
NANYANG TECHNOLOGICAL UNIVERSITY

FPGA OVERLAY ARCHITECTURES ON THE XILINX ZYNQ AS

PROGRAMMABLE ACCELERATORS

by

SHEN YUE

(G1402150A)

A Dissertation Submitted in partial fulfillment of

the requirements for the degree of

Master of Science in Embedded Systems

Supervised by

Assoc. Prof. Douglas L. Maskell

July 2015

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Contribution . 2

1.3 Organization . 3

2 Background 4

2.1 Execution of Compute Kernels . 4

2.2 FPGA Overlay Architectures . 5

2.3 Zynq as a hybrid computing platform 7

2.4 Communication abstraction using Xillybus 9

3 Literature Survey on FPGA Overlays 10

3.1 Spatially configured FU based Overlays 10

3.2 Time-multiplexed FU based Overlays 14

4 Analysis of DySER as an Overlay Architecture on Zynq 16

4.1 The DySER Architecture . 16

4.1.1 DySER Switch . 17

4.1.2 DySER Functional Unit . 17

4.2 DSP Block Based DySER . 19

4.2.1 DSP48E1 Based Functional Unit 20

4.2.2 Analysis of Performance Improvement 21

4.3 Kernel Mapping on DySER . 23

4.4 Summary . 24

i

ii CONTENTS

5 Overlay based on Time-multiplexed FU 25

5.1 Time-multiplexed FU based on DSP Block 26

5.1.1 Architecture of Proposed Functional Unit 27

5.1.2 Kernel Execution . 28

5.2 Linear Array of Functional Units as Overlay 30

5.2.1 Architecture . 30

5.2.2 Kernel Execution . 32

5.3 Summary . 32

6 Experiments 33

6.1 Introduction . 33

6.2 Xillybus . 34

6.3 Xillybus Characterization . 37

6.3.1 Single pipe loopback . 37

6.3.2 Double Pipe Loopback . 41

6.4 Xillybus for interfacing HLS generated kernels 42

6.5 Performance evaluation . 45

7 Conclusions and Future Work 47

7.1 Conclusions . 47

7.2 Future work . 48

Bibliography 50

List of Figures

2.1 DySER Interfacing with Host Processor [1] 6

2.2 Intermediate Fabric (IF) Interfacing with Host Processor [2] 7

2.3 Block Diagram of the Hybrid Platform. 8

2.4 Xillybus Block Diagram[3] . 9

3.1 Intermediate Fabrics as Island-style Overlay [4]. 11

3.2 Nearest-neighbor connected Mesh of Functional units [5]. 12

3.3 DySER functional unit [6]. 13

3.5 Soft CGRA as an FPGA overlay architecture. 15

4.2 Functional unit architecture. 18

4.3 Physical mapping of functional unit on FPGA. 19

4.4 DSP48E1 based functional unit architecture. 20

4.5 Physical mapping of enhanced functional unit. 21

4.6 Physical mapping of the DySER Tile on FPGA. 22

4.7 Mapping of Kernels on DySER Architecture.[7] 23

5.1 iDEA processor block diagram.[8] . 26

5.2 DSP48E1 architecture. 27

5.3 Time-multiplexed FU Block Diagram. 28

5.4 Snapshot of Test Bench for Kernel FFT 28

5.5 Simulation Results of kernel execution on FU 29

5.6 Linear Array of time-multiplexed FUs 30

5.7 Nodes Clustering for Kernel FFT . 30

iii

iv LIST OF FIGURES

5.8 Simulation Results of kernel execution on linear array 31

6.1 Xillybus Simplified Block Diagram 34

6.2 Xillybus infrastructure for Zedboard 36

6.3 Xillybus 32-bit loopback FIFO connection 37

6.4 Xillybus initial demo bundle block diagram 37

6.5 Xillybus Single threading Code Example 39

6.6 Xillybus Muilti threading Code Example 40

6.7 Xillybus Double Pipe Loopback block diagram 41

6.8 Multiple I/O Accelerator integrated in Xillybus system 43

6.9 32-bit input pipe connection . 44

6.10 32-bit output pipe connection . 44

6.11 Execution time analysis . 46

List of Tables

4.1 Benchmark Characteristics . 18

4.2 DSP48E1 configuration for each operation 21

5.1 II comparison for different architectures 32

6.1 Single Pipe Loopback results . 38

6.2 Double Pipe Loopback results . 42

6.3 No. of I/O for all the benchmarks . 43

6.4 Round Trip Time in us For Kernels intergrated with Xillybus 1 . . . 45

6.5 Round Trip Time in us For Kernels intergrated with Xillybus 2 . . . 45

6.6 Results processed by ARM processor on Linux 45

v

Abbreviations

API Application Processing Interface

ASIC Application Specific Integrated Circuit

AXI Advanced eXtensible Interface

COTS Commercial Off-the-shelf

DFG Data Flow Graph

DMA Direct Memory Access

FPGA Field Programmable Gate Array

FU Functional Unit

GPP General Purpose Processor

HDL Hardware description language

HLS High Level Synthesis

IF Intermediate Fabric

II Initiation Interval

ISE Integrated Software Environment

PL Programmable Logic

PS Processing system

RTL Register Transfer Level

XPS Xilinx Platform Studio

vi

Abstract

Emerging reconfigurable platforms tightly couple capable processors with high per-

formance reconfigurable fabrics. This coupling promises to move the focus of re-

configurable computing systems from static accelerators to a more software oriented

view, where reconfiguration is a key enabler for exploiting available hardware re-

sources. This requires a revised look at how to use reconfigurable hardware within

a software-centric processor-based system. Recently, coarse grained overlay architec-

tures have been shown to be effective when paired with general purpose processors

as this allows the hardware fabric to be viewed as a software-managed hardware

task, enabling more shared use, offering software-like programmability, fast compila-

tion, application portability and improved design productivity. These architectures

enable general purpose hardware accelerators, allowing hardware design at a higher

level of abstraction, but at the cost of area and performance overheads. This report

examines the DySER overlay architecture as a hardware accelerator paired with a

general purpose processor in the Xilinx Zynq. We evaluate the DySER architecture

mapped on the Xilinx Zynq and show that it suffers from a significant area and per-

formance overhead. We then propose an improved functional unit architecture using

the flexibility of the DSP48E1 primitive which results in a 2.5× frequency improve-

ment and 25% area reduction compared to the original functional unit architecture.

We demonstrate that this improvement results in the routing architecture becoming

the bottleneck in performance. We also develop an overlay architecture using a linear

array of time-multiplexed functional units which can be used to host arbitrary size

Data Flow Graph (DFG) of a compute kernel considering N≥D holds true, where N is

the number of functional units in the overlay and D is the depth of the DFG. Finally,

we present experiments to evaluate the performance of HLS generated fully parallel

and pipelined RTL implementations and the ARM processor for the execution of a

set of compute kernels.

Chapter 1

Introduction

1.1 Motivation

While the performance benefits of reconfigurable computing over processor based sys-

tems have been well established [9, 10, 11], such platforms have not seen wide use

beyond specialist application domains such as digital signal processing and communi-

cations. Poor design productivity has been a key limiting factor, restricting their effec-

tive use to experts in hardware design [12]. This requires a revised look at how to use

Field Programmable Gate Array (FPGA) fabrics within a software-centric processor-

based system effectively. Coarse grained overlay architectures [13, 14, 4, 5, 1, 15, 6, 16]

have been shown to be effective when paired with general purpose processors [2, 14]

as this allows the hardware fabric to be viewed as a software-managed hardware task,

enabling more shared use, offering software-like programmability, fast compilation,

application portability and improved design productivity. Overlay architectures con-

sist of a regular arrangement of coarse grained routing and compute resources. The

key attraction of overlay architectures is software-like programmability through map-

ping from high-level descriptions, application portability across devices, design reuse,

fast compilation by avoiding the complex FPGA implementation flow, and hence,

improved design productivity. Although research in the area of overlay architectures

has increased over the last decade, the field is still in its infancy with only relatively

1

2 CHAPTER 1. INTRODUCTION

few overlay architectures demonstrated in prototype form [14, 17, 5]. One such ex-

ample is the DySER architecture targeted to the Xilinx Virtex-5 FPGA [18]. Area

and performance overheads have, however, prevented the realistic use of DySER in

practical FPGA-based systems. One of the reasons for this poor performance is that

overlays are typically designed without serious consideration of the underlying FPGA

architecture. In our work, we aim to examine the DySER overlay architecture as a

hardware accelerator paired with a general purpose processor in the Xilinx Zynq. We

also aim to develop an overlay architecture using a linear array of time-multiplexed

functional units which can be used to host arbitrary size DFG of a compute kernel.

1.2 Contribution

Embedded hard macros, such as DSP blocks, have been added to FPGAs in recent

years. Many existing overlay architectures [14, 17, 5, 18] do not specifically use these

macros, except insofar as they are inferred by the synthesis tools. In this report,

we first evaluate the DySER architecture mapped on the Xilinx Zynq and show that

it suffers from a significant area and performance overhead. We then propose an

improved functional unit architecture using the flexibility of the DSP48E1 primitive

which results in a 2.5× frequency improvement and 25% area reduction compared to

the original functional unit architecture. We demonstrate how adopting the Xilinx

DSP48E1 primitive in the Functional Unit (FU) of the DySER architecture improves

both performance and area, which results in the routing architecture becoming the

bottleneck in performance. Another contribution of this report is the implementation

of an overlay architecture based on time-multiplexed functional units. The main

contributions can be summarized as follows:

� RTL implementation of a functional unit (compatible with the DySER archi-

tecture) using the DSP48E1 primitive, which can operate at near theoretical

maximum frequency.

� RTL implementation of a time-multiplexed FU using the DSP48E1 primitive

and an implementation of a linear array of these units as an overlay.

1.3. ORGANIZATION 3

1.3 Organization

The remainder of the report is organized as follows: Chapter 2 presents background

information on computer kernels, overlay architectures and software-hardware com-

munication. Chapter 3 studies current state of the art in high performance overlay

architectures. In chapter 4, we present the analysis of DySER architecture, functional

unit, implementation on the Xilinx Zynq and a modified functional unit architecture

using the flexible DSP48E1 primitive. In chapter 5, we present a time multiplexed

functional unit and a linear array of these units as an Overlay architecture. Chapter

6, presents experiments to evaluate the performance of HLS generated RTL imple-

mentations and the ARM processor for the execution of a set of compute kernels. We

conclude in chapter 7 and discuss future work.

Chapter 2

Background

2.1 Execution of Compute Kernels

We refer to compute kernels as computationally intensive part of an application which

can be offloaded to an accelerator for fast execution. A General Purpose Processor

(GPP) can be used for the execution of compute kernels by describing their function-

ality using a high level language. Since a GPP executes the kernel operations sequen-

tially, the execution time of the kernels increases on increasing the complexity of the

kernel. With the advancements in technology, parallel processing architectures such

as multi-cores CPUs and DSPs, GPUs, Massively parallel processor arrays, FPGA

based accelerators are gaining popularity for accelerated execution of kernels. Appli-

cation Specific Integrated Circuit (ASIC) have been usually used as accelerator, but

due to its limits of flexibility and long time to market, FPGAs are becoming popular

for rapid-prototyping of accelerators. FPGA devices can be used for implementing

kernels as high performance fully parallel and pipelined designs [19]. For more than a

decade, researchers have shown that FPGAs can accelerate a wide range of software,

in some cases by several orders of magnitude compared to state-of-the-art general

purpose processors [20, 21].

