DSP Algorithm Implemenation

4



2.1. HARDWARE ACCELERATION 5

In a typical Digital signal processor (DSP) application, 20% of the program code

consumes 80% of the application execution time. Fig. 2.1 illustrates this concept.

This requires time-consuming, difficult-to-maintain assembly coding to increase sys-

tem performance. Hence usage of specialized hardware accelerators is becoming signif-

icantly important in accelerating signal processing applications. These accelerators

are normally deployed as an Application Specific Integrated Circuit (ASIC) block

alongside a GPP such as ARM processor or a digital signal processor. Fig.2.2 illus-

trates this technique. This limits the flexibility and increases time to market since

developing an ASIC is still a complex and time consuming process. On the other

hand, FPGAs are becoming popular for rapid-prototyping of hardware accelerators

at the cost of some overheads. Fig.2.3 shows the differences between FPGA and ASIC

based accelerator design.

Figure 2.2: Usage of Hardware Accelerators
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Figure 2.3: Comparison of FPGA and ASIC based Accelerators[1]

2.1.1 Task Acceleration

Task acceleration normally refers to the development of a specialized functional unit

(co-processor) to accelerate certain task (compute-intensive) of an application as

shown in Fig.2.4. For example, a typical software defined radio application requires

execution of several DSP tasks such as FIR filtering, FFT etc. Hardware descrip-

tion languages, such as Verilog and VHDL, are normally used in order to implement

a co-processor on Field Programmable gate array (FPGA) for such tasks. It re-

quires significant design effort and hardware expertise. As high level synthesis tools

are normally used to synthesize C/C++ code [high level language (HLL) descrip-

tion] to generate hardware description of tasks, these tools are becoming significantly

important[14]. It has been shown in literature that these accelerators can provide

several orders of performance improvement depending on the implicit parallelism in

the task.

2.1.2 Application Acceleration

Despite having the implementation of a hardware accelerator (co-processor) and its

performance gain, there is no guarantee that it will surely provide reduction in appli-

cation execution time[15]. This depends heavily on how the accelerator is connected

to the overall system, communication mechanism between accelerator and the system,
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Figure 2.4: Usage of Co-Processor for hardware Acceleration

communication bandwidth and latencies etc. It is also not straight forward to plug

the accelerator into the system. FPGA vendors nowadays provide functionality in

their tools to automatically connect an accelerator to the system via standard inter-

faces and interconnects such as AXI, PLB etc. In order to improve communication

bandwidth between system and the accelerator, vendors started embedding hard pro-

cessor cores and necessary infrastructure in the latest generation of platforms. In the

next section, we describe these platforms in detail.

2.2 Embedded Reconfigurable Platforms

Embedded reconfigurable platforms couple one or more processors with a shared fab-

ric of reconfigurable hardware, such as a field programmable gate array (FPGA).

Some examples are: Programmable System on Chip (PSoC) from Cypress, Smart-

Fusion SoC FPGAs from Microsemi, Zynq-7000 All Programmable SoC from Xilinx

etc. Evolution of these platforms has dramatically changed the process of designing

custom programmable system on chips. Some of the key advantages over other avail-

able platforms includes re-programmability, lower power consumption than multicore

processors and GPUs, real-time execution capability , and most importantly, high

spatial parallelism which can be used to significantly accelerate complex algorithms

[16][17].
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2.2.1 Advantages

Presence of both processor and reconfigurable fabric in a platform seems beneficial

due to several reasons. This approach is usually processor centric for easy control

and adaptability. Streaming data-flow and control intensive tasks can be executed on

such a platform efficiently. These platforms can take the advantage of thread level

parallelism. Reconfigurable fabric provides application specific acceleration and power

of reconfigurability. Also reconfigurable designs are more energy and power efficient,

smaller and more flexible when compared to SW implementation, which makes it

more suitable for embedded systems. These platforms also result in ease of design and

faster time-to-market. Solutions like ASIC have high performance benefits but falls

back in flexibility metric. On the other hand, solutions like embedded reconfigurable

platforms are highly flexible.

2.2.2 Challenges

Following are the challenges in the implementation of application on these platforms:

• Efficient communication interface between the reconfigurable fabric, processor

and memory and its management.

• Reconfiguration management and minimization of reconfiguration time.

• Operating system support for providing certain services such as scheduling,

synchronization and communication.

• Programming model and tools for mapping applications onto heterogeneous

resources of the platform.

2.2.3 Performance Metrics

Following are the desired performance metrics:

• Short communication latency and high bandwidth to allow fast data communi-

cation.

• Short reconfiguration time to allow fast task switching.

• Less overheads associated with automated synthesis of the hardware.



2.2. EMBEDDED RECONFIGURABLE PLATFORMS 9

2.2.4 Example: Xilinx Zynq

Both major FPGA vendors, Xilinx and Altera, have recently introduced reconfig-

urable platforms consisting of high performance processors coupled with programmable

logic. These platforms partition the hardware into a processor system (PS), contain-

ing one or more processors along with peripherals, bus and memory interfaces, and

other infrastructure, and the programmable logic (PL) where custom hardware can be

implemented. The two parts are coupled together with high throughput interconnect

to maximize communication bandwidth. We focus on the Xilinx-Zynq[3].

The Xilinx-Zynq consists of a dual-core ARM Cortex A9 processor platform

equipped with a double-precision floating point unit (FPU), commonly used periph-

erals and reconfigurable fabric. The programmable logic (PL) is connected to the

Processing System (PS) through high-speed, low-latency AXI interfaces. Presence

of ARM processor enables development of both Bare-metal applications and Linux

based applications. It exhibits improved performance compared to a two chip solu-

tion, which is limited by IO bandwidth and loose coupling. Zynq follows a processor

centric approach by allowing the processors to boot first.

Figure 2.5: Zynq Use Cases Diagram

Fig. 2.5 shows some use cases for Zynq:

• Embedded control Used to access and control peripheral configuration registers

• Fabric Data path - Used to access data path configuration registers and data

path memory.

• Software acceleration - Used to move data between Hardware and software

domains.
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2.2.4.1 PS and PL

The Processing system (PS) contains a dual-core ARM Cortex-A9 processor which

can boot independently unlike other cores such as PowerPC. The PS also consists of

a double-precision floating point unit, commonly used peripherals, a dedicated hard

DMA controller (PL330), On-Chip Memory (OCM) and external memory interfaces.

Each processor is a low-power and high-performance core that contains 32 KB Level-1

separate caches for instruction and data. L1 cache is 32 kB and 4-way set associative

present for each core whereas L2 cache is 512 kB and 8-way set-associative which is

shared. The components of PS are:

• Two ARM Cortex-A9 cores which can be configured as a single processor, asym-

metric or symmetric multiprocessor.

• The Snoop Control Unit (SCU) and the Accelerator Coherency Port(ACP) for

cache coherence

• Dual ported 256 KB On-Chip Memory (OCM) with parity

• A set of IO peripherals

• Controller for Double data rate (DDR) memory and interrupt.

• DMA and Timers

The components in the PS are connected though AXI high performance datapath

switches as shown in Fig. 2.6. They are of two types: OCM interconnect and Central

interconnect. The features of PS are:

• Supports upto 1 GHz operation

• It supports vector processing through NEON extensions

• Out of order execution is facilitated by eight stage instruction pipeline.

• Multi issue processor support up to 4 instructions

• It can deliver 2.5 DMIPs/MHz

• Little Endian processor.

• Speculative execution enabled by register renaming.

• Support for single/double precision floating point operations
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Figure 2.6: Processing System (PS) Block Diagram[2]

The Programmable Logic (PL) consists of Artix 7 FPGA fabric. The Artix family

of FPGAs is focused on power and cost optimization. It has 6 input LUTs and 36kb

Block RAMs which can be configured as two 18 kb blocks. The advantages of PL

are increased system performance and reduced power consumption. The predictable

latency feature of PL is useful for real time applications. Power management can be

achieved by powering down the PL as it is on different power domain than the PS.

The components of PL are:

• 13,300 Logic slices

• 53,200 Six input LUTs

• 140 Dual port 36kb Block RAM

• 220 DSP slices

• Dual Analog-to-Digital Converter (ADC) blocks with 12-bit and 1 MSPS rate

• 4 Select I/O banks
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The PL can be configured during boot process or at a later time. Also complete

and partial dynamic reconfiguration are supported. There are four stages in booting

of FPGA - start-up (occurs after power is stable), initialize (SRAM cells in the PL are

cleared), configure (programming using bitstream) and enable (enabling PS control).

