
NANYANG TECHNOLOGICAL UNIVERSITY

IMAGE PROCESSING ON

A HETEROGENEOUS COMPUTING PLATFORM

by

SYAM UMA

(G1501681F)

A Dissertation Submitted in partial fulfillment of

the requirements for the degree of

Master of Science in Embedded Systems

Supervised by

Assoc. Prof. Douglas L. Maskell

July 2016

Contents

1 Introduction 2

1.1 Motivation . 2

1.2 Contribution . 4

1.3 Organization . 5

2 Background 6

2.1 Heterogenous Computing Platforms 6

2.2 Programming Models . 8

2.2.1 OpenMP . 8

2.2.2 CUDA . 8

2.2.3 OpenCL . 9

2.3 FPGA Accelerators and SDSoC . 9

2.4 Image Processing . 11

2.4.1 Need for Image Processing . 11

2.4.2 Image Enhancement Techniques 12

2.4.3 Spatial Transformations . 12

2.4.4 Spectral Transformations . 15

3 SDSoC for Programming Heterogeneous Platforms 16

3.1 SDSoC for Zynq . 16

3.2 SDSoC Environment . 18

3.3 Design flow in SDSoC . 19

3.4 Cross-Compiling for ARM . 20

i

ii CONTENTS

3.5 Working with SDSoC . 21

3.5.1 Creating an Application . 21

3.5.2 Executing Application on the Target platform 24

3.6 SDSoC APIs . 24

3.7 Designing Accelerators using SDSoC 25

3.7.1 Factors Affecting Performance 25

3.7.2 Coding the Hardware Function 27

3.8 Data Transfer in SDSoC . 29

3.8.1 SDSoC pragmas . 29

3.8.2 HLS pragmas . 30

3.9 Streaming Interfaces - Case Study . 32

3.9.1 Single Stream In-Out . 32

3.9.2 Multiple Stream In - Single Stream Out 37

3.10 Image Processing on Zedboard using SDSoC 39

4 OpenCL for programming Heterogeneous platforms 44

4.1 Why OpenCL? . 44

4.2 OpenCL for Heterogeneous Platforms 46

4.3 OpenCL APIs . 48

4.4 Data Parallelism in OpenCL . 51

4.5 Online and offline compilation . 53

4.6 Image Processing on Zedboard using OpenCL 53

5 Conclusions and Future Work 63

5.1 Conclusions . 63

5.2 Future work . 64

Bibliography 66

List of Figures

1.1 Saturation of Moore’s Law [2] . 2

2.1 Industries using OpenCL . 10

2.2 Graphical representation of gray level spatial transforms [12] 13

3.1 SDx Development Seris of Xilinx [13] 17

3.2 Design Flow in SDSoC . 19

3.3 Creating a project . 22

3.4 Creating application . 22

3.5 Selecting function to offload to hardware 23

3.6 SWStub code of the function ’add’ which is to be accelerated 29

3.7 Single stream In-Out data transfer time 31

3.8 Block Diagram for SEQUENTIAL DMA 32

3.9 Block Diagram for ap fifo port as streaming 33

3.10 Block Diagram for axis port as streaming 33

3.11 Block Diagram showing use of ACP and HP ports 34

3.12 Chebyshev kernel without compute optimizations 35

3.13 Chebyshev kernel with pipelining . 36

3.14 Chebyshev kernel hardware vs. software 37

3.15 Performance of MISO streaming using SEQUENTIAL 38

3.16 Performance of MISO streaming using ap fifo port 38

3.17 Performance of MISO streaming using axis port 39

3.18 Reading the image and allocating memory 40

iii

iv LIST OF FIGURES

3.19 Compute function to be accelerated 40

3.20 Profiling the hardware and software compute times 41

3.21 Create output image and free memory objects 41

3.23 Using Data Transfer pargmas . 42

4.1 Concept of work groups and work items 52

4.2 Concept of online and offline compilation 53

4.3 Creating OpenCL objects . 54

4.4 Read and store the kernel code . 55

4.5 Initialisation of OpenCL device . 56

4.6 Offloading task to target device . 56

4.7 Kernel code computing negative of input image 57

4.8 Profiling the kernel . 57

4.9 Read from device to host memory . 57

4.15 Read from device to host memory . 60

4.18 Comparing OpenCL and C execution time 61

List of Tables

3.1 SDSoC Data Movers[16] . 26

3.2 Chebyshev Kernel with and without pipelining 35

3.3 Chebyshev kernel profiling : Hardwre vs. Software 37

3.4 Profiling computation of negative of an image 43

4.1 OpenCl kernel and C function execution time 61

v

Abbreviations

ACP Accelerator Coherency Port

AFI AXI FIFO Interface

API Application Programming Interface

CU Compute Unit

FPGA Field Programmable Gate Array

GPIO General-Purpose Inputs and Outputs

GPU Graphics Processing Unit

HDL Hardware Description Language

HLS High Level Synthesis

HP High Performance

II Initiation Interval

OpenCL Open Computing Language

OpenMP Open Multi-Processing

OS Operating system

PE Processing Element

PL Programmable Logic

PPE Power Processing Element

PS Processing system

SDSoC Software Defined System on Chip

SPE Synergistic Processing Element

vi

Abstract

The strong need for increased computational performance and energy efficiency has

led to the use of heterogeneous computing platforms, with graphics processing units