To use an FPGA for accelerating compute kernels, designers typically start by

manually converting the compute kernel into an fully pipelined datapath specified

using Hardware description language (HDL). A fully pipelined datapath on FPGA

4

2.2. FPGA OVERLAY ARCHITECTURES 5

results in maximum performance by producing output data at every clock cycle. How-

ever this performance comes at the cost of designer effort. Therefore, High Level Syn-

thesis (HLS) has been proposed as a way of addressing the limited design productivity

and manpower capabilities associated with hardware design [22, 23]. Advancements

in HLS tools have helped raise the level of programming abstraction from Register

Transfer Level (RTL) to high level languages, such as C or C++. Even as HLS tools

improve in efficiency, prohibitive compilation times (specifically the place and route

times in the backend flow) still limit productivity and mainstream adoption [12].

Hence, there is a growing need to make FPGAs more accessible to application de-

velopers who are accustomed to software API abstractions and fast development

cycles [24].

Coarse grained configurable overlay architectures have been proposed as a method

to overcome some of these issues [13, 14, 4, 5, 1, 16]. Overlays can be used for reducing

the prohibitive compilation time required to map an application to the conventional

fine-grained FPGA fabric. Overlays have also been shown to be effective when paired

with general purpose processors [2, 14] as this allows the hardware fabric to be viewed

as a software-managed hardware task, enabling more shared use. We describe FPGA

Overlay architectures in the next section.

2.2 FPGA Overlay Architectures

Overlay architectures consist of a regular arrangement of coarse grained routing and

compute resources. The key attraction of overlay architectures is software-like pro-

grammability through mapping from high level descriptions, application portability

across devices, design reuse, fast compilation by avoiding the complex FPGA im-

plementation flow, and hence, improved design productivity. Accelerators can be

described at a higher level of abstraction and compiling it for overlays is several or-

ders of magnitude faster than for the fine grained FPGAs. The overlay overcomes

the need for a full cycle through the vendor implementation tools, instead presenting

a much simpler problem of programming an interconnected array of processing ele-

ments. The possible configuration space and reconfiguration data size is much smaller

6 CHAPTER 2. BACKGROUND

than for direct FPGA implementation of kernels because of the coarser granularity of

the overlay. An overlay provides a leaner mechanism for hardware task management

at runtime as there is no need to prepare distinct bitstreams in advance using vendor-

specific compilation (synthesis, map, place and route) tools. Instead, the behaviour

of the overlay can be modified using software defined overlay configurations.

Despite having the implementation of the overlay architecture and its performance

gain, there is no guarantee that it will surely provide reduction in kernel execution

time. It depends heavily on how the overlay is interfaced to the host processor,

communication mechanism between overlay, host processor and the external memory,

communication bandwidth and latencies etc. Researchers have shown the effective

use of coarse grained overlay architectures by pairing them with host processors as

a coprocessor [25, 2] or as a part of the processor’s pipeline [18]. Fig. 2.1 shows the

integration of DySER [18, 26] overlay into the pipeline of a processor.

Figure 2.1: DySER Interfacing with Host Processor [1]

Integrating an overlay within a processor pipeline can provide huge performance

and energy efficiency at the expense of complete redesign of processor micro-architecture.

Another possible approach is to interface the overlay (as a co-processor) with the

host processor via standard communication interfaces. To address possible bottle-

neck problems, particularly in providing high bandwidth transfers between the host

procesor and the co-processor implemented on the FPGA fabric [27], it has been pro-

posed to more tightly integrate the processor and the FPGA fabric. A number of

tightly coupled architectures have resulted [28, 29], including vendor specific systems

2.3. ZYNQ AS A HYBRID COMPUTING PLATFORM 7

with integrated hard processors. One example of pairing the overlay (Intermediate

Fabric (IF) Overlay [4]) with a high performance ARM processor via an Advanced

eXtensible Interface (AXI) interface in a commercial computing platform (the Xilinx

Zynq[30]) is shown in Fig. 2.2. Zynq platform partition the hardware into a Pro-

cessing system (PS), containing one or more processors along with peripherals, bus

and memory interfaces, and other infrastructure, and the Programmable Logic (PL)

where custom hardware can be implemented. The two parts are coupled together with

high throughput interconnect to maximize communication bandwidth. We describe

Zynq platform in the next section.

DDR

ARM Processor

DDR
Controller

Hard DMA

HP PortGP Port

Central
Interconnect

M M S S S S S S

PS

PL

BRAM BRAM BRAM BRAM...

IF Region
Static

Region

AXI4

AXI-Lite

Figure 2.2: Intermediate Fabric (IF) Interfacing with Host Processor [2]

2.3 Zynq as a hybrid computing platform

Both major FPGA vendors have recently introduced hybrid platforms consisting

of high performance processors coupled with programmable logic, aimed at use in

systems-on-chip. These architectures partition the hardware into a processor system

(PS), containing one or more processors along with peripherals, bus and memory

interfaces, and other infrastructure, and the programmable logic (PL) where cus-

tom hardware can be implemented. The two parts are coupled together with high

throughput interconnect to maximise bandwidth. In this report, we focus on the

8 CHAPTER 2. BACKGROUND

Xilinx Zynq-7000, the block diagram is shown in Fig 2.3.

Figure 2.3: Block Diagram of the Hybrid Platform.

The Zynq-7000 contains a dual-core ARM Cortex A9 processor equipped with a

double-precision floating point unit, commonly used peripherals, a dedicated hard

Direct Memory Access (DMA) controller (PS-DMA) and General interrupt controller

(GIC), L1 and L2 cache, on chip memory (OCM) and external memory interfaces.

It also contains several AXI based interfaces to the programmable logic (PL). Each

interface consists of multiple AXI channels, enabling high throughput data transfer

between the PS and the PL, thereby eliminating common performance bottlenecks

for control, data, I/O, and memory. The AXI interfaces to the fabric include:

� AXI ACP – One 64-bit AXI accelerator coherency port (ACP) slave interface

for coherent access to CPU memory

� AXI HP – four 64-bit/32-bit configurable, buffered AXI high performance (HP)

slave interfaces with direct access to DDR memory and OCM

� AXI GP – two 32-bit master and two 32-bit AXI general purpose (GP) slave

interfaces

2.4. COMMUNICATION ABSTRACTION USING XILLYBUS 9

2.4 Communication abstraction using Xillybus

Communication abstraction is a method to represent communication interfaces and

memory sub-system at a logical view by providing an interface similar to SW Applica-

tion Processing Interface (API). This logical view basically decouples the functionality

of communication interfaces from their actual implementation. The key attraction of

communication abstraction techniques is their capability to seamlessly access accel-

erator for data processing and abstraction of physical interfaces. System designs can

incorporate these abstractions at platform level to make use of high speed communi-

cation interfaces for communicating with streaming accelerators.

Xillybus provides communication abstraction in which DMA based data transfer

mechanism is used between the ARM and FPGA[3]. The presence of DMA buffer is

transparent to both the processor and reconfigurable logic. The interface interacts

using FIFOs and file I/O operations. Xillybus provides abstraction to FPGA logic

in the form of FIFOs. Fig. 2.4 illustrates this concept. The Reconfigurable fabric

is connected using customizable FIFOs with empty and full signals to facilitate easy

data transfer. The logic needs to read/write from/to the FIFOs. The presence of

data on the FIFO alerts the IP core to map the same to processor user space.

Figure 2.4: Xillybus Block Diagram[3]

Chapter 3

Literature Survey on FPGA

Overlays

In the area of coarse grain overlay architectures, the compute the routing logic can

either perform the same operation over the time by spatially configuring them, or

can loop over a short list of instructions for time-multiplexed execution of kernel

operations. In spatially configured functional units based overlays, the compute logic

of the overlay are unchanged while a compute kernel is executing while in time-

multiplexed functional unit based overlays, the compute logic of the overlay change

on a cycle by cycle basis while a compute kernel is executing [16, 31, 32].

3.1 Spatially configured FU based Overlays

Overlays based on Spatially configured functional units normally have a single in-

struction register within each FU. This type of overlay fits well in a scenario where

performance in terms of throughput is a primary objective given the rich logic re-

sources. With the exponential increase of logic density on FPGA devices, it is now

possible to accommodate a massive number of FUs on an FPGA which allows to map

all of the operations in a compute kernel spatially on the array of FUs. The through-

put under this mapping would be one kernel iteration per cycle since the Initiation

Interval (II) would be one.

10

3.1. SPATIALLY CONFIGURED FU BASED OVERLAYS 11

An overlay architecture, referred to as an intermediate fabric (IF) [4], [17] was

proposed to support near-instantaneous placement and routing. Standard VPR [33]

algorithms were used for placement and routing of compute kernels. It consists of 192

heterogeneous functional units comprising 64 multipliers, 64 subtracters, 63 adders,

one square root unit, and five delay elements with a 16-bit datapath and supported

the fully parallel, pipelined implementation of compute kernels.

Figure 3.1: Intermediate Fabrics as Island-style Overlay [4].

Unlike a physical device, whose architecture must support many applications, IFs

have been specialized for particular domains or even individual applications. Such

specialization hides the complexity of fine-grained Commercial Off-the-shelf (COTS)

devices, thus enabling fast place and route (700x speedup over vendor tools) at the

cost of significant area (34% - 44%) and performance (7%) overhead when imple-

mented on an Altera Stratix III FPGA [17]. However, the IF only achieved an Fmax

of 125 MHz resulting in low throughput for the application benchmarks tested. It con-

sists of 192 heterogeneous functional units comprising 64 multipliers, 64 subtracters,

63 adders, one square root unit, and five delay elements with a 16-bit datapath and

supported the fully parallel, pipelined implementation of compute kernels. Area over-

head comes into picture mainly because of virtual interconnect logic which comprised

of multiplexers based routing. This overhead was reduced by 48% - 54% by reducing

flexibility of routing in [34], while improving speed by 24% with a modest routability

overhead of 16%. Based on the above mentioned work on IFs, an end-to-end tool flow

was presented for FPGA-accelerated scientific computing [35].

12 CHAPTER 3. LITERATURE SURVEY ON FPGA OVERLAYS

Mesh of FU based Overlay was proposed to execute a given DFG by mapping the

graph nodes to the FUs and by configuring the routing logic to establish inter-FU

connections [5]. Multiple instances of the DFGs are then executed in a pipelined

fashion on the overlay to achieve high performance. In addition to integer arithmetic,

overlay also used floating point processing elements. It consisted of a 24×16 overlay

with a nearest-neighbor-connected mesh of 214 routing cells and 170 heterogeneous

functional units (FU) comprising 51 multipliers, 103 adders and 16 shift units. When

implemented on an Altera Stratix IV FPGA, the overlay consumed 75% of the total

device ALMs, with the routing network consuming 90% of the ALM resource used.

An Fmax of 355 MHz and a peak throughput of 60 GOPS was reported. A placer and

router was also developed by customizing VPlace [36] and PathFinder [37], respec-

tively.

Figure 3.2: Nearest-neighbor connected Mesh of Functional units [5].