The features of PL are-

• Memory capability within the lookup table (LUT)

• High speed and low jitter clocks

• Synchronous memory with programmable data width

2.2.4.2 PS-PL Communication ports

The Xilinx-Zynq contains several AXI based interfaces between PS and PL. The

interfaces are of two types: functional and configuration interfaces.

Functional interfaces:

• AXI interconnect

• Extended Multiplexed Input Output (MIO) interfaces

• Interrupts

• DMA flow control

• Clocks

• Debug interfaces

Configuration interface

• PCAP

• Status of Configuration

• SEU

• Signaling Program, Done and Init

The interconnection between PS and PL provided by the Advanced eXtensible

Interface (AXI) bus facilitates any logic implemented in PL to be addressable by PS

thereby acting as a memory-mapped peripheral. AXI [18] is an asynchronous interface

with independent read and write channels. This interface provides low latency as well



2.2. EMBEDDED RECONFIGURABLE PLATFORMS 13

as processor DMA access to the peripherals. Each interface consists of multiple AXI

channels, enabling high throughput data transfer between the PS and the PL. AXI has

four different unidirectional channels for enhanced parallelism: write, read, address

and write response channels. This multichannel implementation takes advantage of

the fact that in burst transfer address information required is less than data. The

AXI interfaces to the fabric include:

• AXI GP - Two master and two slave interfaces

• AXI HP - Four slave interfaces with direct access to DDR and OCM

• AXI ACP - One slave interface for coherent memory access

General purpose (GP) port

Four 32-bit interfaces, two master and two slave interfaces. The ID width of

master port is 12 and for the slave port it is 6. As there are no FIFOs present, GP

exhibits constrained performance. Most of the PS peripherals and memory can be

accessed by the two slave GP ports.

High Performance (HP) port

Four 32/64 bit slave ports whose read and write command issuing capabilities

are separate. 1 KB data FIFOs are present to smoothen out long latency read and

write transfers. The caches are software managed. The PL is connected to memory

using 3 output First In First Out (FIFO) controllers: two for DDR and one for OCM.

PL ports have Quality of service (QOS) signaling and write access is provided with

programmable release threshold. There is a PS-PL asynchronous domain crossing

feature for clock signals. 32 bit aligned transfers have dynamic upsizing to 64 bits and

unaligned transfers have automatic expansion. Upsizing is more bandwidth efficient

when compared to expansion. HP port provides many functions to establish priority

and manage queues. These functions are flexible and available to both PL and PS in

the form of signals and registers respectively. QOS related functions can be used to

assign priority. For continuous data read by the logic in the reconfigurable fabric, the

read FIFOs must be filled fully with the required data before first pop; the FIFO level

information is useful in this case. If multi threaded read operations are issued, the
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logic should be capable of handling out of order reads. Diagram of HP connectivity

is shown in Fig. 2.7.

Figure 2.7: HP port Connectivity Diagram[3]

Accelerator Coherency Port (ACP) port

One 64 bit slave port which aids in asynchronous cache coherent transactions

between PS and PL. One can access L1 or L2 cache from the PL and this can be used

to share data between PS and PL with low latency. The ACP port must be utilized

carefully as improper use may pollute the cache thereby hindering other applications.

The AXI HP port directly accesses memory (bypassing the cache) whereas the AXI

ACP works with the cache for better writing speeds. It is connected to the Snoop

Control unit (SCU),which monitors cache traffic and maintains coherency between
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the L1 caches. It also performs arbitration between the two cores for L2 access and

also manages ACP access. Hence processor is freed from cache flush and invalidate

operations. Also there is reduction in external memory flushes due to no wasted cache

flushing and CPU cache read for shared data. There are two modes of ACP access:

coherent and non coherent. In coherent read, ACP interacts with the SCU to check

for L1 hit/miss, L2 hit/miss and then main memory. In coherent write, coherency

is enforced before writing to the main memory. In non-coherent mode, read/write

operation directly interacts with the main memory. Diagram of ACP connectivity is

shown in Fig. 2.8.

Figure 2.8: ACP port Connectivity Diagram[3]
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2.2.4.3 HW debugging using Chipscope

Chipscope pro tool performs in-circuit verification by simulating the hardware and

probing the results[19]. Independence in testing is achieved by placing Chipscope

cores in the FPGA and connecting them to the required nodes. It acts like a logic

analyzer by inserting buffers to monitor the signals selected. Verification of design’s

functionality in an iterative fashion is accomplished by breaking down the problem

into parts. BRAM is used for storing data and trigger while logic is used for compar-

ison.

There are two types of Chipscope cores- capture and control. AXI monitor is used

as a capture core which triggers and stores the data. Internal nodes and signals can

be accessed. ICON control core is used to interface capture cores to the Joint Test

Action Group (JTAG) chain. It is used for timing analysis and complex debugging

of AXI based systems.

Functions: The Chipscope Pro tool can be utilized for three purposes-

• Verification: to determine compliance to specification

• Debugging: finding and correcting discrepancy

• Data capture: collection of board data for simulation

Advantages: As it is placed inside the hardware, it is more accurate than

software simulation. Also this die level functional verification eliminates delay which

features when debug is done using oscilloscopes and logic analyzers. It reduces the

time required for debug and verification and removes external debug solution’s vari-

ation. Chipscope is an part of Xilinx FPGA design flow. Using it there is reduction

of 25 % in overall design time and 50% in on-chip verification and debug time .

Limitations: The number of samples captured is limited in this method and

also addition of Chipscope core involves additional place and route

2.3 Overlay Architectures

In order to support wide spread usage of embedded reconfigurable platforms, over-

lay architectures, such as intermediate fabrics, have been evolved as a computation
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abstraction. These architectures provide application portability and scalability. An

Overlay is an array of reconfigurable PEs, implemented on top of a Commercial

Off-The-Shelf (COTS) reconfigurable fabric. The PEs are interconnected using pro-

grammable interconnect (PI) and the functions of the Processing Element (PE) and

the PI are controlled by configuration data.

Several researchers have recently proposed these overlay architectures, including

ZIPPY[20], QUKU[21], VDR[22], ZUMA[23], CARBON[24] and IF[25]. These solu-

tions are getting popular in research community because FPGAs are still dealing with

the following issues:

• Programmability and compilation time: Application description for FPGAs is

usually done on a lower abstraction level (in order to get most efficient imple-

mentation). Although the use of high level synthesis tools tried to raise the

level of programming abstraction, the lengthy low level compilation times are

much higher which results in slower design cycles.

• Reconfiguration latency: HW Task switching in FPGAs is too slow (order of

milliseconds) because of large configuration data associated with the fine grained

mapping of applications on FPGA. Implementing dynamic reconfiguration on

FPGAs is technically complex and require low-level details.

Furthermore, high level application developers often lack low level hardware de-

sign experience, therefore undermining the usefulness of FPGA as accelerators. Thus,

there is a growing need to make FPGAs easier and more accessible to application

developers, who are accustomed to higher-level software abstractions and fast de-

velopment cycles. The key attraction of Overlays is their near software like pro-

grammability, compilation and engineering efficiency. Overlays can easily be a part

of a programmable System on Chip (SoC) where there is a need of fast compilation

and fast reconfiguration capabilities. System designs can incorporate these Overlays

at platform level to make use of reconfigurable hardware as application accelerators.

The architecture of Overlays can be reconfigured at runtime to allow customizable

PEs as per the application needs using PR capability of FPGAs. As both Altera

and Xilinx started embedding coarse grained hard DSP blocks within fine grained
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reconfigurable fabric, researchers also started to explore these blocks as dynamically

reconfigurable coarse grained processing elements.

CB PE CB PE CB

PE CB PE CB PE
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Figure 2.9: Overlay architecture and Application mapping

Integration of overlay architecture with a memory subsystem and with an embed-

ded processor is crucial to enable sharing of limited overlay resources. This report

presents a memory subsystem around streaming overlay architectures and operating

system (OS) support for the communication abstraction in an embedded reconfig-

urable platform, the Xilinx Zynq. Fig. 2.9 shows a simple streaming overlay archi-

tecture and the mapping of an application (5-tap FIR filter) on it[26].
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2.4 Memory Sub-system and Communication ab-

straction

Communication abstraction is a method to represent communication interfaces and

memory sub-system at a logical view by providing an interface similar to SW Applica-

tion Processing Interface (API). This logical view basically decouples the functionality

of communication interfaces from their actual implementation. Communication ab-

straction might be required by system developers to ensure standards-compliance,

handle the multitude of communication protocols, and reduce developer effort.