(GPUs), massively parallel processor arrays(MPPAs) and other accelerators acting

as co-processors for arithmetic-intensive data-parallel workloads. The use of accel-

erator architectures in heterogeneous computing platforms offers a promising path

towards improved performance and energy efficiency. One class of solution includes

programmable accelerators such as GPUs and MPPAs. Another class of solution ded-

icates highly efficient custom-designed application-specific accelerator for computing

tasks. This solution used to be preferable due to area, speed and energy efficiency and

were deployed as an Application Specific Integrated Circuit (ASIC) block alongside a

general purpose processor (GPP). However, developing dedicated ASIC accelerators

has become less practical due to the long turnaround time and high cost associated

with ASIC development. Field Programmable Gate Arrays (FPGAs), which allow

the implementation to be modified post-deployment, are now more commonly used

for rapid-prototyping of application specific accelerators in heterogeneous computing

platforms. FPGA vendors are introducing tools and programming systems to lower

the barriers to entry for software development for their Heterogeneous computing

platforms hosting FPGA fabrics. One example is Xilinx Zynq Platform (consisting a

GPP and an FPGA fabric) and corresponding SDSoC tool flow which helps to offload

compute intensive functions of a C/C++ application to the FPGA fabric in the form

of an application specific accelerator in a transparent manner. It also abstracts the

runtime management of the accelerator, including data communication to and from

the accelerator in the form of software APIs. In this report, we first explore SDSoC

tool flow and evaluate the performance of the accelerator created by SDSoC using a

series of experiments. The focus is on finding best communication technique between

software and hardware and test the impact of the optimization pragmas on the system

performance. We demonstrate the effective of the SDSoC tool using image processing

application.

ii LIST OF TABLES

Next, we move on to a platform portable programming model, OpenCL. Since

most high-level languages, like C/C++, are sequential programming languages with

no standardized means to describe parallel execution and OpenCL can bridge the

gap between the expressiveness of sequential languages and the parallel capabilities

of the hardware, we describe image processing applications using OpenCL program-

ming model with the aim of accelerating OpenCL kernels using different types of

accelerators without the change in the application source code. OpenCL has the ben-

efit of being portable across architectures, such as FPGAs, GPUs, and other parallel

computing resources without changes to algorithm source code.This is a key capa-

bility of OpenCL that makes it a promising programming model for heterogeneous

platforms. We use the POCL infrastructure on Xilinx Zynq to support OpenCL

application execution. We implement OpenCL version and C version of basic gray

level transformations used in most of the image processing applications and perform

a set of experiments to quantify the overhead of using OpenCL (a portable program-

ming model). In future, we aim to accelerate OpenCL kernels using FPGA based

accelerators on Xilinx Zynq platform.

Acknowledgment

I would first like to thank Assoc. Prof. Dr. Douglas Leslie Maskell for giving me

the opportunity for working on this project. I express my sincere appreciation for his

support, guidance and encouragement without which this dissertation woud not have

been possible.

My deepest gratitude to Abhishek Kumar Jain for his technical guidance and

constant monitoring and steering me in the right direction whenever needed. I thank

him for his motivation and enthusiasm, which helped me through roadblocks during

the course of the dissertation.

Thanks to Mr. Jeremiah Chua in Hardware and Embedded Systems Lab(HESL)

for all the facilities and technical support.

I would also like to thank my fellow classmates Rathi Chetan and Ravi Prashant

for all their help and support at all times.

Last but not the least, I thank my parents for believing in me and being my pillars

of strength during my Masters.

1

Chapter 1

Introduction

1.1 Motivation

In 1965, Gordon Moore made a prediction that would set the pace for a modern

digital revolution. Moore stated that the number of transistors on an affordable CPU

would double every two years. But in the recent years, this exponentially increasing

curve is heading to saturation as shown in Fig.1.1. This is mainly because transistors

are getting too small to be manufactured efficiently[1].

Figure 1.1: Saturation of Moore’s Law [2]

2

1.1. MOTIVATION 3

In such a scenario, heterogeneous platforms are a potential solution to continue in

the direction of energy efficient solutions. The processor capability has been brought

down due to limitations in the physical size urging to bring in the use of numerous

processors in parallel. The demanding applications, of course, play a major role in

driving the need for high performance and power efficient systems. Processing from

massive amounts of multiple sensors requires parallel computing. It can be used

for video processing applications, audio processing applications like voice recognition,

translation of live audio, gauging acoustics in a room and can be extended into security

applications. We see that most of these applications require real-time processing and

have rigid power constraints. The shortcomings of current hardware architecture and

software programs in implementing such algorithms steer us toward heterogeneous

platforms and programming.

Venturing into new fields of technology requires that we understand the problem

being addressed and the challenges and trade-offs in the solution. One of the first

problems is that of power, whose reduction is of increasing priority in all computing

segments. There is a demand for improved battery life in gadgets while data centre

power requirements and cost of cooling continue to rise. Amidst all this there is a

need for constantly improving performance. The need of the hour is an approach that

delivers improvement across all domains : power, performance, programmability and

portability.