Key features are high speed of overlay, Mesh of FUs, elastic pipelines for latency

balancing and synchronization, runtime compilation, data driven pipeline units, dy-

namic and distributed control, No Fmax drop on scaling the overlay size, DFG reloca-

tion within VDR, data-driven execution (dynamic triggering of FU on the availability

of input data).

3.1. SPATIALLY CONFIGURED FU BASED OVERLAYS 13

DySER [1, 26] was proposed as a coarse grained overlay architecture for improving

the performance of general purpose processors. It was originally designed as a het-

erogeneous array of 64 functional units interconnected with a circuit-switched mesh

network and implemented on ASIC. The DySER architecture was then improved

and prototyped, along with the OpenSPARC T1 RTL, on a Xilinx XC5VLX110T

FPGA [18]. However, due to excessive LUT consumption, it was only possible to fit

a 2x2 32-bit DySER, a 4x4 8-bit DySER or an 8x8 2-bit DySER on the FPGA.

c_in

done

v_in

d_in

Credit
Generator

c_out_SW

Conf[15:0]

d_in_SW [17:2]
d_in_NW[17:2]
d_in_NE [17:2]
d_in_SE [17:2]

d_in_SW [1:0]
d_in_NW[1:0]
d_in_NE [1:0]
d_in_SE [1:0]

c_out_NW
c_out_NE
c_out_SE

d_out_SE

c_in_SE

Conf[2:1]

Conf[6:5]

Conf[4:3]

Conf[12:5]

Conf[13]

c_out

d_out

v_out

c_in

done

v_in

d_in

c_out

d_out

v_out

Conf[15:14]

MUL

MUX

B

A

16

16

16

Done Signal
Generator

c_in

done

v_in

d_in

c_out

d_out

v_out

c_in

done

v_in

d_in

c_out

d_out

v_out

ADD

SUB

OR

Figure 3.3: DySER functional unit [6].

Switch Switch Switch Switch

Sw
it
ch

Sw
it
ch

Sw
it
ch

S
w
it
ch

Tile Tile Tile Tile

Tile Tile Tile Tile

Tile Tile Tile Tile

Tile Tile Tile Tile

Switch

(a) DySER block diagram.

FU

Switch

FU

Switch

FU

Switch

FU

Switch

Switch

Switch

Switch SwitchSwitch

(b) Architecture of a 2×2 DySER.

Functional
Unit

Switch

(c) Tile architecture.

Figure 3.4: DySER architecture as Island-style overlay.

14 CHAPTER 3. LITERATURE SURVEY ON FPGA OVERLAYS

3.2 Time-multiplexed FU based Overlays

These overlays ought to have a set of instruction registers within each functional unit

(FU) where each FU behaves like a conventional processor core. Unlike the overlay

discussed in previous section, these overlays focus on the saving of hardware resources,

especially for the kernels having large amount of operations. The basic idea is to

time-multiplex the FUs among multiple operations. A single core soft processor like

iDEA [8] can be considered a form of an overlay architecture, comprising only one

time-multiplexed FU. There are many soft processor designs for FPGAs including

RISC processors and vector processors [38]. The array of the FUs are normally

interconnected via a nearest neighbor (NN) style programmable interconnect which

allows FUs to communicate only to neighbor FUs. One such example is CARBON [31]

which supports 256 instructions per functional unit and achieves a frequency of 90

MHz when implemented on Altera Stratix III. One major benefit of using these type

of overlays is that well established algorithms and tools can be used for application

mapping. The algorithms commonly used are List scheduling [39], Force Directed

Scheduling [40] and Modulo Scheduling [41] to schedule the operations of a compute

kernel on an array of FUs. Each FU uses the instruction memory to store the assigned

multiple instructions and switches during execution.

To address the productivity problem and explore high frequency on FPGA, CGRA

architecture overlaid on top of COTS FPGA devices was proposed [16]. Authors also

proposed HLS methodology that utilizes SCGRA as an intermediate compilation step.

They proposed that new SCGRA design and generation of corresponding bitstream

is needed per application domain basis using vendor tools. After that, proposed HLS

tool can schedule DFGs on SCGRA and generate instructions, per application basis,

which can be merged with SCGRA bitstream to generate final downloadable bit-

stream for the target FPGA. Authors have designed configurable processing element

(CPE) in such a way that it can fetch configuration, from instruction ROM, every

cycle. Configuration defines the behavior of the CPE for a particular clock cycle.

In comparison with the conventional HLS methodology, the proposed overlay shows

10-100× reduction in compilation time and achieves up to 21× speedup in application

3.2. TIME-MULTIPLEXED FU BASED OVERLAYS 15

run time.

Figure 3.5: Soft CGRA as an FPGA overlay architecture.

To improve the design productivity, another overlay referred as TILT [42] was

presented in comparison with Altera OpenCL HLS. In TILT overlay, an array of FUs

fetch the data from banked multi-ported memory via the read and write crossbars.

Proposed overlay, with an operating frequency of 200 MHz, is able to achieve higher

computational throughput by instantiating multiple copies of the TILT core.

Another overlay referred as reMORPH [32], takes advantage of coarse grained

modules (CGRMs) such as DSP48E blocks and BRAMs by forming the computing

tiles using a mesh-like structure. The DSP block acts as an efficient ALU, which allows

the computing tile to achieve a frequency of up to 400 MHz. Similar to SCGRA based

HLS design, the bottleneck in reMORPH is the number of BRAMs available on the

device to store the list of instructions for each FU.

Chapter 4

Analysis of DySER as an Overlay

Architecture on Zynq

As discussed in the previous chapter, DySER architecture, although relatively effi-

cient from an application mapping perspective, suffered because it was implemented

without much consideration for the underlying FPGA architecture. Considering the

presence of hard macro blocks, and previous work that has demonstrated how these

can be used for general processing at near to their theoretical limits [15, 8], we pro-

pose enhancing DySER by using the DSP48E1 found in all modern Xilinx FPGAs to

take on most functions of the FU.

4.1 The DySER Architecture

The DySER architecture consists of two blocks, the tile fabric and the edge fabric,

where each tile in the tile fabric instantiates a switch and a functional unit (FU), while

the edge fabric only instantiates a switch, forming the boundary at the top and left

of the tile fabric. The resulting architecture contains I/O ports around the periphery

of the fabric, which are connected to FIFOs. A simple 2×2 DySER overlay, consists

of four tile instances and five switch instances along the North and West boundaries,

resulting in 4 FUs and 9 switches, as shown in Fig. 4.1. Extrapolating this to an

N ×N DySER architecture results in N2 FUs and (N + 1)2 switches.

16

4.1. THE DYSER ARCHITECTURE 17

Switch Switch Switch Switch
Sw

it
ch

Sw
it
ch

Sw
it
ch

Sw
it
ch

Tile Tile Tile Tile

Tile Tile Tile Tile

Tile Tile Tile Tile

Tile Tile Tile Tile

Switch

(a) DySER block diagram.

FU

Switch

FU

Switch

FU

Switch

FU

Switch

Switch

Switch

Switch SwitchSwitch

(b) Architecture of a 2×2 DySER.

Figure 4.1: DySER architecture.

4.1.1 DySER Switch

The switches allow datapaths to be dynamically specialized. They form a circuit-

switched network that creates paths from inputs to the functional units, between

functional units, and from functional units to outputs. Switches in DySER have 5

inputs (4 from neighbour switches and 1 from the functional unit at the North-West

direction) and 8 outputs (to all 8 directions). Hence, switches require a 5:1 multiplexer

and a state machine for synchronization at each output.

4.1.2 DySER Functional Unit

The functional unit (FU) provides resources for the mathematical and logical oper-

ations, and synchronization logic. It receives its input values from the four neigh-

bouring switches and outputs its result to the switch in the south-east direction. The

FU consists of programmable computation logic and a state machine as synchroniza-

tion logic at each input and output of the computation logic. The state machine

implements a credit-based flow-control protocol to enable receiving of inputs asyn-

chronously at arbitrary times from the FIFO interfaces.

18CHAPTER 4. ANALYSIS OF DYSER AS ANOVERLAYARCHITECTURE ON ZYNQ

c_in

done

v_in

d_in

Credit
Generator

c_out_SW

Conf[15:0]

d_in_SW [17:2]
d_in_NW[17:2]
d_in_NE [17:2]
d_in_SE [17:2]

d_in_SW [1:0]
d_in_NW[1:0]
d_in_NE [1:0]
d_in_SE [1:0]

c_out_NW
c_out_NE
c_out_SE

d_out_SE

c_in_SE

Conf[2:1]

Conf[6:5]

Conf[4:3]

Conf[12:5]

Conf[13]

c_out

d_out

v_out

c_in

done

v_in

d_in

c_out

d_out

v_out

Conf[15:14]

MUL

MUX

B

A

16

16

16

Done Signal
Generator

c_in

done

v_in

d_in

c_out

d_out

v_out

c_in

done

v_in

d_in

c_out

d_out

v_out

ADD

SUB

OR

Figure 4.2: Functional unit architecture.

The operators in the FU can be selected according to application requirements.

We choose four operators: Add, Sub, Mul and OR in the FU, as shown in Fig. 4.2,

to map the benchmarks from [43]. The benchmark characteristics are shown in Ta-

ble 4.1. Benchmarks, where a small code region dominates the runtime, and where

computation can easily be scheduled, are taken from [43]. These benchmarks mimic

the workloads of the PARBOIL suite.

Table 4.1: Benchmark Characteristics

No. Benchmark Add Sub Mul OR Total

1. fft 3 3 4 10

2. kmeans 7 8 8 23

3. mm 7 8 15

4. mri-q 3 6 1 10

5. spmv 6 8 14

6. stencil 10 2 2 14

7. conv 8 8 16

8. radar 6 2 8

The original DySER FU was implemented using Xilinx ISE 14.6 targeting a Xilinx

Zynq XC7Z020. The FU consumes 49 Slices (148 LUTs, 66 FFs) and 1 DSP48E1

block, with a critical path of 6.7 ns. Hence the maximum operating frequency of the

FU is 150 MHz. Fig. 4.3 shows the physical mapping of the FU to the FPGA fabric.

4.2. DSP BLOCK BASED DYSER 19

While synthesizing, the tool infers a DSP block for multiplication. The remainder of

the operations and the multiplexer in the compute logic are mapped to 17 Slices (57

LUTs). State machines and input selection multiplexers are mapped to 32 Slices (91

LUTs and 66 FFs). After integrating the FU into the DySER tile and implementing

it on the FPGA fabric, we found that the critical path in the DySER Tile is the same

as the critical path of the FU (6.7 ns), and hence the FU limits the performance of

the DySER tile.

Embedded
Processor

 (ARM Cortex-A9)

Functional Unit

FPGA Fabric

DSP48E1 Primitive

Figure 4.3: Physical mapping of functional unit on FPGA.

4.2 DSP Block Based DySER

Building on the advantages of hard DSP macros for implementing high speed process-

ing elements, we examine the use of the Xilinx DSP48E1 primitive as a programmable

FU in DySER targeting data-parallel compute kernels. Despite the fact that the orig-

inal FU uses a DSP block for multiplication, it does not fully exploit the performance

advantage of the DSP block. Since the DSP48E1 can be dynamically configured and

used for operations required by the FU, we show that an area and performance effi-

cient FU can be built by making use of DSP block as an ALU, instead of just as a

multiplier, and enabling the internal pipeline registers of the DSP block.