The key attraction of communication abstraction techniques is their capability to

seamlessly access memory sub-system and abstraction of physical interfaces. An ab-

stracted memory sub-system should be an integral part of programmable SoC where

there is a need for easy and isolated memory transactions[27]. System designs can

incorporate these abstractions at platform level to make use of reconfigurable memory

as local memory space for application accelerators. As both Altera and Xilinx started

embedding hard memory blocks (Block random access memory (BRAM)) within fine

grained reconfigurable fabric, researchers also started to explore these blocks as dis-

tributed storage elements.

In this report we present the proposed memory subsystem by exploring how

BRAMs can be used as local and distributed memory space to provide seamless access

of data to highly efficient overlay architectures. We also explore the ways to provide

OS support for the memory sub-system and communication abstraction. Different

techniques have been explored in literature to develop such an abstracted memory

sub-system, including Garp[5], CoRAM[6] and PyCoRAM[28]. These are explained

in detail in Chapter 3

2.5 OS support

OS management abstraction for reconfigurable hardware helps in coordinating multi-

ple HW tasks and managing shared reconfigurable resources among tasks[29]. Pres-

ence of OS such as Linux provides certain services like scheduling, communication and
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synchronization at the cost of some performance overhead compared to bare metal

based applications. Bare metal SW applications provide better performance com-

pared to Linux based applications but require additional effort in handling schedul-

ing, communication and synchronization. Achieving maximum performance in the

presence of OS management abstraction is a challenge. SIRC[7], RIFFA[8][9] and

Xillybus[4] are some examples of OS support for reconfigurable hardware. These are

explained in detail in Chapter 3. In the next section, we give brief description of

Xillinux and Xillybus.

2.5.1 Xillinux

Xillinux[30] is a software + FPGA code kit based on Ubuntu 12.04 LTS OS for Zynq.

It differs from other Linux distributions in the fact that it contains some hardware

logic. The PL can be configured and managed by the software. Also PL events can be

observed and synchronized. Xillybus solution is used for PS-PL interaction through

FIFO queues. Attaching monitor, keyboard and mouse to the Zedboard with Xillinux

enables it to act as a graphical desktop with SD card as hard disk. For Bare-metal like

interface, Xillybus-Lite can be used. FPGA code kit in Xillinux consists of Xillybus

pipes which simplifies IO operations to simple file read/write.

Setting up Xillinux is simple and requires no knowledge of Linux kernel, drivers

and FPGA. Setting it up on the Zedboard requires two components: Zedboard boot

partition kit and SD card image of the boot up file system. As Xillinux is a de-

velopment platform with ready to use custom logic environment, its initial boot up

is lengthy. For booting, the following components are required: FAT32 file system

boot partition consisting of boot loaders, PL configuration bit-stream and Linux ker-

nel binaries; and Linux mount ext4 root file system. The image downloaded is all

encompassing except for files from the bundle and bit file.

2.5.2 Xillybus

Xillybus is a DMA based data transfer mechanism between the ARM and FPGA[4].

The presence of DMA buffer is transparent to both the processor and reconfigurable
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logic. The interface interacts using FIFOs and file I/O operations. Xillybus provides

abstraction to FPGA logic in the form of FIFOs. Fig. 2.10 illustrates this concept.

The Reconfigurable fabric is connected using customizable FIFOs with empty and

full signals to facilitate easy data transfer. The logic needs to read/write from/to

the FIFOs.The presence of data on the FIFO alerts the IP core to map the same to

processor user space. The Xillybus IP core provides platform dependent clock for the

design. It accepts only one common clock for both read and write operations.

Figure 2.10: Xillybus Block Diagram[4]

The FPGA demo bundle for Zynq is used. The Demo bundle contains Integrated

Software Environment (ISE) and Xilinx Platform Studio (XPS) project, boot.bin and

device tree files. Initially the net list is generated using XPS project file. The FIFO

IP cores provided are regenerated in ISE to obtain all the Hardware description lan-

guage (HDL) files. The bit stream is generated for top file to be downloaded to the

FPGA. Demo bundle contains a default set of device nodes, the number of nodes

can be increased or customized as per design requirements. There are two type of

nodes available: stream and memory mapped. The default design consists of FIFOs

connected in a loop back manner for testing. The application logic can be inserted

in between to meet the requirements. Device nodes can be customized and added

as per the design. The default design consists of one GP port to transfer configu-

ration information, HP port for VGA and ACP port for Xillybus IP. The Xillybus

implementation consists of host program which runs on the processor, synthesized
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function which runs on the reconfigurable fabric and wrapper function which acts as

an interface between processor and reconfigurable fabric. The synthesized function

isn’t called directly but data is transferred using API calls. In order to exploit the

parallelism present in hardware, one thread sends data from the processor as soon as

it is available and another thread collects the data back.



Chapter 3

Literature Survey

3.1 Introduction

In this chapter, we first give a detailed description of various techniques of developing

memory sub-system proposed in literature for solving the problem of communication

abstraction. Finally, we present prior efforts in providing Operating system (OS)

support for communication abstraction.

3.2 Prior efforts for the memory-subsystem

As we have already mentioned in section 2.2 that modern embedded reconfigurable

platforms have a large number of embedded memories to avoid communication bottle-

necks. This created opportunities to exploit high speed interfaces and raises questions

of how to organize, manage, and exploit these embedded reconfigurable memories[31].

To address possible bottleneck problems, particularly in providing high bandwidth

transfers between the CPU and the reconfigurable fabric, it has been proposed to

more tightly integrate the processor and the reconfigurable fabric. A number of

tightly coupled architectures have resulted [5, 32], including vendor specific systems

with integrated hard processors, as presented here:

23
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GARP

In GARP the reconfigurable unit is attached to the MIPS processor in the form of

a co-processor.[5]. Garp’s reconfigurable array can transfer data to and from main

memory via memory buses. It has five 32-bit buses , one for address and the other four

for data. Array can directly access the data contained in cache via memory queues

and can perform random read and writes. Three Memory queues have been used to

support memory mapped to stream transactions between memory and reconfigurable

data path. Array can access data from all three queues in parallel at every clock cycle

and hence achieves a high bandwidth and low latency data access path. Some key

features are run time reconfigurability, reduced configuration size and reconfiguration

time. Instead of storing results in array, results return to memory because of no local

memory support in array datapath. The architecture of GARP is shown in Figure

3.1.

Figure 3.1: GARP Diagram[5]
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CoRAM

CoRAM was proposed as a data-transport mechanism using a shared and scalable

memory architecture[6]. It provides interface to off-chip memory using on-chip in-

terconnect generated by CONNECT NOC generator[33]. Communication between

off-chip memory and on-chip memory is abstracted and can be controlled using soft-

ware threads. CoRAM is a collection of specialized distributed SRAMs that are used

to store application data which in turn paves way for application interaction with the

external environment. Whenever data is ready, a control thread ( state machine) is

used to inform the user logic. Access to the data in specific CoRAMs can be accom-

plished through SRAM interfaces which are locally addressed. Control thread can be

expressed in C (high-level language) which can be translated to a state machine. This

itself can provide high level of management abstraction or else a multi-threaded pro-

cessing core can be used for compiling and execution. In short control thread can be

soft or hard. Some key features are application independent memory interface to the

hardware accelerators, abstracted communication between accelerators and external

memory. Currently CoRAM does not provide any OS support such as Linux. The

architecture of CoRAM is shown in Figure 3.2.

Figure 3.2: CoRAM Diagram[6]
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PyCoRAM

PyCoRAM [28] is a python based automation infrastructure of CoRAM project with

slight modifications. For example, instead of making use of CONNECT NOC gen-

erator, it uses AMBA AXI-4 infrastructure and provides support for AXI based IPs.

It replaces the C with Python scripting language to represent a soft control thread.

Currently, It does not provide system support for controlling hardware accelerators.

The architecture of PyCoRAM is shown in Fig. 3.3.

Figure 3.3: PyCoRAM Diagram[6]

3.3 Prior efforts for the OS support

SIRC[7] and RIFFA[8] are two main open source frameworks to abstract communi-

cation interfaces by providing OS support. Xillybus[4] is Xillinux based commercial

framework which is designed to abstract the interfaces: the PCIe interface (in a typ-

ical x86 based system) and the AXI interface (in an ARM based system), as the

underlying transport mechanism by providing Standard FIFOs as interfaces to the

application logic.