As a solution to this demand, Graphics Processing Unit (GPU) and Field Pro-

grammable Gate Array (FPGA) has been introduced into the world of general com-

puting. The heterogeneous system using CPU and GPU is quite common now. FP-

GAs have also been integrated into heterogeneous systems to achieve speed up greater

than GPU. However, it is known that these varied devices require their own program-

ming models. For example, GPU uses CUDA and FPGAs require RTL description.

This implies programmers have to be either an expert in all programming models

or they should be grouped so as to master only one of these. Either way, it is not

resourceful. What we need is to introduce abstractions and new models that help

bridge the gap between hardware and software developers.

4 CHAPTER 1. INTRODUCTION

FPGA vendors are introducing tools and programming systems to lower the bar-

riers to entry for software development for their Heterogeneous computing platforms

hosting FPGA fabrics. One example is Xilinx Zynq Platform (consisting a GPP and

an FPGA fabric) and corresponding Software Defined System on Chip (SDSoC) tool

flow which helps to offload compute intensive functions of a C/C++ application to

the FPGA fabric in the form of an application specific accelerator in a transparent

manner. In this report, we first explore SDSoC tool flow and evaluate the perfor-

mance of the accelerator created by SDSoC using a series of experiments. The focus

is on finding best communication technique between software and hardware and test

the impact of the optimization pragmas on the system performance. We demonstrate

the effective of the SDSoC tool using image processing application.

1.2 Contribution

In our work, we explore SDSoC and Open Computing Language (OpenCL). The

contributions include :

SDSoC:

• Analyzing performance of hardware-software communication using SDSoC prag-

mas.

• Determining the most efficient communication pragma, especially for streaming

kernels.

• Quantifying the performance gain of using SDSoC for accelerating image pro-

cessing kernels.

OpenCL:

• Understanding the OpenCL programming model to develop efficient host and

kernel codes.

• Comparison of performance of OpenCL kernels with respect to C implementa-

tion of image processing kernels.

• Quantifying the performance difference between OpenCL and C implementation

of image processing kernels.

1.3. ORGANIZATION 5

1.3 Organization

The remainder of the report is organized as follows: Chapter 2 gives the background

information required to understand the problem being addressed and the solution

presented. Chapter 3 talks about one of the SoC programming tools by Xilinx for

CPU-FPGA platforms, SDSoC. In chapter 4, we implement OpenCL version and

C version of basic gray level transformations used in most of the image processing

applications and perform a set of experiments to quantify the overhead of using

OpenCL (a portable programming model). We conclude in chapter 5 and discuss

future work.

Chapter 2

Background

2.1 Heterogenous Computing Platforms

Heterogeneous computing platforms refer to systems that use more than one kind of

processor [3]. It involves not just multi-core processors but various types of specialised

processing units aiding in increasing performance [4]. For example, they typically use

CPU and GPU, usually on the same silicon die with the intention to exploit the

advantages of both the processor types, GPU for its graphics rendering and also the

mathematically intensive computations on very large data sets, and CPUs to run the

operating system and perform traditional serial tasks [4]. The rise of the need for

heterogeneous platforms can be understood by studying the changing trends over the

last few years. There was a shift from single-core to multi-core processors by the end

of 2010. Not just dual cores, even quad core processors were becoming mainstream

and affordable [5]. Yet there were challenges presented by multi-core processing too.

The processor size and power consumption were on the rise to accommodate for the

cache memory and extra cores needed for instruction pipelines [4].

Meanwhile, GPUs, which were turning more complex and sophisticated, under-

went interesting developments that were a result of advances in semiconductor tech-

nology. GPUs with their vector processing capabilities were able to realize parallel

operations on very large sets of data at much lower power consumption when com-

pared to similar processing on CPUs [6]. Though GPUs were initially built to help

6

2.1. HETEROGENOUS COMPUTING PLATFORMS 7

with graphics processing, they became increasingly attractive for more general pur-

poses, such as addressing data parallel programming tasks [7].

Soon the world of computing realised the potential in combining the best of CPUs

and GPUs to achieve faster and more powerful designs. And the need for such a

heterogeneous system was further driven by restraint on power and scalability in

multi-core CPU development and the promising new vector architecture of GPUs.

Vector processors have up to thousands of individual compute cores, which can op-

erate simultaneously. This makes GPUs ideally suited for computing tasks that deal

with a combination of very large data sets and intensive numerical computation re-

quirements [4].

While the idea of CPU and GPU contributing to the heterogeneous system ar-

chitecture was gaining popularity, the idea of integrating custom logic (application

specific accelerator) into the architecture emerged. While it is known that customised

circuit for any application gives the highest performance, it is not flexible. This

shifted the attention to FPGA which can be reconfigured based on the application

while outperforming any general purpose processor. And adding such a component

to a heterogeneous computing platform, seemed a promising venture.

But of course, vector processing using GPU or accelerators using FPGA is not the

answer all the time. There is always an overhead associated with setting up vector

processing or data transfer to FPGA, which can easily outweigh the time saved. This

behavior becomes evident when vector processing or FPGA acceleration is used on

small datasets. Hence there still are problems for which CPUs scalar approach would

be the best. This is all the more a reason to retain both CPU, GPU and FPGA (if

needed) and harness all their features that are advantageous to us instead of using

just one device which cannot guarantee best performance under all situations.