20CHAPTER 4. ANALYSIS OF DYSER AS ANOVERLAYARCHITECTURE ON ZYNQ

c_in

done

v_in

d_in

Credit
Generator

c_out_SW

Conf[15:0]

d_in_SW [17:2]
d_in_NW[17:2]
d_in_NE [17:2]
d_in_SE [17:2]

d_in_SW [1:0]
d_in_NW[1:0]
d_in_NE [1:0]
d_in_SE [1:0]

c_out_NW
c_out_NE
c_out_SE

d_out_SE

c_in_SE

Conf[2:1]

Conf[6:5]

Conf[4:3]

Conf[12:5]

Conf[13]

c_out

d_out

v_out

c_in

done

v_in

d_in

c_out

d_out

v_out

Conf[15:14]

MULT
25x18

Dual B
Register

Dual A
Register

C

M

X

Y

Z

INMODE

OPMODE

B

A

C

1
0

0

ALUMODE

P

16

16

16

7

4 1

4

16

DSP48E1
Configuration

Decoder

Done Signal
Generator A:B

c_in

done

v_in

d_in

c_out

d_out

v_out

c_in

done

v_in

d_in

c_out

d_out

v_out

Figure 4.4: DSP48E1 based functional unit architecture.

4.2.1 DSP48E1 Based Functional Unit

We use the DSP48E1 primitive, as shown in Fig. 4.4, to implement computation

logic in the modified functional unit. The DSP48E1 primitive has a pre-adder, a

multiplier, an ALU, four input ports for data, and one output port P, as shown in

Fig. 4.4, and can be configured to support various operations such as multiply, add,

sub, bitwise OR, etc. These functions are determined by a set of dynamic control

inputs that are wired to configuration registers. The DSP48E1 primitive is directly

instantiated providing total control of the configuration of the primitive. This allows

us to maximize the compute kernel throughput and achieve a high FU frequency by

operating the DSP48E1 at its maximum frequency.

We enable all of the pipeline stages of the DSP48E1 primitive. The redesign

of the DySER functional unit replaces the original compute unit (CU), shown in

Fig. 4.2, with the fully pipelined DSP48E1 primitive, along with modifications to the

done signal generation logic and configuration decoding logic, as shown in Fig. 4.4.

The two inputs from the FU (to the CU) are connected to the three ports of the

DSP48E1 primitive, as shown in Fig. 4.4. The FU configuration register includes 2

bits for operation selection with the other 14 bits for constant and input multiplexers.

4.2. DSP BLOCK BASED DYSER 21

Additionally, we require three 16-bit registers at the DSP input ports (as shown in

Fig. 4.2), consuming 48 FFs to balance the internal pipeline stages of the DSP block.

Table 4.2 shows the DSP48E1 configuration settings required for each operation.

Inmode remains same for all of the operations and hence we hard-code it to 00000.

Table 4.2: DSP48E1 configuration for each operation

Operation ALUMODE OPMODE INMODE

ADD 0000 011 0011 00000
SUB 0011 011 0011 00000
MUL 0000 000 0101 00000
OR 1100 011 1011 00000

4.2.2 Analysis of Performance Improvement

We analyze the performance improvement of the FU in terms of frequency and re-

source usage. The DSP48E1 based FU consumes 37 Slices (116 LUTs, 117 FFs) (25%

less than the original FU) and 1 DSP block. Apart from obvious area savings, the

strategy of using a fully pipelined DSP block as the computational part of the FU

also improves overall timing performance. The FU has a critical path of just 2.7 ns,

resulting in a maximum frequency of 370 MHz, which is 2.5× that of the original FU.

Fig. 4.5 shows the physical mapping of functional unit onto the FPGA fabric.

Functional Unit

FPGA Fabric

DSP48E1 Primitive

Embedded
Processor

 (ARM Cortex-A9)

Figure 4.5: Physical mapping of enhanced functional unit.

22CHAPTER 4. ANALYSIS OF DYSER AS ANOVERLAYARCHITECTURE ON ZYNQ

Since a hard primitive is used for the implementation of CU operations, only

minimal additional circuitry is implemented in the logic fabric which consists of con-

figuration decoding logic, three 16-bit balancing registers and done signal generation

logic. All of this additional circuitry is mapped to 10 Slices (25 LUTs and 51 FFs).

State machines and input selection multiplexers are mapped to 27 Slices (91 LUTs

and 66 FFs).

By integrating the enhanced FU into the DySER tile and implementing it on the

FPGA fabric, we found that the critical path of the switch, which is 5.3 ns, now

limits the performance of the DySER tile. Fig. 4.6 shows the physical mapping of the

DySER Tile to the FPGA fabric. It is clear that the major area overhead in DySER

is due to significant resources consumed in the switch implementation. The switch

consumes 251 Slices (995 LUTs and 325 FFs) and hence the whole tile consumes

288 Slices (1118 LUTs and 447 FFs). The largest source of area overhead comes

from the multiplexing logic in the switch which can be minimized by using techniques

mentioned in [34, 44].

Embedded
Processor

 (ARM Cortex-A9)
Functional Unit

FPGA Fabric

DySER Tile

Figure 4.6: Physical mapping of the DySER Tile on FPGA.

4.3. KERNEL MAPPING ON DYSER 23

4.3 Kernel Mapping on DySER

As discussed previously, an N ×N DySER overlay incorporates N2 Tiles in the tile

fabric and 2N + 1 switches in the edge fabric. Hence, theoretically a 6 × 6 DySER

overlay is the largest that can fit on the Zynq-7020. Fig. 4.7 shows the mapping of

kernels on DySER, previously described in [7]. A fixed configuration 5 × 5 FU array

can be used to implement all of the compute kernels without flexible routing. This

consumes 5.5% LUTs, 2.7% FFs, 6.9% Slices and 11.4% DSP blocks, while a fully

functional 5× 5 DySER overlay consumes 63.7% LUTs, 12.6% FFs, 92.4% Slices and

11.4% DSP blocks.

Figure 4.7: Mapping of Kernels on DySER Architecture.[7]

We assess the overhead of the programmability in a similar way to [5]. The

programmability overhead is the ratio of the DySER overlay resources to those of the

fixed configuration array of FUs that comprise it. Hence, a 5× 5 DySER overlay can

be used to implement all of the compute kernels with a programmability overhead of

11× more LUTs, 5× more FFs, and 13× more Slices.

24CHAPTER 4. ANALYSIS OF DYSER AS ANOVERLAYARCHITECTURE ON ZYNQ

4.4 Summary

We have presented an enhancement to the DySER coarse-grained overlay that uses

the Xilinx DSP48E1 primitive to implement most of the functional unit, improving

area and performance. We show an improvement of 2.5× in frequency and a reduction

of 25% in area compared to the original functional unit design. We have shown that

a more architecture-oriented approach to designing the FU enables it to be small and

fast and exposes the significant overhead of the flexible routing. As a result the routing

for the coarse grained array becomes the limiting factor. An area and performance

efficient interconnect architecture is necessary for improving the performance of the

overlays. Another way to build area efficient overlay is to use a linear array of time-

multiplexed functional units. In the next chapter, we present an overlay designed

using a linear array of time-multiplexed functional units which can be used to host

arbitrary size DFG of a compute kernel considering N≥D holds true, where N is

the number of functional units in the overlay and D is the depth of the DFG. The

proposed overlay would enable us to explore resource sharing for larger computer

kernels.

Chapter 5

Overlay based on

Time-multiplexed FU

In the previous chapter, We have discussed DySER overlay and shown that a more

architecture-oriented approach to designing the FU enables it to be small and fast and

exposes the significant overhead of the flexible routing. Most of the existed overlays

(including DySER) are spatially configured, having fixed configuration for a kernel

during execution. In other words, each functional unit has fixed operation during

execution and the required number of functional units depends on the number of

operations in the kernel. One way to build area efficient overlay is to time-multiplex

the functional units among kernel operations. In order to take advantage of this ap-

proach, we design a new overlay architecture using a linear array of time-multiplexed

functional units which can be used to host arbitrary size DFG of a compute kernel

considering N≥D holds true, where N is the number of functional units in the overlay

and D is the depth of the DFG. We execute kernel operations in a stage of ASAP

scheduled DFG on one time-multiplexed FU. Hence, each stage gets mapped to one

FU and after performing all operations in the stage on the FU, the processed data

gets transferred to the next FU via FIFO. Compared to a spatially configured over-

lay where II is generally one, in the proposed overlay, DFG width determines the II

for the DFG execution. The proposed overlay would enable us to explore resource

sharing for larger computer kernels at the cost of reduced II.

25

26 CHAPTER 5. OVERLAY BASED ON TIME-MULTIPLEXED FU

5.1 Time-multiplexed FU based on DSP Block

We first present the time multiplexed functional unit to execute the kernel operations

sequentially by exploiting cycle by cycle reconfiguration capability of the DSP block.

The design of the FU is inspired by iDEA[8] processor as shown in Fig. 5.1. The

processor has a basic, yet comprehensive enough, instruction set for general purpose

applications. By limiting the addition of hardware modules such as branch prediction,

control complexity was minimized in iDEA processor. iDEA processor runs at about

double the frequency of MicroBlaze while occupying around half the area.

Figure 5.1: iDEA processor block diagram.[8]

There are, in total, 6 stages in the processor execution pipeline with a latency

of 1-clock cycle per stage. The full 3-stage pipeline is enabled for the DSP48E1

primitive which is used as a high speed execution engine. The DSP48E1 primitive

has a pre-adder, a multiplier, an ALU, four input ports for data, and one output port

P, as shown in Fig. 5.2, and can be configured to support various operations such

as multiply, add, sub, bitwise OR, etc. These functions are determined by a set of

dynamic control inputs that are wired to configuration registers.

5.1. TIME-MULTIPLEXED FU BASED ON DSP BLOCK 27

MULT
25x18

Dual B
Register

Dual A, D and
Pre-Adder

C

M

X

Y

Z

INMODE

CARRYIN

OPMODE

CARRYINSEL

B

A

D

C

BCOUT* ACOUT*

0

1
0

0

BCIN* ACIN* PCIN* MULTSIGNIN*CARRYCASCIN*

CREG/C
Bypass/Mask

PATTERNDETECT

PATTERNBDETECT

P

CARRYOUT

PCOUT*MULTISIGNOUT*

CARRYCASCOUT*

ALUMODE
P

P

P

P

48

18

30

25

48

5

48

7

3

18

30

4 1

18

18 30

18

A:B

30

48

25

17-bit Shift

17-bit Shift

4

4

48

* These signals are dedicated routing paths internal to the DSP48E1 column. They are not accessible via fabric routing resources.

Figure 5.2: DSP48E1 architecture.