Basically OS support provides task, memory and I/O management in a system.

OS management abstraction for reconfigurable computing helps in coordinating mul-

tiple HW tasks, managing shared reconfigurable resources among tasks and providing
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methods for communication and synchronization among HW and SW tasks. Schedul-

ing is one of the most important functionality encapsulated in an OS, because which

resource has to be used when by a task has to be decided by the OS. Communi-

cation between tasks is another important abstraction provided by the OS. Shared

memory model is the common communication style used in multi-core systems but

in reconfigurable computing systems several models have been proposed for effec-

tive communication such as Message passing interfaces (MPI) and Remote procedure

calls (RPC). Streams are based on graph structures for task communication and they

can be used to transmit data and control information which is very suitable for re-

configurable computing systems. Virtual memory is another important abstraction

provided by the OS. When reconfigurable hardware is tightly coupled with a processor

with memory management unit (MMU) support, reconfigurable hardware can share

processor’s MMU. The processor can now be used by the OS to perform memory ac-

cesses and then it can feed data to reconfigurable HW for computation. This model

brings good control but reduces the ability of the processor to act as a compute unit

as it is kept busy in memory transactions. DMA controllers are normally used in such

cases to counter this issue of handling memory transactions. Synchronization using

threads is an important functionality encapsulated in the OS. Reconfigurable HW

based computations are inherently concurrent where more than one hardware tasks

occur in parallel with software tasks, in such scenarios synchronization between tasks

is a critical issue. The simplest method is thread style synchronization on hardware

tasks.

SIRC

SIRC [7] was proposed as an open source OS based abstract interface (a software API

and hardware interface) for communication between PC and FPGA. It consists of

a software side C++ interface which communicates and synchronizes with hardware

side HDL interface. The API provides isolation of implementation from user code. It

works on basic principle of HW-SW communication which works as follows:

First SW sends data to local buffer in FPGA and triggers the user logic to get

this data from local buffer and put it in another local buffer after processing. After
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finishing its processing user logic will notify the SW to get the processed data from

local buffers. SIRC uses Ethernet to communicate between a Windows based work-

station and Xilinx FPGA board. User does not need the knowledge of communication

protocol, OS or proprietary drivers. The architecture of SIRC is shown in Figure 3.4.

Figure 3.4: SIRC Diagram[7]

RIFFA

RIFFA 1 [8] was proposed as an open source OS based reusable framework to integrate

the FPGA IP cores to workstation software using PCIe interface. The requirements

of this framework include a workstation and FPGA board. PCIe bus must be enabled

in the former and latter should have a PCIe peripheral. The FPGA is unaware of

timing and protocol details. It uses interrupt based DMA method of transfer. On

the SW side, it provides a device driver in Linux for PCIe and SW libraries; and

on the FPGA side, PCIe endpoint obtains PLB requests from requests coming from

the PC via address translation. PC to FPGA communication bandwidth is very low

(25 MB/s) due to the use of a PLB to PCIe bridge. RIFFA 2 [9] was proposed to

address bandwidth bottleneck but support for DDR access to FPGA was not provided.

Currently, RIFFA only supports PCIe interface hence it is not possible to use it on

Zynq for AXI based PS-PL communication. The architecture of RIFFA 1 is shown

in Fig. 3.5 and the architecture of RIFFA 2 is shown in Fig. 3.5.
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Figure 3.5: RIFFA 1 Diagram[8]

Figure 3.6: RIFFA 2 Diagram[9]
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Xillybus

Xillybus [4] is a portable, DMA-based data transfer mechanism between the FPGA

and Linux OS running on ARM processor. It is designed to work with two interfaces:

the PCIe interface (in a typical x86 based system) and the AXI interface (in an ARM

based system), as the underlying transport mechanism. Standard FIFOs are provided

as interfaces to the application logic on the FPGA. Each FIFO stream is mapped to

a device file by a universal Xillybus driver. The drawback in this method is that

communication latency is very high.

3.4 Summary

This section discusses prior efforts in the field of communication abstraction of mem-

ory sub-system and its OS support with emphasis on the important features of each

project. Literature related to the categories of memory sub-system and its OS support

for communication abstraction have been reviewed in order to present an overall view

of techniques that have been implemented. GARP, CoRAM and PyCoRAM have

been analyzed under the memory subsystem category. It is clear from the analysis

that though GARP and CoRAM, both provide the required MM-stream interfaces,

absence of OS support and use of custom bus interface makes them unsuitable to

use as an abstracted system. Lack of OS support and hardware accelerator control

in PyCoRAM undermines its use too. SIRC, RIFFA and Xillybus have been studied

under the OS support category. SIRC and RIFFA use bus interfaces which are in-

compatible to Zynq platform hence can not be used to support Zynq based memory

sub-system and overlay architectures. Xillybus technique is the one best suited not

only for the platform but also for the memory sub-system management requirements

of this project. Currently available solutions related to OS support for reconfigurable

hardware do not support run time reconfiguration (RTR)[34]. We integrated support

for RTR in our proposed design by using the concept of dynamically reconfigurable

overlay architectures.
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Memory Sub-system

4.1 Introduction

In this chapter, we give the detailed description of our memory sub-system. The idea

is to have seamless data transactions among overlay architectures, DDR memory and

system components. We designed a memory sub-system as shown in Fig. 4.1. The

design consists of two methods to stream data through overlay.

• Method-1: For large amount of data streaming (more than 1M samples). Xilly-

bus core is used to stream data from external memory to overlay and vice versa.

• Method-2: For small amount of data streaming (less than 1M samples). Our

custom core is used to stream data from local memory to overlay and vice versa.

Data movement between external and local memory has been abstracted.

Our custom core consists of a slave interface, which is used to communicate data

between local and external memory (using a memory-mapped memory peripheral).

In order to evaluate the efficiency of the proposed subsystem, we first evaluated the

efficiency of PS-PL communication ports using bare metal SW applications. We

present experiments to quantify the communication overhead and to estimate the

performance of our custom core. Our custom core consists of register and memory

peripherals and their controllers. Detailed description and results of the experiments

is given in the next chapter.
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Figure 4.1: Proposed Design

After that, in order to study the overheads associated with OS abstraction, we

conducted experiments using Xillybus system and observed that it works quite well for

large amount of data streaming (more that 1M samples). However for small amount

of data streaming, its performance is poor. We then inserted our custom core into

the system and estimated the efficiency of the same. Detailed description and results

of the experiments is given in the Chapter 6.

In the next sections, we first give a detailed description of Xillybus system archi-

tecture. After that we present the architecture of our custom core.
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4.2 Xillybus System Architecture

Xillybus provides both SW and HW infrastructure to be used under control of Linux.

The Xillybus IP core is connected to the ACP port to provide increased data transfer

speed. The ACP port is used in coherent mode to achieve cache coherency. Any PL

logic connected to the Xillybus communicates with the PS by using FIFOs. Support

for display is provided by the means of a VGA core attached to the HP port. Both

the cores are controlled by the processor via GP port.

4.2.1 Hardware Infrastructure

The initial Demo bundle contains FIFOs connected in a loopback fashion thereby

causing the Xillybus core to act both as a source and sink. The logic is inserted

in this loopback path and its round trip time is measured from the processor to

determine its throughput. High level wrapper file present in the Xillybus bundle is

used to integrate our custom logic. The logic thus added communicates with the

processor using FIFOs. These FIFOs get initialized as dev nodes in the Linux kernel

thereby facilitating easy access to them in the form of file IO operations. Read/Write

operations are done by using low level driver code which are present in the form of

APIs ensuring abstraction. Fig. 4.2 shows the integration of xillybus core in the

system.

Xillybus core provides data stream to input FIFO which connects to a hardware

accelerator as shown in Fig. 4.3. Accelerator provides the processed data to output

FIFO which connects again to xillybus core. The following steps are involved in

addition of custom logic (hardware accelerator) to the Xillybus:

The FPGA demo bundle for Zynq is used,which contains ISE and XPS project,

boot.bin and device tree files. Initially the net list is generated using XPS project

file. The FIFO IP cores provided are regenerated in ISE to obtain all the HDL files.

The custom logic can be described in a high level language like C/C++ which can

be synthesized using Vivado HLS tool to obtain its HDL description. This logic is

instantiated as a component within the Xillybus provided wrapper file, xillydemo.v.