8 CHAPTER 2. BACKGROUND

2.2 Programming Models

When we talk about systems comprising of CPUs, GPUs and probably even an FPGA,

then the next big question is how do we program them to work with each other in

synchronization so as to attain the performance gain we are expecting. We discuss

some of the popular programming models as follows:

2.2.1 OpenMP

Initially, when CPUs moved from single cores to multi-cores with multi-thread han-

dling capabilities, increased performance was a guarantee. Utilizing these features

competently was, of course, the condition to be fulfilled to achieve expected perfor-

mance and that implied using parallel programming. With an aim to make the task of

programming simple, the Open Multi-Processing (OpenMP) model was introduced.

OpenMP is an Application Programming Interface (API) that can be considered as

an implementation of multi-threading [8]. The run-time environment allocates threads

to different processors and the threads run synchronously. OpenMP uses compiler

pragma to control the program flow and in case the pragmas are not supported,

the program will still behave correctly, but without any parallelism. The default

way lets each thread execute independently and tasks can be divided among threads

using work-sharing constructs. This helps in achieving both task parallelism and

data parallelism using OpenMP. It is a portable, scalable model that is a simple and

flexible interface for developing parallel applications for platforms ranging from the

standard desktop computer to the supercomputer [8].

2.2.2 CUDA

When GPUs were introduced, they were designed as graphic accelerators. Soon their

potential for general purpose parallel computing was uncovered. But GPU program-

ming required using assembly or graphics programming languages like OpenGL, which

was not a trivial task. In order to overcome the difficulty of programming, NVIDIA

unveiled the CUDA programming model. CUDA enabled the GPU to be programmed

2.3. FPGA ACCELERATORS AND SDSOC 9

using C, C++ and Fortran [9]. CUDA model uses a host code and a device code which

is the compute kernel. The serial code is executed on the host and parallel code on the

device. The host code initializes and offloads computations to device code. Decisions

regarding thread block size and number of threads per block are done in host side.

CUDA provides APIs that help in efficient task and memory management in order to

harness maximum power from the GPU. But using CUDA meant that the same code

cannot be ported to CPU and one has to re-write with CPU based optimizations for

obtaining good performance.

2.2.3 OpenCL

From Sections 2.2.1 and 2.2.2, we see that we cannot port OpenMP optimization

on GPU nor can we run a CUDA program on CPU. This called for a common pro-

gramming model across all platforms, especially from the industries. And initiated

by Apple, the OpenCL (Open Computing Language) programming model was born

which was developed and standardized by Khronos. OpenCL also uses the concept of

a host code and device code. The latter is the main computation logic and remains

unchanged over varying devices. However, the advantage of platform portability does

not extend to performance portability and minor changes in the host code as per the

target device might be required for a powerful implementation. But this is just a mi-

nor setback and the OpenCL model is already gaining immense popularity. Fig. 2.1

show few of the industries that currently adopt OpenCL model.

2.3 FPGA Accelerators and SDSoC

For many years, programmers depended on advancement in processor technology to

automatically speed up applications. But in the past few years, power concerns have

caused the processor operating frequencies to stagnate. In such a scenario, FPGA is

a promising alternative

FPGA consists of an array of logic gates that can be hardware programmed to

create customized compute units as per the application. It is also possible to configure

10 CHAPTER 2. BACKGROUND

Figure 2.1: Industries using OpenCL

multiple compute units on an FPGA that work in parallel. They are power effective

as they operate at low frequencies in the range 100-550 MHz. And they are known

to provide up to 100-fold speedups per node over microprocessor-based systems [2].

Tradionally FPGAs are configured by means of a Hardware Description Language

(HDL), like VHDL or Verilog. But with a one-to-ten ratio of hardware-software

programmers, an HDL based approach for FPGA narrows down their usage as accel-

erators. Also, the hardware development cycle is much more tedious than software

development cycle. In order to overcome these issues, there is a need for raising the

programming abstraction to improve the design productivity. SDSoC from Xilinx

is one such tool which helps in offloading C implementations to FPGA. Chapter 3

explores SDSoC in detail.

2.4. IMAGE PROCESSING 11

2.4 Image Processing

2.4.1 Need for Image Processing

Vision forms a very important part of human lives. Every day of our lives we gather

information and make decisions based on what we see. Seeing might seem trivial to us,

but it is not so. Understanding what we see, distinguishing the features and objects in

the world is a complex task involving lot of neural activity. It requires understanding

depth, distinguishing foreground from background, recognizing objects presented in

a wide range of orientations and many more. If we were to achieve the same using

machines, we need to design systems capable of capturing images and algorithms

capable of processing the image and retrieving the information we want. Of course

one must remember that vision with the speed and accuracy of our brains is difficult

to beat as even super computers cannot compete with years of human evolution. But

nevertheless, it is possible to achieve high performance in real time, using efficient

algorithms and accelerators.

The improvement of pictorial information for human interpretation and processing

of a scene data for an autonomous machine perception are two of the principal ap-

plications of image processing. Digital image processing therefore has a broad range

of applications such as remote sensing, in business applications for storage of data

as well as image, in both the medical and forensic sciences, acoustic imaging and

industrial automation. Images obtained from satellites can be used to track earth

resources, forecasting the weather, geographical mapping and many more applcations

requiring wide regions to be surveyed. Space-probe missions return data that are

images which require to be analysed to detect objects.In addition to these applica-

tions, digital image processing is now being used to solve a wide variety of problems

requiring methods capable of enhancing information for human visual interpretation

and analysis [10]. The current major area is in solving the problem of machine vision

so as to attain good results.