5.1.1 Architecture of Proposed Functional Unit

The main components of the FU are DSP block, a small instruction memory, input

map logic for DSP block and a register file as shown in Figure 5.3. As the FU

needs to work as a data flow processing element, data memory is not required in the

functional unit. According to the figure, the 24-bit instruction memory is divided

into 4 sections: operation code, destination address, source address of first operand

and source address of second operand. In the operation code, the most significant

bit (MSB) determines whether the output of FU or the immediate data should be

stored into the register file, while the following 5 bits are used to define up to 32

different computational operations. Currently, there are 6 operations in total, such

as ADD, SUB, MUL, ADDI, SUBI, and MULI. The regular inputs of DSP48E1 are

coming from the register file and the immediate input is coming from the instruction

memory directly. Since there is only one FU to process all the operations of the

kernel, instructions need to be executed one by one and the result of each step should

be restored into the register file. As we enable all the built-in registers inside the

DSP48E1, it takes 3 cycles to finish each instruction.

28 CHAPTER 5. OVERLAY BASED ON TIME-MULTIPLEXED FU

DSP48E1

Decoder

Dst Addr Src1 Addr
Src2 Addr

(Image Data)

B

A

C
Src1

Src2

0

INMODE
ALUMODE
OPMODE

…...

Register File

Input Pipe

Instruction Memory

Dst

Input Map

Output Pipe

Figure 5.3: Time-multiplexed FU Block Diagram.

5.1.2 Kernel Execution

To verify whether the design of the FU works properly and test its performance, we

write the test bench for each kernel, and specially show the instructions of kernel

FFT in Figure 5.4.

1 // ----------------------------- FFT ------------------------------//

2 #20; inst = 24'b100000_000000_000000_000001; //Ldi R0, 1

3 #20; inst = 24'b100000_000001_000000_000011; //Ldi R1, 3

4 #20; inst = 24'b100000_000010_000000_000101; //Ldi R2, 5

5 #20; inst = 24'b100000_000011_000000_000111; //Ldi R3, 7

6 #20; inst = 24'b100000_000100_000000_001001; //Ldi R4, 9

7 #20; inst = 24'b100000_000101_000000_001011; //Ldi R5, 11

8 #20; inst = 24'b000011_000110_000001_000000; //Mul R6, R1, R0

9 #20; inst = 24'b000011_000111_000010_000000; //Mul R7, R2, R0

10 #20; inst = 24'b000011_001000_000011_000001; //Mul R8, R3, R1

11 #20; inst = 24'b000011_001001_000011_000010; //Mul R9, R3, R2

12 #20; //inst = 24' b000000_000000_000000_000000; //NOP

13 #20; inst = 24'b000010_001010_001000_000111; //Sub R10 , R8 , R7

14 #20; inst = 24'b000001_001011_001001_000110; //Add R11 , R9 , R6

15 #20; //inst = 24' b000000_000000_000000_000000; //NOP

16 #20; inst = 24'b000001_001100_000100_001010; //Add R12 , R4 , R10

17 #20; inst = 24'b000010_001101_000100_001010; //Sub R13 , R4 , R10

18 #20; inst = 24'b000001_001110_001011_000101; //Add R14 , R11 , R5

19 #20; inst = 24'b000010_001111_001011_000101; //Sub R15 , R11 , R5

Figure 5.4: Snapshot of Test Bench for Kernel FFT

As shown in Figure 5.4, there are 18 instructions to be executed in this kernel,

including 2 extra NOPs. These NOPs are added due to the fact the an instruction

takes 3 cycles to finish. If the previous processing is still running, i.e., the required

register is not ready for current instruction. It should keep waiting until there are

5.1. TIME-MULTIPLEXED FU BASED ON DSP BLOCK 29

valid data in the registers. While the system can only process instructions in series,

it is time consuming to use only one FU to implement the kernel.

(a)

(b)

Figure 5.5: Simulation Results of kernel execution on FU

Simulation results for this particular kernel is displayed in Figure 5.5. Assuming

that the host is providing data to the input pipe at every clock cycle, ready signal is

used to control the read enable signal of the input pipe. Therefore, different sets of

inputs are hold in the FIFO when the functional unit is occupied with the processing

of the previous set of input, and the next set of input is allowed to enter the functional

unit when it is in idle state. As we can see from the simulation results, result of the

kernel for two consecutive input sets is generated correctly at clock cycle 22 and 40,

respectively. It means the II of the kernel execution is 18, which limits the throughput.

Hence we design a linear array of these time-multiplexed functional units which is

discussed in the next section.

30 CHAPTER 5. OVERLAY BASED ON TIME-MULTIPLEXED FU

5.2 Linear Array of Functional Units as Overlay

Data

Valid

TPFU

Input Pipe

Output Pipe

Valid

Data
Inter Pipe 1

Inter Pipe 2

TPFU

Data

Valid

TPFU

Valid

Data

Valid

Data

Data

Valid

·····

Valid

Data

Data

Valid

Data

Valid

Figure 5.6: Linear Array of time-multiplexed FUs

5.2.1 Architecture

Although a single time-multiplexed functional unit works properly with the appropri-

ate handshake between input pipe and computational logic, its performance is limited

by the serial processing and extra inserted NOPs. To resolve this issue, we design a

linear array of these time-multiplexed functional units (as shown in Figure 5.6) where

each FU can process one complete stage of a ASAP scheduled DFG of the kernel.

Stage 1

Stage 2

Stage 3

Figure 5.7: Nodes Clustering for Kernel FFT

In this design, one FU is responsible for executing one complete stage instead

of one node of the data flow graph (DFG). linear array of these FUs can be used

to host arbitrary size DFG of a compute kernel considering N≥D holds true, where

N is the number of functional units and D is the depth of the DFG. Compared

5.2. LINEAR ARRAY OF FUNCTIONAL UNITS AS OVERLAY 31

to a spatially configured overlay where II is generally one, in the proposed overlay,

DFG width determines the II for the DFG execution. Hence the performance is no

longer limited by the No. of operations, but it is limited by the DFG width. In

other words, the required number of functional units and the II for a kernel can be

determined by the depth and width of the ASAP scheduled DFG, respectively. As

shown in Figure 5.7, stage 1 clusters all the operations in N12, N11, N8, and N14

which represent multiplying N5 with N1, multiplying N5 with N4, multiplying N1

with N2, and multiplying N4 with N2.

(a)

(b)

Figure 5.8: Simulation Results of kernel execution on linear array

32 CHAPTER 5. OVERLAY BASED ON TIME-MULTIPLEXED FU

5.2.2 Kernel Execution

Take kernel FFT for example, three FUs are required to execute different instructions

in parallel according to its DFG, and the simulation results generated by ModelSim

are displayed in Figure 5.8. The four outputs of this kernel are generated one by one

from clock cycle 46, while next series of outputs are valid from clock cycle 54, which

means the II is only 8 in this case. Noticed that if this kernel is implemented by the

single FU, the No. of instructions would be 18 in total, which indicates a much higher

value of initial interval.

5.3 Summary

In this chapter, a novel overlay architecture based on linear array of time-multiplexed

functional units is proposed for kernel execution. Compared to spatially configures

overlays, proposed overlay is much more flexible as the FUs can execute one complete

stage of a ASAP scheduled DFG. Thus, the required number of FUs is reduced at the

cost of processing throughput since spatially configured (SC) overlays can provide II

of one. We compare II of kernel execution for different architecture as shown in Table

5.1.

Table 5.1: II comparison for different architectures

Kernels II for II for II for

single FU proposed overlay SC overlay

fft 18 8 1

mm 39 17 1

radar 19 11 1

spmv 31 17 1

Chapter 6

Experiments

6.1 Introduction

In this chapter, we present experiments for interfacing accelerators (HLS generated

RTL of kernel or overlay) within Zynq using Xillybus and evaluating the performance

of HLS generated fully parallel and pipelined RTL implementations, ARM processor

and the proposed overlay for a set of compute kernels. The goal is to measure the

performance gap between the accelerator and the ARM processor.

We first describe the infrastructure of Xillybus followed by the characterization.

For characterization purpose, we use a loopback application which writes an array of

data to Xillybus pipe and reads it back. Considering that the operating frequency is

100 MHz, the theoretical bound of write and read bandwidth is 100 MS/s (Million

samples per second). Hence the theoretical bound on round trip bandwidth would

be 50 MS/s. Xillybus allows to generate multiple input/output streaming interfaces

sharing the bandwidth of ACP interface (configured as 32-bit interface running at

100 MHz) on the Zynq platform. We verified it by creating two interfaces for write

and read (using Xillybus IP core factory) and measured the round trip time. We

observed that the ACP interface on the Zynq platform can be time-multiplexed among

multiple streaming interfaces, since there is only one ACP interface available. Hence

the compute kernels requiring multiple input and output interfaces have to share

the ACP interface in a time-multiplexed fashion which can limit the performance of

33

34 CHAPTER 6. EXPERIMENTS

the accelerator. A fully pipelined accelerator (running at 100 MHz) having N input

interfaces can process 100 M-Samples per second, considering no time sharing of

I/O interfaces. In this chapter, we generate RTL implementation of compute kernels

(having multiple I/O interfaces) using Vivado HLS, integrate the kernels within Zynq

using Xillybus and measured the overall performance of the kernel execution on the

platform. We compare the performance of HLS generated fully parallel and pipelined

accelerators with ARM processor for a set of kernels.

6.2 Xillybus

There are various solutions for interfacing accelerators with a host processor, such as

some PCle based solutions (DyRACT FPGA) and some AXI based solutions (Xilly-

bus). DyRACT is a DMA based streaming architecture which enable high through-

put data transfer between host and accelerator. By combining high data throughput

and fast reconfiguration, it becomes feasible to implement software applications with

dynamically reconfigurable hardware accelerators. However, DyRACT currently sup-

ports PCIe based platforms.

Figure 6.1: Xillybus Simplified Block Diagram

Xillybus is a portable, simple to use DMA based data transfer solution which pro-

vides a simple abstraction of communication interfaces on Zynq. It offers a convenient

way for data acquisition or accelerator interfacing. In the demo bundle, Xillybus IP

core and drivers are offered, so that no more than basic programming skills and logic

6.2. XILLYBUS 35

design skills are needed to complete the integration of an accelerator within plat-

form. It can be used within Linux or Windows. In our case, all the experiments with

Xillybus are running in Linux environment.

As shown in Figure 6.1, our application logic (e.g. HLS generated kernel or an

Overlay) is connected to the Xillybus IP core through customizable standard FIFOs

with empty/full signals and write/read enable signals to facilitate the so-called easy

data transport. The application logic grab inputs through the input FIFOs which are

connected with Xillybus interface when the FIFO is not empty, after processing then

fill the result data into the output FIFOs. Then Xillybus IP core will automatically

detect that data is available for transmission in the FIFOs other end. Soon, the data

in the FIFO can be sent to the host, making it visible by the host program.

On the host side, each FIFO stream is mapped to a pipe-like device file by a

common Xillybus driver. When executing the device file (we called pipe), data flows

smoothly between the file handler opened by the host program and the FIFOs. The

Xillybus IP core provides platform dependent clock for the design. Xillybus is very

simple-to-use as if there is a requirement of modifying accelerator connections or

the accelerator itself, bitstream can be replaced just by uploading the bitstream on

a specific file location in root file system and rebooting the system. Then all the

connections and the accelerator can be changed immediately after reboot. There

is also an online interface provided by the Xillybus team called IP Core Factory

which can be used to customize and download user-defined Xillybus IP based on

specific requirements. A virtually arbitrary number of pipes, direction, data width

and expected bandwidth can be defined, having attributes best meeting the needs of

a specific application.