The logic is inserted in the path by breaking the loopback connection between the
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Figure 4.2: Integration of Xillybus core
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4.2.2 Software Infrastructure

A part of the application resides in the PL in the form of a hardware accelerator.

Xillybus provides SW infrastructure for users to make use of accelerator in an ab-

stracted manner. The ISE tool is used to generate the bit file of the design which

needs to be ported onto the SD card for FPGA configuration. Once configured, the

application can communicate with the logic by reading and writing to the dev nodes

using APIs. Write and Read functions are provided to communicate via xillybus core.

4.3 Custom core Architecture

We developed a custom core which also provides both SW and HW infrastructure to

be used under control of Linux. It can be used when small amount of data streaming

(less than 1M samples) is needed through the accelerator.

4.3.1 Hardware Infrastructure

Currently our custom core uses GP port to communicate with the processing system.

Fig.4.1 shows the integration of our custom core in the system. Our custom core

consists of local memories and their controllers. Our custom core first accepts data

from external memory and then streams the data to the input FIFO which connects

to a hardware accelerator. We implemented a stream mux which can select the

input stream either from our custom core or from xillybus core. Similarly we also

implemented a stream demux which can select the destination of the output stream

(either our custom core or xillybus core).

4.3.2 Software Infrastructure

A part of the application resides in the PL in the form of a hardware accelerator.

Our custom core provides SW infrastructure for users to make use of accelerator in

an abstracted manner. Write and Read functions are provided to communicate via

our custom core.



36 CHAPTER 4. MEMORY SUB-SYSTEM

4.4 Summary

In this chapter, we presented xillybus system architecture and our custom core which

we integrated into xillybus system. In the next chapter, we present characterization

of communication interfaces and efficiency of our memory sub-system.



Chapter 5

Characterization

In this chapter, we present characterization of PS-PL communication interfaces. The

Xilinx-Zynq contains several AXI based interfaces to the programmable logic (PL).

Each interface consists of multiple AXI channels, enabling high throughput data

transfer between the PS and the PL, thereby eliminating common performance bot-

tlenecks for control, data, I/O, and memory. The AXI interfaces to the fabric include:

• AXI GP – two 32-bit master and two 32-bit AXI general purpose (GP) slave

interfaces

• AXI HP – four 64-bit/32-bit configurable, buffered AXI high performance (HP)

slave interfaces with direct access to DDR and on chip memory

• AXI ACP – One 64-bit AXI accelerator coherency port (ACP) slave interface

for coherent access to CPU memory

We have used Embedded Development Kit (EDK) for the system design. XPS

has been used to automatically generate custom AXI based peripherals. A peripheral

connects to AXI interconnect through corresponding AXI IP interface (IPIF) mod-

ules, which provides a quick way to implement interface between AXI interconnect

and the user logic. A peripheral can have either a slave interface or a master interface.

Slave interface typically required by most peripherals for operations like logic control,

status report etc. Block diagrams of AXI4-Lite and AXI IP interfaces are shown in

and Fig. 5.1 and Fig. 5.2 respectively.

37
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Figure 5.1: AXI4-Lite IPIF Block Diagram.
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Master interface is typically required by complex peripherals like DMA controller

for commanding data transfers between regions. XPS also provides a BFM simulation

platform so that user can verify the functionality of the generated peripheral. We

generated following custom peripherals in the PL using XPS base system builder

(BSB) in order to communicate with the PS:

• AXI-lite based Register peripheral – user specific SW accessible registers (upto

32) interface for operations like logic control, status report etc. Fig. 5.3 shows

one example of the register peripheral having 4 registers.

• AXI based Memory peripheral – user specific memory regions (upto 8) to pro-

vide local storage of data in PL. It supports burst transfer by default. This

feature provides higher data transfer rates when using DMA controller for trans-

actions. Fig. 5.4 shows one example of the memory peripheral having 4 block

RAMs.
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Bus2IP_WrCE

Bus2IP_BE
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0
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Figure 5.3: AXI4-Lite based Register Peripheral.

We evaluated the performance of all three ports ie.GP,HP and ACP by analyzing

the communication between above mentioned peripherals and PS as discussed in

further sections. These are then used along with the Linux kernel to develop our

custom application.
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Figure 5.4: AXI4 based Memory Peripheral.

5.1 GP ports

AXI GP interfaces are connected directly to the ports of master interconnect and slave

interconnect, without any additional FIFO buffering, unlike the AXI HP interfaces

which has elaborate FIFO buffering to increase performance and throughput. In order

to make use of GP master port, there are two communication mechanisms:

• PIO based

• PS-DMA based

In both of these methods, GP master port can be used to communicate with a

slave peripheral. Slave can either be a register peripheral or a memory peripheral. In

the next sections, we first describe these two methods in detail and then present the

characterization of GP ports.
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5.1.1 PIO based

One method of HW-SW communication in Zynq is to use Programmed IO (PIO)

transfers from PS to PL. It requires no extra resources via GP master port. The CPU

controls the data movement between main memory and the PL and hence latency

between two transactions is quite high (150 ns) which corresponds to a bandwidth of

approximately 25 MB/s (for data channel width = 4 byte). Thus, PIO is not suitable

for large data transactions but is suitable for small data transaction (less than 1KB)

and for controlling user registers like control and status register.

5.1.2 PS-DMA based

It is a method of transferring data via GP master port without processor intervention.

PS-DMA controller takes a chunk of data from main memory and sends it to PL. The

processor is free during this transfer and interrupted by the DMA controller at the

end of data transfer. This hard DMA controller is able to perform MM-MM burst

transactions and does not require any FPGA resources.

This method is suitable for applications with moderate bandwidth requirement

(upto 80 MB/s) but normally faces the problem of large setup time overhead. A Mul-

tichannel First-In-First-Out (MFIFO) data buffer is used to store read/write data

during DMA transfer. Theoretical maximum performance is 600MB/s. Xilinx pro-

vides bare metal SW drivers for PS DMA. The connectivity diagram is shown in

Figure 5.5.

5.1.3 Characterization

We first connected the slave interface of the register peripheral to the GP port master

interface via AXI lite interconnect. This scenario is similar to the one in which a

processor communicates with general purpose I/O (GPIO). We did an experiment to

find out the exact number of clock cycles to write 4 bytes of information to a register

residing in PL. We set clock frequency to 100 MHz. We repetitively write 4 byte of

data to the same register address. When measuring using Chipscope, latency between

two transactions is obtained as 15 clock cycles as shown in Fig. 5.6.
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Figure 5.5: PS DMA Connectivity Diagram.

Figure 5.6: PIO Transactions.

This experiment involved determining the latency in two consecutive write opera-

tions using PIO method. We did another experiment to see if it is possible to further

reduce the latency below 150 ns by increasing the operating frequency. We found

the results as shown in Fig. 5.7. Latency got reduced from 150 ns to 104 ns, as we

increased the frequency from 100 MHz to 250 MHz.

We conducted another experiment to evaluate the bandwidth of GP port while

both methods, PIO and PS-DMA based, were used for data transactions (sample size
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= 4 byte) between PL memory region and main memory. We set clock frequency to

100 MHz and connected the slave interface of the memory peripheral to the GP port

master interface via AXI interconnect. A bare metal SW application was used for

data transactions between 32 KB memory (implemented using 8 BRAMs) and the

main memory. Results in Fig. 5.8 shows that PIO method takes less time compared

to PS-DMA method for data size less than 1 KB. Hence, PIO method provide a

better option for transferring small chunk of data like overlay configuration (which is

generally less than 1KB) to the PL.

Table 5.1 and Fig. 5.9 shows maximum performance obtained using PS-DMA

method as 80MB/s. The transfer time between PS and MFIFO is the performance

bottleneck.