12 CHAPTER 2. BACKGROUND

2.4.2 Image Enhancement Techniques

The fundamental objective of image enhancement techniques is to process an image

so as to enhance it to be a better option than the original for a particular application.

Note that the enhancement technique is application specific and what works well for

one application need not for another. The two broard categories of enhancement are:

The fundamental objective of image enhancement techniques is to process an

image so as to enhance it to be a better option than the original for a particular

application. Note that the enhancement technique is application specific and what

works well for one application need not for another. The two broad categories of

enhancement are:

1. Spatial domain enhancement

2. Frequency domain enhancement

The former techniques refer to processing the image in the image plane (pixels) it-

self while the latter techniques are based on modifying the transform (Fourier or

any other) of an image [10]. Several combinations of both enhancement methods are

used in majority of the problems requiring image enhancement. Some examples of

enhancement operations are edge enhancement, pseudocoloring, histogram equaliza-

tion, contrast stretching, noise filtering, un-sharp masking, sharpening, magnifying,

etc. These image enhancement operations may be either local or global.

2.4.3 Spatial Transformations

We begin with grey level spatial-domain transformations on images. The same can

be extended over the Red, Green and Blue components in case of a coloured images.

The basic transformation function is given by

s = T (r) (2.1)

where r is the pixel of the input image and s is the pixel of the output image. T is a

transformation function that maps each value of r to each value of s [11] [12]. Fig. 2.2

2.4. IMAGE PROCESSING 13

shows the graphs representing the spatial transforms.The gray level transformations

which have been implemented as part of the project are as follows :

Figure 2.2: Graphical representation of gray level spatial transforms [12]

1. Linear Transform :

• Identity Transformation: Every input image pixel value is mapped directly

to output image which is graphically given by a straight line.

• Negative Transformation: Each input image pixel value is subtracted from

L-1 to produce the corresponding output image pixel value. Here L is the

maximum pixel value. The transformation function is given by -

s = (L− 1)− r (2.2)

This results in the lighter pixels becoming dark and the darker picture

becoming light and hence an image negative.

2. Power-law Transform : The transformation equation is given by -

s = crγ (2.3)

14 CHAPTER 2. BACKGROUND

where γ is called gamma.

The variation of γ value varies the resulting enhanced images. Different display

devices / monitors have their own gamma correction, thats why they display

their image at different intensity [11] [12]. For example, CRT has a gamma be-

tween 1.8 to 2.5, which means the image displayed on CRT is dark. Transforms

using convolution

3. Logarithmic Transform : The log transformation is defined by the equation

s = c ∗ log(r + 1) (2.4)

During log transformation, the dark pixels or lower valued pixels in an image are

expanded while the higher pixel values are compressed. This results in evening

out the pixel values in general. The value of c in the log transform can be

adjusted as per required enhancement.

4. Convolutional Transforms : Convolution can be considered as a local image

enhancement techniques using masks to process sub-samples of an image. It

helps in achieving effects that the above mentioned grey level transformations

cannot achieve, like blurring, smoothening, and sharpening of images etc. Con-

volution involves a mask or kernel which is slid across the image and at every

position the kernel values are multiplied with corresponding image pixel values

and summed to obtain a result which will correspond to one pixel of the output

image. The general convolution equation is shown below

H(x, y) =

height∑
j=1

width∑
i=1

I(i, j)M(x− i, y − j) (2.5)

where I(i, j) refers to image pixels and M(i, j) refers to mask pixels.

A mask can be thought of as a filter. Masking is also referred to as spatial fil-

tering. Just varying the mask values yields different filtering techniques making

convolution a very powerful tool. The two most common uses of spatial filters

are:

2.4. IMAGE PROCESSING 15

• Blurring and noise reduction

• Edge detection and sharpness

2.4.4 Spectral Transformations

Unlike in spatial domain that deals directly with pixel values, in the frequency domain,

the rate of change of pixel value is what is important. For this purpose we first obtain

the frequency distribution of the image.The processing is done on the spectral version

and the transformed output is inverted to convert back to image. A signal can be

converted from the time domain to the frequency domain using

• Fourier Series

• Fourier transform

• Laplace transform

• Z transform

To be able to decide which transform is apt for an application, refer [11] to learn

more.

Chapter 3

SDSoC for Programming

Heterogeneous Platforms

3.1 SDSoC for Zynq

SDSoC is the recent addition to Xilinx SDx development series shown in Fig. 3.1,

where ”SD” stands for ”Software Defined” Since 2014, Xilinx has been introducing a

series of SDx development environments like SDNet and SDAccel [13].