The FPGA demo bundle for Zynq (shown in Fig. 6.2) is used as a base for all of our

experiments. The Demo bundle contains Integrated Software Environment (ISE) and

Xilinx Platform Studio (XPS) project, boot.bin and device tree files. Initially the net

list is generated using XPS project file. The FIFO IP cores provided are regenerated

in ISE to obtain all the required netlists. The bit stream is generated from top level

HDL file and then downloaded to the FPGA. Demo bundle contains a default set of

device nodes (single in and single out). The number of nodes can be increased or

36 CHAPTER 6. EXPERIMENTS

DDR
A
P
U

DDR
Controller

Hard DMA

HP PortGP Port

Central
Interconnect

M M S S S S S S

PS

Xillybus Core

AXI4

PL-Memory
Interconnect

ACP Port

S

S
C
U

L
2

S

M

FIFO FIFO
Acceler

ator

Zedboard

Xillydemo.v

Xillybus.v

Figure 6.2: Xillybus infrastructure for Zedboard

customized as per design requirements through IP Core Factory. There are two type

of nodes available: stream and memory mapped. The default design consists of FIFOs

connected in a loop back manner for testing. The application logic can be inserted

in between to meet the requirements. Device nodes can be customized and added

as per the design. The default design consists of one HP port for VGA and ACP

port for Xillybus IP. The Xillybus implementation consists of a host program which

runs on the processor, synthesized function which runs on the reconfigurable fabric

and wrapper function which acts as an interface between processor and reconfigurable

fabric. The synthesized function is abstracted from the user and data is passed to

and from it using API. In order to exploit the parallelism present in hardware, one

thread can send data from the processor as soon as it is available and another thread

can collect the data back.

6.3. XILLYBUS CHARACTERIZATION 37

6.3 Xillybus Characterization

6.3.1 Single pipe loopback

First experiment we did for Xillybus characterization is the single pipe loopback. This

is provided in the Xillybus initial demo buddle for Zynq, therefore we can directly use

the original file to generate the bit stream and download to the FPGA. The initial

Demo bundle contains FIFOs connected in a loopback fashion thereby causing the

Xillybus core to act both as a source and sink. As shown in Figure 6.3, the input

(user w write) and output (user r read) pipes connect to the same FIFO to form a

loopback circuit.

1 // 32-bit loopback

2 fifo_32x512 fifo_32

3 (

4 .clk(bus_clk),

5 .srst(!user_w_write_32_open && !user_r_read_32_open),

6 .din(user_w_write_32_data),

7 .wr_en(user_w_write_32_wren),

8 .rd_en(user_r_read_32_rden),

9 .dout(user_r_read_32_data),

10 .full(user_w_write_32_full),

11 .empty(user_r_read_32_empty)

12)

13
14 assign user_r_read_32_eof = 0;

Figure 6.3: Xillybus 32-bit loopback FIFO connection

Figure 6.4: Xillybus initial demo bundle block diagram

38 CHAPTER 6. EXPERIMENTS

Figure 6.4 shows the structure of the Demo Bundle. Xillybus.v build up the inter-

face between Xillybus IP core and ARM processor core by using AXI bus. And the

top level Xillydemo.v wrapper file present in the Xillybus bundle is used to integrate

our application logic. In this specific case, there is no application logic involved, data

from Xillybus IP core will just loopback through a FIFO. After the bit stream is

download and configured on the FPGA, the system now is ready to go. We need

a host program to do the round trip time measurement. The single thread code is

shown in Figure 6.5.

For the single thread program, if large amount of data is required for transmission,

the reading operation will wait until all the data is written. Therefore, there is a

drawback of the long communication latency. In order to explore the best use of

Xillybus IP core, we use multithreading to improve its performance by implementing

parallelism. In order to take full advantage of the capabilities provided by threads, we

are using Pthreads (POSIX threads) which is a light weight, efficient communications

and data exchange standard. The multithread code is shown in Figure 6.6.

Table 6.1: Single Pipe Loopback results

Single-threading Multi-threading

No. Samples Round Trip Troughput Round Trip Troughput
Time(us) (KS/s) Time(us) (KS/s)

256 129 1984.5 811 315.7
512 129 3969.0 811 631.3
1K 129 7938.0 811 1262.6
2K 147 13932.0 848 2415.1
4K 166 24674.7 848 4830.2
8K 258 31751.9 903 9072.0
16K 406 40354.7 1014 16157.8
32K 756 43343.9 1235 26532.8
64K 1567 41822.6 1880 34859.6
128K 2820 46479.4 3207 40870.6
256K 5714 45877.5 5861 44726.8
512K 11336 46249.8 10912 48046.9
1M 22727 46137.9 15907 65919.2

From the results listed in table 6.1, it is clear that for small amount of data stream-

ing, the Xillybus performance is poor which means that communication overhead is

high. But for large amount of data, its performance is close to theoretical limit (50

MS/s). There is a possibility of writing and reading the pipe at the same time by

6.3. XILLYBUS CHARACTERIZATION 39

1 #include <stdio.h>

2 #include <unistd.h>

3 #include <stdlib.h>

4 #include <errno.h>

5 #include <sys/types.h>

6 #include <sys/stat.h>

7 #include <fcntl.h>

8 #include <string.h>

9 #include <pthread.h>

10 #include <stdint.h>

11 #include <sys/time.h>

12 int fdr32 = 0;

13 int fdw32 = 0;

14 int N = 0;

15 int i;

16 int *array_input;

17 int *array_hardware;

18 struct timeval tstart, tend;

19 ssize_t t1,t2, temp;

20 int main(int argc, char *argv[]) {

21 fdr32 = open("/dev/xillybus_read_32", O_RDONLY);

22 fdw32 = open("/dev/xillybus_write_32", O_WRONLY);

23 N = atoi(argv[1]);

24 if (fdr32 < 0 || fdw32 < 0) {

25 perror("Failed to open devfiles");

26 exit(1);

27 }

28 //allocate memory

29 array_input = (int*) malloc(N*sizeof(int));

30 array_hardware = (int*) malloc(N*sizeof(int));

31 // generate inputs and prepare outputs

32 for(i=0; i<N; i++){

33 array_input[i] = i;

34 array_hardware[i] = 0;

35 }

36 //Measure the excution time

37 gettimeofday(&tstart, NULL);

38 t1=write(fdw32, array_input, sizeof(int)*N);

39 temp = write(fdw32, NULL, 0);

40 t2= read(fdr32,array_hardware, sizeof(int)*N);

41 gettimeofday(&tend, NULL);

42 printf("Execution time is %f us\n\r", (double)1000000*(tend.tv_sec-tstart.tv_sec)+(tend.

tv_usec-tstart.tv_usec));

43 return 0;

44 }

Figure 6.5: Xillybus Single threading Code Example

using separate threads in software for write and read. In this case, the theoretical

bound on round trip bandwidth would be 100 MS/s. From the highlight red results,

multi-threading shows its benefit only when the data size is bigger than 512K because

of the thread creation time overhead.

40 CHAPTER 6. EXPERIMENTS

1 //(include the same head files)

2 define NTH 2

3 int fdw32 = 0;

4 int fdr32 = 0;

5 int N = 0;

6 int i;

7 int *array_input;

8 int *array_hardware;

9 struct timeval tstart,tend,tv1, tv2;

10 ssize_t w1,w2,e1,e2,r1,r2;

11 void *sample_1(void *arg);

12 void *sample_2(void *arg);

13 void *sample_1(void *arg) {

14 w1 = write(fdw32, array_input, sizeof(int)*N);

15 e1 = write(fdw32, NULL, 0);

16 pthread_exit(NULL);

17 }

18 void *sample_2(void *arg) {

19 r1 = read(fdr32, array_hardware, sizeof(int)*N);

20 pthread_exit(NULL);

21 }

22 int main(int argc, char *argv[]) {

23 fdw32 = open("/dev/xillybus_write_32", O_WRONLY);

24 fdr32 = open("/dev/xillybus_read_32", O_RDONLY);

25 N = atoi(argv[1]);

26 if (fdw32 < 0 || fdr32 < 0) {

27 perror("Failed to open devfiles");

28 exit(1);

29 }

30
31 //allocate memory

32 array_input = (int*) malloc(N*sizeof(int));

33 array_hardware = (int*) malloc(N*sizeof(int));

34 // generate inputs and prepare outputs

35 for(i=0; i<N; i++){

36 array_input[i] = i;

37 array_hardware[i] = 0;

38 }

39 pthread_t tid[NTH];

40 int loop = 0;

41 int value[NTH] = {1,2};

42 /** Creation of threads*/

43 pthread_create(&tid[0], NULL, &sample_1, &value[0]);

44 pthread_create(&tid[1], NULL, &sample_2, &value[1]);

45
46 /** Synch of threads in order to exit normally*/

47 gettimeofday(&tstart, NULL);

48 for(loop=0; loop<NTH; loop++) {

49 pthread_join(tid[loop],NULL);

50 }

51 gettimeofday(&tend, NULL);

52 printf("%f\n\r", (double)1000000*(tend.tv_sec-tstart.tv_sec)+(tend.tv_usec-tstart.tv_usec));

53 return EXIT_SUCCESS;

54 }

Figure 6.6: Xillybus Muilti threading Code Example

6.3. XILLYBUS CHARACTERIZATION 41

6.3.2 Double Pipe Loopback

Figure 6.7: Xillybus Double Pipe Loopback block diagram

As mentioned earlier, Xillybus allows to generate multiple input/output streaming

interfaces sharing the bandwidth of ACP interface (configured as 32-bit interface

running at 100 MHz) on the Zynq platform. We verified it by creating two interfaces

for write and read (using Xillybus IP core factory) and measured the round trip time

in order to see the impact of writing/reading to multiple pipes. We performed this

experiment due to the reason that most of the kernels require multiple input and

output interfaces. The block diagram of double pipe loopback is shown in Figure 6.7.

Based on the results listed in Table 6.2, we can see that the bandwidth of the ACP

interface on the Zynq platform can be shared in a time-multiplexed manner among

multiple streaming interfaces. Multi-threading can achieve better performance when

data size is bigger than 128K. The main observation from this experiment is that

the compute kernels requiring multiple input and output interfaces have to share the

bandwidth of the ACP interface in a time-multiplexed fashion which would limit the

performance of the accelerator.

42 CHAPTER 6. EXPERIMENTS

Table 6.2: Double Pipe Loopback results

Single-threading Multi-threading

No. Samples Round Trip Troughput Round Trip Troughput
Time(us) (KS/s) Time(us) (KS/s)

256 203 2522.2 811 631.3
512 203 5044.3 811 1262.6
1K 203 10088.7 848 2415.1
2K 240 17066.7 848 4830.2
4K 295 27769.5 977 8384.9
8K 424 38641.5 1106 14813.7
16K 737 44461.3 1327 24693.3
32K 1530 42834.0 1880 34859.6
64K 2728 48046.9 2986 43895.5
128K 5714 45877.5 5456 48046.9
256K 11354 46176.5 10838 48375.0
512K 22893 45803.3 20736 50567.9
1M 45435 46157.2 33343 62896.3

6.4 Xillybus for interfacing HLS generated kernels

In order to integrate an accelerator in the Xillybus system, we need to customize

specific Xillybus IP core online according to the accelerator requirement in terms of

number of I/O interfaces, bit-width etc. After that we need to insert our logic in the

top level module with appropriate connections.