As we already mentioned that XPS provides an automated method to generate

custom peripheral, containing slave or master interface, which can be either register

peripheral or a memory peripheral. We have generated a custom memory peripheral

using XPS and found that it does not make used of BRAM to implement memory. In

order to make use of BRAM as a hard IP block available in Zynq device, we modified

the RTL of the custom IP core and instantiated BRAM as hard IP block. Table 5.2

shows the resource usage of the vendor-generated and modified custom peripheral.
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Figure 5.8: Time in us for data transactions

Table 5.1: Experiment results for PS-DMA based transactions

No. of Time taken Throughput

Samples in us in MB/s

32 18.4 6.9

64 20.0 12.7

128 23.5 21.7

256 31.3 32.6

512 46.7 43.8

1024 76.6 53.4

2048 113.6 72.1

4096 210.6 77.7

8192 403.5 81.2

Table 5.2: Resource usage of memory peripheral

Resource No. of resources No. of resources

Type in original peripheral in customized peripheral

LUT 8726 372

FF 16575 179

LUTRAM 33 33

BRAM 0 2
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Figure 5.9: Throughput comparison between PIO and PS-DMA method

5.2 HP ports

In previous section, we have seen that GP master ports can be used effectively for

controlling SW accessible register peripheral and also for the applications requiring

moderate communication bandwidth (less than 80 MB/s). High performance (HP)

slave ports can be used for applications requiring high communication bandwidth

(more than or equal to 80 MB/s) at the cost of some extra area overhead. There

are four HP interfaces, each including two FIFO buffers for read and write traffic.

These interfaces are also referenced as AFI(AXI FIFO interface), to emphasize their

buffering capabilities. The PL to memory interconnect routes the HP ports to the

DDR memory ports or the OCM. In order to obtain maximum performance when

using only two of the four HP ports, either the odd or the even numbered ports are

used.

PS-DMA can not be used for data transfer through HP ports. Only a Soft-DMA

implemented in the FPGA fabric can be used to transfer data through HP ports. Soft

DMA uses an FPGA soft IP core to control the data movement between the memory

and PL. Two variations are possible: memory mapped to memory mapped (MM-MM

DMA) transactions and memory mapped to streaming (MM-S DMA) transactions.

For soft DMA transfers the CPU is free during the transactions and can be interrupted
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by the DMA controller IP core at the end of data transfer. We have used the AXI

Central DMA (CDMA) Controller IP core from Xilinx as a soft DMA for MM-MM

transactions between DDR and memory peripheral. The DDR memory acts as the

source and the memory in PL acts as destination. This connectivity diagram is shown

in Figure 5.10.

Interrupt mode of data transfer is used which gets triggered either on completion

of data transfer or occurrence of error. Data transfer steps are as follows:

First the source memory is filled with data and initial configuration settings for

DMA and Interrupt controller are loaded. The CDMA register is loaded with source

and destination address along with length of transfer. The transfer begins and when

interrupt occurs the DMA transfer state is checked. CDMA controller uses a master

interface to transfer data between two slave interfaces. In this experiment, this master

interface is connected to the slave interface of the memory peripheral and also to one

HP slave port. The CDMA slave is connected to GP port for configuration and status

information. The maximum burst length is 256, which means that with a burst size

of 4 and 8 bytes, we can transfer 1K and 2K bytes, respectively in a single burst.

Huge FIFOs are used to facilitate large data transfer without stalling the PL. PS is

responsible for the clock management. Xilinx also provides bare metal SW drivers to

use with their CDMA IP core.

Figure 5.10: PL DMA Connectivity Diagram.
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5.2.1 Single CDMA IP Core and Memory Peripheral

Experiments are done to obtain throughput values for data transfer using Central

Direct Memory Access (CDMA) soft IP core in the PL. In order to ensure cache

coherency, SW application must manage caches which means explicit flushing and

invalidation of caches needs to be performed. It takes many CPU cycles and affects

application execution time as shown in Table 5.3.

Table 5.3: Experiment results for CDMA based transactions

No. of src-flush Transfer dst-flush Total

Samples time in us time in us time in us time in us

32 1.3 3.6 0.9 5.93

64 1.9 4.2 1.5 7.81

128 3.3 5.5 2.7 11.61

256 5.8 8.1 5.0 19.01

512 11.4 10.7 9.7 31.81

1024 21.8 15.8 19.0 56.69

2048 43.6 26.2 37.6 107.64

4096 84.4 47 74.9 206.42

8192 169.7 88.5 149.5 407.72
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Figure 5.11: PL-DMA method

Maximum throughput obtained for data transfer is 80, 137, 126 and 370 MB/s

for the cases of both side, source side, destination side and no flushing respectively.
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5.2.2 Increasing operating frequency to 150 MHz

The operating frequency can be increased up to 150 MHz. The experiment presented

in previous section is repeated for this increased frequency. Experimental results are

shown below in the table 5.4.

Table 5.4: Experiment results for CDMA based transactions at 150 MHz

No. of src-flush Transfer dst-flush Total

Samples time in us time in us time in us time in us

32 1.3 3.2 0.9 5.5

64 1.9 3.7 1.5 7.1

128 3.3 4.7 2.7 10.6

256 5.8 6.4 5.0 17.3

512 11.4 8.2 9.7 29.3

1024 21.8 11.7 19.0 52.6

2048 43.6 19.0 37.6 99.5

4096 84.4 33.3 74.9 193.6

8192 169.7 62.0 149.5 380.0
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Figure 5.12: PL-DMA method at 150 MHz

It is clear from the Fig. 5.12 that there is no benefit of increasing operating

frequency in cases where any kind of flushing is required. Maximum throughput

obtained for data transfer is 86, 142, 154 and 528 MB/s for the case of both side,

source side, destination side and no flushing respectively.
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5.2.3 Increasing channel width to 64 bit

The HP port which is used in CDMA method supports up to 64 bit data transfer.

The experiment is repeated with increase in size. The Experimental results are shown

below in the table 5.5.

Table 5.5: Experiment results for CDMA based transactions for 64-bit data channel

No. of src-flush Transfer dst-flush Total

Samples time in us time in us time in us time in us

32 1.9 4.2 1.5 7.6

64 3.2 4.8 2.7 10.8

128 5.8 6.1 5.0 17.0

256 11.1 8.7 9.7 29.5

512 21.5 11.4 19.0 52.0

1024 42.5 16.4 37.6 96.5

2048 84.4 26.6 74.9 185.9

4096 168.2 47.1 149.5 364.8

8192 335.8 88.1 298.6 722.6
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Figure 5.13: PL-DMA method at 64-bit

It is clear from the Fig. 5.13 that there is no benefit of increasing channel width,

when flushing is required. Maximum throughput obtained for data transfer is 90,

154, 169 and 743 MB/s for the cases of both side, source side, destination side and

no flushing respectively.



50 CHAPTER 5. CHARACTERIZATION

5.2.4 Final design for maximum bandwidth

The experiment is repeated with 64 bit data channel width as well as 150 MHz clock

frequency. The Experimental results are shown below in the table 5.6.

Table 5.6: Experiment results for CDMA with 64-bit data channel at 150 MHz

No. of src-flush Transfer dst-flush Total

Samples time in us time in us time in us time in us

32 1.9 3.32 1.5 6.8

64 3.2 3.84 2.7 9.8

128 5.8 4.9 5.0 15.8

256 11.1 6.53 9.7 27.3

512 21.5 8.25 19.0 48.8

1024 42.5 11.87 37.6 92.0

2048 84.4 19.06 74.9 178.4

4096 168.2 33.4 149.5 351.1

8192 335.8 62.3 298.6 696.8
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Figure 5.14: PL-DMA method at 64-bit and 150 MHz

It is clear from the Fig. 5.14 that there is no benefit of increasing both data width

and operating frequency in cases where any kind of flushing is required. Maximum

throughput obtained for data transfer is 94, 164, 181 and 1051 MB/s for the case of

both side, source side, destination side and no flushing respectively.
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5.3 ACP Port

One high performance 64 bits wide low-latency cache-coherent slave port. The port

can access both L2 cache and on-chip memory. ACP port is connected to the Snoop

control unit due to which caches do not need to be flushed and invalidated. SCU

is responsible for cache coherency and management between L1 and L2 caches. Du-

plicated 4-way associative tag RAMs act as a local directory. It also manages arbi-

tration, communication, cache and system memory transfers for the processor and

ACP. During coherent write request the L1 cache is checked for address, if present,

data is invalidated. The cache miss or invalidated cache then results in request to L2

cache or main memory. Therefore it requires no explicit cache invalidation unlike HP

port. During coherent read, L1 cache is checked if there is a cache miss the L2 and

main memory are checked hierarchically. Hence it has fast write but slow read when

compared to HP port.