SDSoC, the priced new addition, has the ability to create a high-level repre-

sentation of the system and to then quickly and easily decide which portions are

to be implemented in software and which are to be realized in hardware in a way

that that does not require software developers to rely on hardware developers. It

comprises of a full-system optimizing C/C++ compiler, along with features for sys-

tem level profiling, automated SW acceleration in programmable logic, automated

system connectivity generation, and libraries to speed programming. It also enables

developers to rapidly define, integrate, and verify system level solutions [13]. As

mentioned earlier, the popularity of SoC is due to the fact that different applications

require different architecture for efficient computation. Though processor cores are

well-suited for sequential tasks, they are extremely inefficient when it comes to tasks

that require massively parallel hardware accelerator cores. Zynq from Xilinx is one

such SoC that boasts of a mix of processor cores and programmable logic fabric. It

16

3.1. SDSOC FOR ZYNQ 17

Figure 3.1: SDx Development Seris of Xilinx [13]

also has an on-chip memory, a wide variety of hard core communication and periph-

eral functions, high-speed data interfaces, and a large number of General-Purpose

Inputs and Outputs (GPIO) [14]. The experiments in this report are done on Xilinx

Zynq Zedboard. Based on Zynq-7000 SoC operating at 667MHz, it contains dual-core

ARM-Cortex A9 based Processing system (PS) and Programmable Logic (PL) fabric

in one package. It is composed of Zynq Z7020-clg484 operating at 667 MHz [15]. This

new combination of processing subsystems with FPGA fabric command integration

between software and hardware engineering, blurring the line between the two.

Software usually is the main contributor in the functionality of most of the system

designs. On the hardware side, the FPGA fabric is used for speeding up the compu-

tation, which conventionally required RTL representation for not only the function

but also interconnect buses and fabrics, memory architecture. This would mean that

developing hardware accelerators are reserved for hardware engineers. But SDSoC

helps in bridging that gap between software and hardware engineers.

18CHAPTER 3. SDSOC FOR PROGRAMMING HETEROGENEOUS PLATFORMS

The key contribution of SDSoC would be that it helps in offloading tasks to hard-

ware by just the click of a button. This ’not so trivial’ task is made possible with

the introduction of High Level Synthesis (HLS) technology. HLS at the back end

of SDSoC helps in taking a high-level representation in C/C++ and compiling/syn-

thesizing it into an equivalent RTL representation that can subsequently be used by

traditional synthesis technology to generate the ultimate hardware realization [14].

Another impressive (and useful) functionality is an automatic system-level connec-

tivity generator. [14] mentions how this is made possible; by analysing the latency

and throughput requirements of each of the communications interface in the design

and automatically recommending (and inserting) the optimal type of interconnect.

SDSoC also packs the ability to choose to run the application bare-metal or on Linux

or FreeRTOS as target Operating system (OS). The inclusion of target OS further

simplifies the implementation of Image Processing applications. Last but not the

least, the SDSoC profiler can help novice users in deciding which tasks to offload to

hardware by identifying the bottlenecks. Thus SDSoC abstracts all the complexities

of hardware development and the end user only interacts with the sophisticated soft-

ware development tools required to implement applications on complex heterogeneous

multiprocessing devices.

3.2 SDSoC Environment

SDSoC uses an Eclipse based IDE and also supports command line interface for the

terminal lovers.At the front end we have compilers and debuggers dedicated to de-

bug embedded software in a parallel heterogeneous multi-processing environment [16].

Based on the target platform and functions to be offloaded onto the hardware, the

system compilers (sdscc/sds++) transform C/C++ programs into complete hard-

ware/software systems. To achieve high performance, each hardware function runs as

an independent thread [16]. After analysing the dataflow between the software and

hardware functions, an application-specific SoC is generated to realize the program.

A helpful function in SDSoC is the ability to estimate the performance of an appli-

cation before offloading it to hardware. The hardware functions are compiled using

3.3. DESIGN FLOW IN SDSOC 19

the Vivado HLS tool to the PL, and then a complete hardware system based on the

selected platform, including DMAs, interconnects, hardware buffers, and other IPs

are generated. The Vivado Design Suite tools are then invoked to generate FPGA

bitstream. The SDSoC system compilers also generate system-specific software stubs

and configuration data, which they compile and link with the application code using

a standard GNU toolchain into an application binary [16]. The hardware-specific

software configuration codes that are auto-generated by the system compilers man-

age the data transfers and control the hardware accelerators and they integrate any

associated drivers for the IP blocks generated. Since the complete development is

from a single source, it is possible to refactor the program so as to iterate over design

and architecture changes.

3.3 Design flow in SDSoC

To get a better understanding of how SDSoC functions, let us take a look at the

design flow showin in Fig. 3.2.

Figure 3.2: Design Flow in SDSoC

20CHAPTER 3. SDSOC FOR PROGRAMMING HETEROGENEOUS PLATFORMS

The first step is to select a development platform and cross-compile the application

for ARM and check for the functional correctness of the appplication. Next, the

compute-intensive segments of the code are to be identified so that they can be moved

to the programmable logic. One has to note that it is a function that will be offloaded

to the hardware, hence it has to be isolated from the rest of the code. In this way, only

the required compute function will be accelerated. Next, the SDSoC system compiler

is invoked to generate a complete SoC and SD card boot image for the application.

The sdscc/sds++ system compiler handles the system generation process. We have

the option of optimising the system and hardware functions using pragmas. Once the

code is ready, we can estimate the performance using the SDEstimate option. This

helps in analysing the speed up that could be achieved by hardware acceleration when

compared to software only implementation without actually compiling for hardware.