Xillybus core provides stream data to input FIFO which connects to a hardware

accelerator (”Application logic” in the diagram) as shown in Figure 6.8. Accelerator

provides the processed data to output FIFO which connects again to Xillybus core.

The following steps are involved in addition of your custom application logic (e.g.

hardware accelerator) to the Xillybus: The FPGA demo bundle for Zynq is used as a

base. To customize your own Xillybus IP core online at Xillybus IP Core Factory with

specific No. of pipes, direction, data width and expected bandwidth. Then change

the initial Xillybus IP core with your custom core. Insert the application logic at the

top level module and place the input/output FIFOs between the application logic

and Xillybus IP core. After these modification, then just repeat the very same thing

like loopback experiment to generate the bit stream and download to FPGA. The

application logic can be described in a high level language like C/C++ which can

be synthesized by using Vivado HLS tool to obtain its HDL description. The RTL

code is highly optimized and fully pipelined. This application logic is instantiated as

6.4. XILLYBUS FOR INTERFACING HLS GENERATED KERNELS 43

a component within the Xillybus provided top level wrapper file, xillydemo.v. The

logic is inserted in the path by breaking the loopback connection between the FIFOs.

Figure 6.8: Multiple I/O Accelerator integrated in Xillybus system

Table 6.3: No. of I/O for all the benchmarks

benchmarks conv fft kmeans mm mriq radar spmv stencil

No. of inputs 24 6 16 16 11 10 16 15
No. of outputs 8 4 1 1 2 2 2 2

Data Width 16 16 16 16 16 16 16 16

The table 6.3 shows the number of input/outputs for all the benchmarks. We

first customize the Xillyus IP core with 16-bit data width pipes which match the

data width of the benchmarks input and output. This kind of integration is very

straight-forward as each input/output correspond to one Xillybus pipe. For example,

for FFT, it needs 6 16-bit input pipes and 4 16-bit output pipes. But we found there

is a limit on the number of Xillybus pipes, the 16-bit pipe solution only works for

kernels having less I/O ports, such as FFT, mriq and radar. So we moved to another

solution which use 32-bit Xillybus pipes and also 32-bit FIFOs in between (as shown

44 CHAPTER 6. EXPERIMENTS

in figure 6.9 and 6.10), where each 32-bit pipe can carry two 16-bit input data. After

the FIFO, the data bundle will branch to each input port of the accelerator. Similarly,

two 16-bit output processed by the accelerator will be combine as a 32-bit word and

sent to the output FIFO, then finally to the Xillybus IP core.

Figure 6.9: 32-bit input pipe connection

Figure 6.10: 32-bit output pipe connection

For this method, we can save the number of Xillybus pipes by half and improve the

PS-PL communication efficiency as within the same amount of time, the transferred

data is doubled. The test results are shown in the table 6.4 and 6.5.

6.5. PERFORMANCE EVALUATION 45

6.5 Performance evaluation

A fully pipelined accelerator (running at 100 MHz) having N input interfaces can

process 100 M-Samples per second, considering no time sharing of I/O interfaces.

Since we are using Xillybus and sharing the bandwidth of ACP interface among kernel

I/O interfaces, we expect significantly reduced performance from the accelerator.

Table 6.4: Round Trip Time in us For Kernels intergrated with Xillybus 1

fft(3w2r) kmeans(8w1r) mm(8w1r) mriq(6w1r)
No. Samples Single- Multi- Single- Multi- Single- Multi- Single- Multi-

thread thread thread thread thread thread thread thread
256 258 940 424 1161 424 1161 332 977
512 258 940 424 1137 442 1143 350 977
1K 276 940 479 1161 479 1161 387 977
2K 313 977 627 1106 627 1124 516 977
4K 442 1032 922 1106 922 1198 737 1069
8K 682 1069 1567 1493 1567 1493 1235 1327
16K 1235 1153 2857 2304 2857 2304 2212 1788

Table 6.5: Round Trip Time in us For Kernels intergrated with Xillybus 2

radar(5w1r) spmv(8w1r) stencil(8w1r)
No. Samples Single- Multi- Single- Multi- Single- Multi-

thread thread thread thread thread thread
256 295 811 424 1161 424 1143
512 295 811 442 1161 442 1180
1K 350 1006 479 1161 461 1161
2K 442 1132 627 1161 627 1161
4K 627 1235 903 1198 922 1198
8K 1032 1327 1567 1272 1567 1493
16K 1880 1696 2894 2304 2857 2304

Table 6.6: Results processed by ARM processor on Linux

Round Trip Time in us
No. Samples

fft kmeans mm mriq radar spmv stencil

1K 74 166 129 74 129 74 74
2K 148 332 277 166 258 148 129
4K 276 645 553 332 516 276 258
8K 553 1272 1124 663 1032 571 516
16K 1088 2543 2212 1346 2119 1143 1032

The results are shown in the table 6.4 and 6.5. The performance is not satisfactory

due to the large overhead of communication, especially for large amount of data.

For the data size of 16K, multi-threading slightly improves the performance but for

46 CHAPTER 6. EXPERIMENTS

small data size, multi-threading results in worst performance. We also evaluate the

performance of ARM processer for the kernels as shown in table 6.6. Fig. 6.11 shows

the linear increase in execution time (fft and kmeans executing on ARM processor)

as we increase the number of samples. Lower bound on execution time is shown

for a fully pipelined accelerator interfaced with the host processor (considering zero

communication overhead) running at 100 MHz. Fig. 6.11 also shows the execution

time (fft and kmeans executing on FPGA fabric and interfaced within Zynq using

Xillybus) as we increase the number of samples. It is clear from the graph that

the achieved performance is same for ARM processor and accelerator due to the

communication overheads involved in the Xillybus infrastructure. In fact, for small

number of samples, processor can perform the operations faster than the Xillybus

interfaced accelerator. In summary, Xillybus does not provide a good solution for

accelerating kernels requiring multiple I/O interfaces. The performance gap can be

reduced by developing high speed communication infrastructure on Zynq platform.

Then only it will make sense to integrate proposed overlay within Zynq.

103 104 105 106

100

101

102

103

104

105

106

Number of Input Samples

E
x
ec

u
ti

on
T

im
e

in
u
s

fft-ARM
fft-HLS-Xillybus

kmeans-ARM
kmeans-HLS-Xillybus

Lower bound on execution time

Figure 6.11: Execution time analysis

Chapter 7

Conclusions and Future Work

This chapter concludes and summarizes this report. Furthermore, in this chapter we

discuss future research directions in detail.

7.1 Conclusions

This report presented an analysis of DySER architecture as an overlay on the Xilinx

Zynq and proposed an area efficient overlay based on linear array of time-multiplexed

functional units. Use of Xillybus infrastructure provided the base for integrating ac-

celerators within the Zynq Platform. This work included developing an understand-

ing of hardware acceleration concept, overlay architectures and software-hardware

communication on a hybrid computing platform (the Xilinx Zynq). Experiments

were designed to analyze the performance of DSP block based functional unit for

DySER, verify the functionality of time-multiplexed functional unit and linear array

of these units, characterize the Xillybus infrastructure, evaluate the performance of

HLS generated RTL implementations and the ARM processor for the execution a set

of compute kernels. A set of RTL implementations were developed for the DSP based

spatially configured functional unit (compatible with DySER), time-multiplexed func-

tional unit and also for the linear array of functional units. RTL implementations of

kernels were also generated using HLS tool which were then connected within Zynq

via Xillybus. Before we could begin implementing overlay based on time-multiplexed

47

48 CHAPTER 7. CONCLUSIONS AND FUTURE WORK

functional units, an in-depth knowledge of the current trends and previous efforts in

the field of overlay architectures were studied to compare and contrast their features.

An analysis of DySER Architecture as an Overlay on the Xilinx Zynq was pre-

sented in chapter 4. An enhancement to the DySER coarse-grained overlay was

presented that uses the Xilinx DSP48E1 primitive to implement most of the func-

tional unit, improving area and performance. We show an improvement of 2.5× in

frequency and a reduction of 25% in area compared to the original functional unit

design. We have shown that a more architecture-oriented approach to designing the

FU enables it to be small and fast and exposes the significant overhead of the flexible

routing. The key finding from this chapter is that an area and performance efficient

interconnect architecture is necessary for improving the performance of the overlays.

One approach to improve the area efficiency was shown in chapter 5 by proposing an

overlay based on linear array of time-multiplexed functional units by exploiting cycle

by cycle reconfiguration capability of the DSP block. The performance of HLS gener-

ated RTL implementations and the ARM processor was evaluated for the execution

of a set of compute kernels and results were presented in chapter 6. Furthermore, the

approach presented in this report facilitates high level application developers to use

area-efficient overlays for hardware acceleration of compute kernels.

7.2 Future work

Some of the main future research directions are routing network designs for area

overhead reduction, automated mapping of kernels on time-multiplexed functional

unit based overlay, integration of overlay with ARM processor using high performance

communication interfaces. We describe these directions in detail as follows:

� Area efficient routing network architectures for DySER overlay: The

area overheads of the DySER can be reduced by carefully designing the routing

network architecture. Some of the possible choices are multistage switching

networks, hierarchical routing network and omega network etc.

� Automated mapping of kernels on time-multiplexed functional unit

based overlay: To generate instruction for each FU in the overlay architecture

7.2. FUTURE WORK 49

in the current version, the user has to manually write the instructions for each

FU based on the kernel. A mapping tool can be developed for automated

mapping of kernels on time-multiplexed functional unit based overlay.

� Integration of accelerators with ARM processor using high perfor-

mance communication interfaces: Integration of accelerators (HLS gener-

ated kernels or overlay) with a host processor using high performance commu-

nication interfaces is crucial for overall application acceleration.

Finally, with these initiatives we hope to develop area efficient overlay architec-

tures based on time-multiplexed functional units where compute kernels can be com-

piled at runtime within a platform in which overlay can be interfaced to the host

processor using high performance communication interfaces.

Bibliography

[1] Venkatraman Govindaraju, Chen-Han Ho, Tony Nowatzki, Jatin Chhugani, Na-

dathur Satish, Karthikeyan Sankaralingam, and Changkyu Kim. Dyser: Unifying

functionality and parallelism specialization for energy-efficient computing. IEEE

Micro, 32(5):38–51, 2012.

[2] A. K. Jain, K. D. Pham, J. Cui, S. A. Fahmy, and D. L. Maskell. Virtualized

execution and management of hardware tasks on a hybrid ARM-FPGA platform.

Journal of Signal Processing Systems, 77(1–2):61–76, Oct. 2014.

[3] Xillybus Ltd. Xillybus: IP Core Product Brief. http://xillybus.com/

downloads/xillybus_product_brief.pdf.

[4] J. Coole and G. Stitt. Intermediate fabrics: Virtual architectures for cir-

cuit portability and fast placement and routing. In Proceedings of the In-

ternational Conference on Hardware/Software Codesign and System Synthesis

(CODES+ISSS), pages 13–22, October 2010.

[5] Davor Capalija and Tarek S. Abdelrahman. A high-performance overlay ar-

chitecture for pipelined execution of data flow graphs. In Proceedings of the

International Conference on Field Programmable Logic and Applications (FPL),

pages 1–8, 2013.