Table 5.7: Experiment results for CDMA based transactions through ACP

No. of Time taken in us Throughput in MB/s

Samples 100 MHz 150 MHz 100 MHz 150 MHz

32 2.3 2.3 111.3 111.3

64 2.97 2.66 172.39 192.48

128 4.19 3.45 244.39 296.81

256 6.73 4.78 304.30 428.45

512 9.46 7.44 432.98 550.54

1024 14.58 10.93 561.86 749.50

2048 25.13 18.39 651.96 890.92

4096 46.6 32.82 703.17 998.42

8192 88.33 62.21 741.94 1053.46

CDMA experiment is conducted using the ACP port. As ACP is connected to

the Snoop control unit, no explicit flushing is required. Therefore the throughput

obtained is equal to transfer time without flushing of 64 bit HP port.



52 CHAPTER 5. CHARACTERIZATION

0 2,000 4,000 6,000 8,000
0

200

400

600

800

1,000

1,200

Number of Samples

T
h
ro

u
gh

p
u
t

in
M

B
/s

100 MHz
150 MHz

Figure 5.15: Throughput for CDMA transactions through ACP

5.4 Summary

Following is the summary of this chapter:

• Achievable bandwidth of GP Port using PIO method is 25 MB/s (200Mb/s)

which is suitable for small size data transactions (less than 1KB) and for con-

trolling user registers.

• Achievable bandwidth of GP port using PS-DMA method is approximately 80

MB/s (640 Mb/s) which is suitable for moderate bandwidth requirement (up

to 80 MB/s).

• PIO and PS-DMA based methods don’t require any FPGA hardware resources

for data movement and hence consume less power.

• High performance (HP) ports can be used for applications requiring high band-

width (more than 80 MB/s) at the cost of some area overhead (consumed by

DMA controller).

• Theoretical bandwidth of HP port is 1200 MB/s (9.6 Gb/s) when using 64-

bit channel and 150 MHz frequency. We achieved a bandwidth of 1050 MB/s

(8.4 Gb/s) considering that pre-processing and post-processing of data is not

required (which means cache coherency is not required).
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• Cache coherency is an issue while using HP ports and SW application must

have to manage caches by doing explicit flushing and invalidation.

• If cache coherency is required in the application, then we can only achieve a

throughput of 95, 165, 180 MB/s for the cases of both side, source side and

destination side flushing respectively.

• Upto four DMA controllers can be connected to HP ports and can provide a

cumulative bandwidth of four times the above mentioned values. It means we

can achieve maximum bandwidth of 4200 MB/s (33.6 Gb/s) using all HP ports

simultaneously.

• HW support for cache flushing and invalidation have been provided in Zynq

device in form of snoop control unit (SCP) and ACP port is directly connected

to SCU due to which it provides best performance (1050 MB/s) even in the case

when pre-processing and post-processing of data is required.



Chapter 6

Experiments

In this chapter, we present experiments related to hardware acceleration using stream-

ing IP cores by making use of Linux OS infrastructure. Streaming IP core can either

be an overlay architecture or a specialized hardware accelerator such as FIR filter.

OS based experiments have been conducted under control of Xillinux running on

Zedboard. This infrastructure contains communication abstraction in the form of

Xillybus package. In order to study the overheads associated with OS abstraction,

we conducted experiments using Xillybus system. We then inserted our custom core

into the system and estimated the efficiency of the same.

6.1 Evaluation of Xillybus core

The Xillybus core uses the DMA soft IP core in order to perform transactions between

the PS and the PL transparently. The Xillybus IP is unaware of the user logic

characteristics like expected data rate, read/write occurrence and frequency. Except

for the FIFO full and empty states, it has no knowledge of the FIFO state also. The

Xillybus stream is similar to a TCP/IP stream which is efficient for high data rate

or infrequently sent single byte transfers. DMA buffers are filled after which data

is sent and acknowledged to provide an illusion of continuous data streaming. The

application software is responsible for signaling the partially filled DMA buffers to

push or pull the data for reduced latency. The signaling parameter is passed as the

54
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length parameter to the device driver. Its value controls the CPU load and hence is

optimally chosen so as to make efficient use of the DMA buffer as well as to achieve

the required performance. If the requested length of transfer cannot be completed,

sleep mode is reached where the transfer operation occurs after 10 ms irrespective of

presence or absence of data of required length.

We performed two main experiments: one in which communication happens in

a loop-back fashion and another in which data passes through hardware accelerator

(streaming FIR filter).

6.1.1 Loopback Experiment

The Xillybus demo bundle is used for this experiment with a loopback connectivity

between the read and write FIFOs. Fig.6.1 shows this connection. The bit file

generated for this design is downloaded on to the FPGA. The application is loaded

to the Zedboard and native compilation is done on the target board itself. Data

is written and read back from the processor and the time taken for the same is

calculated as shown in Table 6.1. The throughput values obtained for this experiment

are illustrated in Fig.6.2.

Figure 6.1: Connectivity diagram for Loopback experiment
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Table 6.1: Experiment results for Xillybus loopback transactions

No. of Round trip Time Throughput

Samples in us in KS/s

16 6175 2.59

32 6193 5.17

64 6304 10.15

128 6359 20.13

256 6286 40.73

512 6138 83.41

1K 6322 161.97

2K 6267 326.79

4K 6212 659.37
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Figure 6.2: Throughput for Xillybus FIR transactions

6.1.2 Hardware accelerator Experiment

This experiment had been conducted after inserting hardware accelerator inside the

Xillybus infrastructure as shown in Fig.6.3. The hardware accelerator used is a FIR

filter. The round trip throughput is calculated by placing the FIR logic between the

source and destination FIFOs. The FIR logic is obtained by synthesis of code in high

level language [C] using Vivado-HLS tool. The filter uses streaming logic to process

the input data. The input data and partial sums produced propagate through the

filter to produce output. A 13 tap filter is used with random filter coefficients. HLS

code is shown in code listing 6.1.
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Figure 6.3: Connectivity diagram for Accelerator experiment

Listing 6.1: HLS code for FIR filter

#include "kernel.h"

using namespace hls;

void kernel(stream <uint32_t > &stream_in ,stream <uint32_t > &stream_out)

{

static int ind[]={0,0,0,0,0,0,0,0,0,0,0,0,0,0};

int outd [13];

int sum ;

int temp [130];

int i;

int j=0;

int p=0;

int k[]={12 ,10 ,23 ,21 ,32 ,54 ,34 ,2 ,4 ,6 ,63 ,76 ,47};

int Max =0;

int N = 13;

int x;

int m;

int acc;

if (! stream_in.empty ())

{

ind [0] = stream_in.read();

sum =0;

for(i=0;i <=12;i++)

{

sum += k[i] * ind[i];

}

outd [0]= sum;

if (! stream_out.full())

{

stream_out.write(outd [0]);

}

for(p=12;p>=1;p--)

{

ind[p]= ind[p-1];

}

}

}
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The application code for FIR filter is shown in code listing 6.1.

Listing 6.2: Application code for FIR filter

#include <stdio.h>

#include <unistd.h>

#include <stdlib.h>

#include <errno.h>

#include <sys/types.h>

#include <sys/stat.h>

#include <fcntl.h>

#include <string.h>

#include <pthread.h>

#include <stdint.h>

#include <sys/time.h>

int fdr32 = 0;

int fdw32 = 0;

int N = 0;

int i;

int *array_input;

int *array_hardware;

struct timeval tv1 , tv2;

ssize_t t1 ,t2;

int main(int argc , char *argv [])

{

if (argc !=4)

{

fprintf(stderr , "Usage: %d devfile\n", argc);

exit (1);

}

fdr32 = open(argv[1], O_RDONLY);

fdw32 = open(argv[2], O_WRONLY);

N = atoi(argv [3]);

if (fdr32 < 0 || fdw32 < 0)

{

perror("Failed to open devfiles");

exit (1);

}

// allocate memory

array_input = (int*) malloc(N*sizeof(int));

array_hardware = (int*) malloc(N*sizeof(int));

// generate inputs and prepare outputs

for(i=0; i<N; i++)

{

array_input[i] = i;

array_hardware[i] = 0;

}

gettimeofday (&tv1 , NULL);

t1=write(fdw32 , array_input , sizeof(int)*N);

t2= read(fdr32 ,array_hardware , sizeof(int)*N);

gettimeofday (&tv2 , NULL);

printf("Execution time %f us \n\r",

(double)(tv2.tv_usec - tv1.tv_usec));

return 0;

}
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The latency and throughput values obtained by varying the data size are shown

in Table 6.2. It is observed that the round trip time values are almost constant for

sample size less than 4K. This behavior can be attributed to the use of ACP port

for data transfer. As caches are used in this method, a constant behavior is seen for

sequential access of data whose length is shorter than the cache size.