This estimate is based on properties of the generated system and estimates for the

hardware functions provided by the IPs when available [16]. The overall design process

is iterated until the generated system achieves the performance and cost objectives.

3.4 Cross-Compiling for ARM

As mentioned in Section 3.3, the first step is to cross-compile the application code

to run on the target platform. Every platform included in the SDSoC environment

includes a pre-built SD card image from which we can boot and run cross-compiled

application code. When no code is selected to run on hardware, this pre-built image

is used. We can always run a software only compile every time we build a new code

or make modifications, to check for correctness as the software build is faster. The

SDSoC environment includes two distinct toolchains for the ARM CPUs within Zynq

architecture devices :

• arm-xilinx-linux-gnueabi - for developing Linux applications

• arm-xilinx-gnueabi - for developing standalone (”bare-metal”) and FreeRTOS

applications.

3.5. WORKING WITH SDSOC 21

The appropriate tool chain is selected during creation of project and the system

compilers handle the invocation of the appropriate compilers. All object code for the

ARM CPUs is generated with the GNU toolchains. The sdscc (and sds++) compiler

is built upon Clang/LLVM frameworks [16]. An SD card image is generated by the

compiler by default in a project subdirectory named sd card. Note that not all C files

are compiled by SDSoC compilers sdscc/sdsc++. It only compiles code that contains

a hardware definition, call to a hardware function and uses sds lib functions. It is

also possible to change the compiler settings to compile with gcc instead of sdscc.

3.5 Working with SDSoC

Before we move on to exploring optimised coding techniques and acceleration using

SDSoC, we go through the basics of getting started with SDSoC.

3.5.1 Creating an Application

First, we create a new SDSoC project and specify the target platform and whether

we want the application to run bare-metal or use an OS. Fig. 3.3 shows the SDSoC

project settings page. In our case, the Zedboard(option zed) is chosen as the target

platform to run at the default frequency of 142.86MHz.

During project creation, we can choose to create an empty application or use any

of the built in examples as shown in Fig. 3.4. In case a blank project was created,

then the required application files are to be added to the src folder. Right click on

the src folder and create new source files and, ’header files as per the requirement.

Note that the name has to include the extension of .c or .cpp or .h. One can also

import an entire project to the workspace using the Import option.

Next, choose the Build Configuration and navigate to ’Set Active’ and set the

configuration as SDDebug, SDRelease or SDEStimate. To estimate the performance

without actually running on the target platform, we build using the SDEstimate op-

tion. SDDebug configuration helps in debugging the application as this configuration

22CHAPTER 3. SDSOC FOR PROGRAMMING HETEROGENEOUS PLATFORMS

Figure 3.3: Creating a project

Figure 3.4: Creating application

builds the application with extra information in the ELF (compiled and linked pro-

gram) that is needed to run the debugger. But note that the debug information in

ELF increases the size of the file and makes the application information visible. For

best run-time performance, the SDRelease build configuration can be used as it uses

higher compiler optimization setting than the SDDebug build configuration.

3.5. WORKING WITH SDSOC 23

Once the configuration is selected, build the project. First we use software only

compilation due to reasons mentioned in Section 3.4. Next, we can profile the applica-

tion to identify the bottlenecks and decide the segments to be offloaded to hardware.

But on the other hand, if we know which section of application needs acceleration, we

can skip the profiling. To offload the function to hardware, there are two methods.

One is to expand the .c/.cpp file that has the function to be accelerated and right

click on the function name and select toggle[H/S]. A yellow tick against the function

name indicates that it has been selected to run on the fabric. Another method is

to use the project overview window and click on the ’Add Hardware’ icon to specify

hardware functions as in Fig. 3.5 Now build the project again. This time, the build

will take longer as it has to compile for the hardware and generate the bitstream.

Once done, the files required to execute the code will be present in the sd card folder.

Figure 3.5: Selecting function to offload to hardware

24CHAPTER 3. SDSOC FOR PROGRAMMING HETEROGENEOUS PLATFORMS

3.5.2 Executing Application on the Target platform

To run the application, copy the contents of sd card directory on to an SD card

and insert into the target board. For Linux applications, this directory includes the

following files:

• README.TXT- contains brief instructions on how to run the application

• BOOT.BIN - the boot image contains first stage boot loader (FSBL), boot

program (u-boot), and the FPGA bitstream

• uImage, devicetree.dtb, uramdisk.image.gz - Linux boot image

• .elf - the application binary executable

First open a serial terminal connection to the target board and power it up. Details

can be found in [17]. The user is logged in automatically as Linux boots. A bash

shell is the user interface and the SD card is mounted at /mnt. The .elf file of the

application can be run from the /mnt directory. For standalone applications, the

ELF, bitstream, and board support package (BSP) are contained within BOOT.BIN,

which automatically runs the application after the system boots.

3.6 SDSoC APIs

We now take a look at few of the SDSOC APIs which will make developing applica-

tions using SDSoC and analysing it easier. Refer [16] for more details. Using SDSoC

APIs require us to include the library sds lib. This can be done by adding , #include

”sds lib.h” in the source files.