[6] A. K. Jain, X. Li, S. A. Fahmy, and D. L. Maskell. Adapting the DySER architec-

ture with DSP blocks as an Overlay for the Xilinx Zynq. In International Sympo-

sium on Highly-Efficient Accelerators and Reconfigurable Technologies (HEART),

2015.

50

http://xillybus.com/downloads/xillybus_product_brief.pdf
http://xillybus.com/downloads/xillybus_product_brief.pdf

BIBLIOGRAPHY 51

[7] Zachary Marzec. Detailed performance evaluation of data-parallel workloads

on the dyser prototype system. http://research.cs.wisc.edu/vertical/

papers/thesis/marzec-report.pdf.

[8] Hui Yan Cheah, Suhaib A. Fahmy, and Douglas L. Maskell. iDEA: A DSP block

based FPGA soft processor. In Proceedings of the International Conference on

Field Programmable Technology (FPT), pages 151–158, 2012.

[9] Russell Tessier, Kenneth Pocek, and Andre DeHon. Reconfigurable computing

architectures. Proceedings of the IEEE, 103(3):332–354, 2015.

[10] Andre DeHon. Fundamental underpinnings of reconfigurable computing archi-

tectures. Proceedings of the IEEE, 103(3):355–378, 2015.

[11] Stephen M Trimberger. Three ages of FPGAs: A retrospective on the first thirty

years of FPGA technology. Proceedings of the IEEE, 103(3):318–331, 2015.

[12] Greg Stitt. Are field-programmable gate arrays ready for the mainstream? IEEE

Micro, 31(6):58–63, 2011.

[13] C. Plessl and M. Platzner. Zippy - a coarse-grained reconfigurable array with

support for hardware virtualization. In Proceedings of the International Con-

ference on Application-Specific Systems, Architecture Processors (ASAP), pages

213–218, 2005.

[14] Neil W. Bergmann, Sunil K. Shukla, and Jrgen Becker. QUKU: a dual-layer

reconfigurable architecture. ACM Transactions on Embedded Computing Systems

(TECS), 12:63:1–63:26, March 2013.

[15] A. K. Jain, S. A. Fahmy, and D. L. Maskell. Efficient overlay architecture based

on DSP blocks. In IEEE Symposium on FPGAs for Custom Computing Machines

(FCCM), 2015.

http://research.cs.wisc.edu/vertical/papers/thesis/marzec-report.pdf
http://research.cs.wisc.edu/vertical/papers/thesis/marzec-report.pdf

52 BIBLIOGRAPHY

[16] Cheng Liu, C.L. Yu, and H.K.-H. So. A soft coarse-grained reconfigurable array

based high-level synthesis methodology: Promoting design productivity and ex-

ploring extreme FPGA frequency. In IEEE Symposium on Field-Programmable

Custom Computing Machines (FCCM), pages 228–228, 2013.

[17] G. Stitt and J. Coole. Intermediate fabrics: Virtual architectures for near-instant

FPGA compilation. IEEE Embedded Systems Letters, 3(3):81–84, September

2011.

[18] Jesse Benson, Ryan Cofell, Chris Frericks, Chen-Han Ho, Venkatraman Govin-

daraju, Tony Nowatzki, and Karthikeyan Sankaralingam. Design, integration

and implementation of the dyser hardware accelerator into opensparc. In In-

ternational Symposium on High Performance Computer Architecture (HPCA),

pages 1–12, 2012.

[19] A. George, H. Lam, and G. Stitt. Novo-g: At the forefront of scalable reconfig-

urable supercomputing. Computing in Science Engineering, 13(1):82–86, 2011.

[20] Katherine Compton and Scott Hauck. Reconfigurable computing: A survey of

systems and software. ACM Computing Surveys, 34(2):171–210, June 2002.

[21] O.T. Albaharna, P. Y K Cheung, and T.J. Clarke. On the viability of FPGA-

based integrated coprocessors. In IEEE Symposium on Field-Programmable Cus-

tom Computing Machines (FCCM), pages 206–215, 1996.

[22] Andrew Canis, Jongsok Choi, Mark Aldham, Victor Zhang, Ahmed Kammoona,

Jason H. Anderson, Stephen Brown, and Tomasz Czajkowski. LegUp: high-level

synthesis for FPGA-based Processor/Accelerator systems. In Proceedings of the

International Symposium on Field Programmable Gate Arrays (FPGA), pages

33–36, 2011.

[23] Yun Liang, Kyle Rupnow, Yinan Li, and et. al. High-level synthesis: productiv-

ity, performance, and software constraints. Journal of Electrical and Computer

Engineering, 2012(649057):1–14, January 2012.

BIBLIOGRAPHY 53

[24] David Bacon, Rodric Rabbah, and Sunil Shukla. FPGA programming for the

masses. Queue, 11(2):40:40–40:52, February 2013.

[25] Jason Cong, Hui Huang, Chiyuan Ma, Bingjun Xiao, and Peipei Zhou. A fully

pipelined and dynamically composable architecture of cgra. In IEEE Symposium

on FPGAs for Custom Computing Machines (FCCM), pages 9–16, 2014.

[26] Venkatraman Govindaraju, Chen-Han Ho, and Karthikeyan Sankaralingam. Dy-

namically specialized datapaths for energy efficient computing. In International

Symposium on High Performance Computer Architecture (HPCA), pages 503–

514, 2011.

[27] P.J. Bakkes, J.J. Du Plessis, and B.L. Hutchings. Mixing fixed and reconfigurable

logic for array processing. In IEEE Symposium on FPGAs for Custom Computing

Machines (FCCM), pages 118–125, 1996.

[28] T.J. Callahan, J.R. Hauser, and J. Wawrzynek. The Garp architecture and C

compiler. Computer, 33(4):62–69, April 2000.

[29] Z. Ye, A. Moshovos, S. Hauck, and P. Banerjee. CHIMAERA: a high-performance

architecture with a tightly-coupled reconfigurable functional unit. In Proceedings

of the International Symposium on Computer Architecture (ISCA), pages 225–

235, 2000.

[30] Xilinx Ltd. Zynq-7000 technical reference manual. http://www.xilinx.com/

support/documentation/user_guides/ug585-Zynq-7000-TRM.pdf, 2013.

[31] Alexander Brant. Coarse and fine grain programmable overlay architectures for

FPGAs. Master’s thesis, University of British Columbia, 2013.

[32] K. Paul, C. Dash, and M.S. Moghaddam. reMORPH: a runtime reconfigurable

architecture. In Euromicro Conference on Digital System Design, 2012.

[33] Vaughn Betz and Jonathan Rose. VPR: A new packing, placement and routing

tool for fpga research. In Field-Programmable Logic and Applications, pages

213–222, 1997.

http://www.xilinx.com/support/documentation/user_guides/ug585-Zynq-7000-TRM.pdf
http://www.xilinx.com/support/documentation/user_guides/ug585-Zynq-7000-TRM.pdf

54 BIBLIOGRAPHY

[34] Aaron Landy and Greg Stitt. A low-overhead interconnect architecture for vir-

tual reconfigurable fabrics. In Proceedings of the International Conference on

Compilers, Architectures and Synthesis for Embedded Systems, pages 111–120,

2012.

[35] G. Stitt, A. George, H. Lam, C. Reardon, M. Smith, B. Holland, V. Aggarwal,

Gongyu Wang, J. Coole, and S. Koehler. An end-to-end tool flow for FPGA-

Accelerated scientific computing. IEEE Design and Test of Computers, 28(4):68–

77, August 2011.

[36] Alexander Marquardt, Vaughn Betz, and Jonathan Rose. Timing-driven place-

ment for fpgas. In Proceedings of the International Symposium on Field Pro-

grammable Gate Arrays (FPGA), pages 203–213, 2000.

[37] Larry McMurchie and Carl Ebeling. Pathfinder: a negotiation-based

performance-driven router for fpgas. In Proceedings of the International Sympo-

sium on Field Programmable Gate Arrays (FPGA), 1995.

[38] Christopher H. Chou, Aaron Severance, Alex D. Brant, Zhiduo Liu, Saurabh

Sant, and Guy G.F. Lemieux. VEGAS: soft vector processor with scratchpad

memory. In Proceedings of the International Symposium on Field Programmable

Gate Arrays (FPGA), pages 15–24. ACM, 2011.

[39] Colin Yu Lin, Ngai Wong, and H Kwok-Hay So. Operation scheduling for fpga-

based reconfigurable computers. In Proceedings of the International Conference

on Field Programmable Logic and Applications (FPL), pages 481–484, 2009.

[40] Alexander Fell, Zoltán Endre Rákossy, and Anupam Chattopadhyay. Force-

directed scheduling for data flow graph mapping on coarse-grained reconfigurable

architectures. In Proceedings of the International Conference on ReConFigurable

Computing and FPGAs (ReConFig), pages 1–8, 2014.

[41] Liang Chen and Tulika Mitra. Graph minor approach for application mapping on

cgras. ACM Transactions on Reconfigurable Technology and Systems (TRETS),

7(3):21, 2014.

BIBLIOGRAPHY 55

[42] Rafat Rashid, J Gregory Steffan, and Vaughn Betz. Comparing performance,

productivity and scalability of the tilt overlay processor to opencl hls. In Proceed-

ings of the International Conference on Field Programmable Technology (FPT),

pages 20–27, 2014.

[43] Chen-Han Ho, Venkatraman Govindaraju, Tony Nowatzki, Zachary Marzec,

Preeti Agarwal, Chris Frericks, Ryan Cofell, Jesse Benson, and Karthikeyan

Sankaralingam. Performance evaluation of a DySER FPGA prototype system

spanning the compiler, microarchitecture, and hardware implementation. Energy

(mJ), 5(10):15, 2015.

[44] Karel Heyse, Tom Davidson, Elias Vansteenkiste, Karel Bruneel, and Dirk

Stroobandt. Efficient implementation of virtual coarse grained reconfigurable

arrays on FPGAS. In Proceedings of the International Conference on Field Pro-

grammable Logic and Applications (FPL), pages 1–8, 2013.

	Introduction
	Motivation
	Contribution
	Organization

	Background
	Execution of Compute Kernels
	FPGA Overlay Architectures
	Zynq as a hybrid computing platform
	Communication abstraction using Xillybus

	Literature Survey on FPGA Overlays
	Spatially configured FU based Overlays
	Time-multiplexed FU based Overlays

	Analysis of DySER as an Overlay Architecture on Zynq
	The DySER Architecture
	DySER Switch
	DySER Functional Unit

	DSP Block Based DySER
	DSP48E1 Based Functional Unit
	Analysis of Performance Improvement

	Kernel Mapping on DySER
	Summary

	Overlay based on Time-multiplexed FU
	Time-multiplexed FU based on DSP Block
	Architecture of Proposed Functional Unit
	Kernel Execution

	Linear Array of Functional Units as Overlay
	Architecture
	Kernel Execution

	Summary

	Experiments
	Introduction
	Xillybus
	Xillybus Characterization
	Single pipe loopback
	Double Pipe Loopback

	Xillybus for interfacing HLS generated kernels
	Performance evaluation

	Conclusions and Future Work
	Conclusions
	Future work

	Bibliography