Table 6.2: Experiment results for Xillybus with accelerator for small sample size

No. of Round trip Time Throughput

Samples in us in KS/s

16 6194 2.58

32 7023 4.56

64 6322 10.12

128 6304 20.30

256 6322 40.49

512 6303 81.23

1K 6175 165.83

2K 6248 327.78

4K 6212 659.37

The throughput plot for this experiment is given in Fig.6.4.
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Figure 6.4: Throughput for Xillybus FIR transactions

As the sample size is increased beyond 4K samples, it is seen that the round trip

time increases. This occurs due to the cache size limit which results in cache miss for



60 CHAPTER 6. EXPERIMENTS

large data sizes. This cache miss causes extra latency to obtain data from the main

memory. The experimental values obtained for large data sizes are presented in Table

6.3 and Fig.6.5.

Table 6.3: Experiment results for Xillybus with accelerator for large sample size

No. of Round trip Time Throughput

Samples in us in KS/s

8K 15962 513.22

16K 13953 1174.23

32K 14137 2317.89

64K 19169 3418.85

128K 14672 8933.48

256K 21842 12001.83

512K 26542 19753.15

1M 29454 35600.46

2M 33436 62721.38

4M 58522 71670.55

8M 105856 79245.47

The throughput plot for this experiments are given in Fig.6.5.
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Figure 6.5: Throughput for Xillybus FIR transactions
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6.2 Performance estimation of custom core

In previous section, we observed that inclusion of Xillybus core is beneficial for large

data streaming. However in the case of small data streaming, latency associated with

the core undermines its usage. In this section, we present performance estimation of

our own developed custom core (for small data streaming) which we integrated in the

system as described in chapter 4. There are three data transfer mechanisms which

can be used in such a scenario.

• PIO method

• PS DMA method

• PL DMA method

The details of each method for the Bare-metal usage is presented in Chapter5. The

Bare-metal technique provides high performance but absence of OS support makes

its usage difficult. Adapting them to the OS at the cost of low overhead is attempted

in the experiments described in next couple of sections.

6.2.1 PIO Xillinux experiment

This experiment is conducted on Xillinux platform using our custom core. Data is

transferred from the PS to the custom core (by doing memory mapping) in order to

access the peripheral through the dev/mem port. The mmap() function is utilized in

order to map the peripherals physical address space to virtual address space. From

the experiments it is seen that it takes 15 cycles (clock frequency 100 MHz) for the

custom core to receive the one sample of data sent from the PS. It corresponds to a

latency of 150 ns per transaction which is similar to what we observed in case of bare

metal experiments. Table6.4 shows the time taken for data relay.

Round trip time in this case depends not only on the communication latency but

also computation latency which in turn is dependent on the size of data transferred.

In Xillybus the transfer time was independent of the data size due to the use of

hard FIFOs to buffer the read and write operations. This characteristic is illustrated

clearly in the Table 6.5. The round trip throughput saturates at 3 MS/s.
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Table 6.4: PS to PL Communication latency for Xillinux using PIO

No. of Time

Samples in us

16 3

32 5

64 9

128 20

256 39

512 81

1K 159

2K 321

4K 640

Table 6.5: Experiment results for Xillinux using PIO

No. of Round trip Time Throughput

Samples in us in MS/s

16 6.16 2.59

32 10.32 3.1

64 18.64 3.43

128 41.28 3.1

256 80.56 3.06

512 167.12 3.06

1K 328.24 3.11

2K 662.48 3.09

4K 1320.96 3.10

6.2.2 PS-DMA Xillinux experiment

The Programmable Input Output (PIO) experiment conducted in the previous sec-

tion shows behavior similar to the Baremetal case. This paves way for adapting the

experiment to accommodate PS-DMA based transfers in order to improve its perfor-

mance. But DMA transfer cannot be accomplished by memory mapping technique

due to the absence of interrupts in the aforementioned method. This can be overcome

by creating custom device driver for PS-DMA.

In order to implement a custom device driver, the device tree needs to be modified.

This is done in order to ensure that the kernel detects the hardware and loads the

driver. The driver should contain information such as physical address, interrupt

details and application specific details. The steps involved in setting up device tree
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is as follows:

The device tree element name needs to be defined and also its address which

can be obtained from XPS. If interrupts are required, it needs to be declared with

allocation of address. Custom parameter details can also be added. The Device Tree

Source (DTS) file of Xillinux is obtained by executing the following command in the

user/kernel/(uname r) directory of the root file system (RFS).

scripts/dtc/dtc -I fs -O dts -o /effective.dts /proc/devicetree/

After adding the data pertaining to the new driver, the DTS file is converted into

its binary format [Device Tree Binary (DTB)] by executing this command in the same

directory.

scripts/dtc/dtc -I dts -O dtb -o /path/to/devicetree.dtb /path/to/devicetree.dts

The dtb along with the bitfile, boot.bin and image file is then loaded to the SD

card. The custom driver file is converted to kernel object file (.ko) and the module is

linked to the running kernel using insmod command. The dev node for the driver is

created in order to provide user space entry point with parameters for type of node

and major number and minor number. Node of character type is used in which data

is written serially byte by byte.

mknod dma-fifo c 60 0

The data is then transferred using the following command

dd if=/dev/urandom bs=1024 count=1 of=/dev/mem

This experiment can be repeated by increasing the sample size by varying the

”bs” parameter to characterize its behavior. The driver provided by Xilinx does not

support our custom core. In order to provide support of PS-DMA for our custom

core, we are in the process of developing a device driver.
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6.2.3 Conclusion

From the experiments conducted on Xillinux it is clear that PIO shows similar be-

havior both in Xillinux as well as Baremetal case. This happens due to the use of

memory mapping technique in which the kernel memory is directly accessed. The

major drawback in use of this technique is the exposure of kernel and also the ab-

sence of interrupts which makes it unsuitable for DMA transfer. PS-DMA experiment

conducted by creation of custom device drivers can be explored to obtain the dual

benefits of performance and OS abstraction.
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Conclusions and Future Work

This chapter concludes and summarizes this report. Furthermore, in this chapter we

discuss future research directions in detail.

7.1 Conclusions

This report proposed an OS supported approach for efficient communication abstrac-

tion by using a memory subsystem around an overlay architecture. This work included

developing an understanding of embedded reconfigurable platforms, hardware accel-

eration concept, terminologies and techniques, HW-SW communication mechanisms

and characterization of communication interfaces. Experiments were designed to test

the performance of HW-SW communication interfaces of a commercial reconfigurable

platform, the Xilinx-Zynq. A memory sub-system was developed by inserting a cus-

tom core into Xillybus infrastructure and performance estimation was presented of the

same. Before we could begin developing memory sub-system, an in-depth knowledge

of the current trends and previous efforts in this field were studied to compare and

contrast their features. Experiments were conducted to characterize communication

interfaces on the Zynq platform and results were presented in chapter 5. A proposal of

the memory subsystem was presented in chapter 4 which was evaluated furthermore

by the experiments presented in 6. In order to provide OS support for the commu-

nication abstraction, we evaluated Xillybus infrastructure and observed it efficiency

65
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for large data streaming (above 4K samples) but inefficiency for small data streaming

(below 4K samples). We then inserted our own developed custom core to support

high throughput (3 MS/s) for small data streaming (below 4K samples) using PIO

method. We estimated the performance of our custom core and showed that it works

better compared to xillybus core in case of small data streaming. Furthermore, the

approach presented in this report facilitates high level application developers to use

programmable system on chips for hardware acceleration without need for hardware

know-how.

7.2 Future work

The throughput can be further improved by using device drivers for DMA controllers

for small data streaming (below 4K samples). Adapting PIO based experiment to

transfer data using PL330 DMA controller would increase the throughput of transfer

as seen in the bare-metal case. We expect a throughput of 10 MS/s using PL330 DMA

controller. Moreover, it would be beneficial to provide multiple interfaces from our

custom core to overlay since overlay can have multiple input and output interfaces.

It will allow multiple tasks to run in parallel and each task would be able to request

its own interface. It would also be beneficial to explore the feasibility of integration

of the infrastructure (proposed in this report) with other operating systems such as

an RTOS or a Hypervisor. Finally, with these initiatives we hope to reduce HW-SW

communication bottleneck and provide a uniform communication abstraction while

executing tasks on overlay architectures.
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