1. API to map memory spaces, and to wait for asynchronous accelerator calls to

complete

• void sds wait(unsigned int id) : wait for the first accelerator in the queue

identified by id, to complete

• #pragma SDS wait(id) : an alternative to the above

3.7. DESIGNING ACCELERATORS USING SDSOC 25

2. void *sds alloc(size t size) : Allocate a physically contiguous array of size bytes

3. void *sds alloc non cacheable(size t size) : Allocate a physically contiguous ar-

ray of size bytes that is non-cacheable. As the memory allocated in this manner

is not cached, the pointer to the memory has to be explicitly passed to the

hardware

4. void sds free(void *memptr) : To free an array allocated through sds alloc()

5. void *sds mmap(void *physical addr, size t size, void *virtual addr) : Create a

virtual address mapping to access a memory of size size bytes located at physical

address physical addr.

6. void *sds munmap(void *virtual addr) : Unmaps a virtual address associated

with a physical address created using sds mmap()

7. unsigned long long sds clock counter(void) : Returns the value associated with

a free-running counter, which is the PS cycles. The global 64-bittimer runs

at 1/2 the frequency of the processor [15]. The API samples this register and

multiplies it by 2 to get cycles at the PS clock frequency.

3.7 Designing Accelerators using SDSoC

3.7.1 Factors Affecting Performance

Two of the main factors that affect performance is communication and computation.

A well-designed system generally balances the two such that all the hardware com-

ponents are utilized to the fullest. Extracting maximum performance from a system

is highly dependent on the type of application too. Compute intensive or compute-

bound applications require throughput to be maximised and latency in hardware

accelerators to be minimized. Memory bound applications, on the other hand, might

require restructuring of algorithm to increase the temporal and spatial locality in

the hardware like adding copy-loops or memcpy to pull blocks of data into hardware

instead of randomly accessing external memory.

26CHAPTER 3. SDSOC FOR PROGRAMMING HETEROGENEOUS PLATFORMS

In SDSoC, we can improve the system performance by controlling the compiler

through :

• Improved access to external memory from programmable logic

• Increased concurrency and parallelism in programmable logic

The former can be attained using the various SDSoC communication or data transfer

pragmas that are provided. These are explained in detail in Section 3.8. Once the

platform and functions to be accelerated are chosen, the hardware/software interface

is implicitly defined. The sdscc/sds++ system compilers take care of analysing the

program data flow for hardware functions, scheduling each function call, and generat-

ing a hardware accelerator and data motion network realizing the hardware functions

in programmable logic. Any data movement to and from the accelerator requires

a data mover, which consists of a hardware component that moves the data, and

an operating system-specific library function. The send/receive calls implemented in

hardware are based on program properties like memory allocation of array arguments,

function properties such as memory access patterns, latency of the hardware function

etc. Table 3.1 shows the supported data movers and their properties.

Table 3.1: SDSoC Data Movers[16]

SDSoC Data Mover Vivadi IP Data Mover Accelerator IP Port Types Transfer Size Contiguous Memory Only

axi lite processing system7 register,axilite

axi dma single axi dma bram,ap fifo,axis 8MB

axi dma sg axi dma bram,ap fifo,axis

axi dma 2d axi dma bram

axi fifo axi fifo mm s bram,ap fifo,axis 300B

zero copy accelerator IP aximm master

• axi lite data mover is usually used to transfer scalar variables over AXI4-Lite

bus interface.

• axi dma simple data mover is used for bulk transfer and is the most efficient for

it. The drawback is that it supports only up to 8MB transfers.

3.7. DESIGNING ACCELERATORS USING SDSOC 27

• axi dma sg (scatter-gather DMA) data mover is used for large data transfers,

which axi dma simple does not support.

• axi fifo data mover is used mostly for payloads up to 300 bytes and does not

require as many hardware resources as DMA. The limit on amount of data that

can be trasnferred is because of slow transfer rates.

The data mover selection can be overridden by inserting a pragma into program

source immediately before the function declaration.

3.7.2 Coding the Hardware Function

Having understood how to work with SDSoC and the factors that affect a software-

hardware system, we delve deeper into the process of creating applications to be

accelerated by the Zynq FPGA. As mentioned in Section 3.3, the first step is to

create a C/C++ application code. The guidelines of coding for SDSoC are the same

as writing any other C/C+++ code. As an additional feature, we can also use the

SDSoC APIs mentioned in Section 3.6. When it comes to functions that are to be

offloaded on to the hardware, there are certain rules have to be followed so that the

function is actually synthesizable.

Some of the points to remember while developing functions to be offloaded to

hardware are as follows -

1. A top-level hardware function must be a global function. Class methods or

overloaded functions are not allowed.

2. It is not possible to access global variables within a hardware function.

3. Hardware functions are incapable of exception handling.

4. Every hardware function must have at least one argument.

5. If arrays are being passed as input to the function to be accelerated, then the

size has to be known. Pointers are not allowed as function arguments.

28CHAPTER 3. SDSOC FOR PROGRAMMING HETEROGENEOUS PLATFORMS

6. The data to be processed by the hardware is usually copied to BRAM and hence

we are limited by the BRAM size as the maximum possible data size being

processed. There are ways to overcome this issue as explained in Section 3.8.1.

7. In case of multiple assignments to an ouput or inout scalar, local variables are

to be created.

8. The return value of a hardware function, if present, must be a scalar value

within 32 bits.

9. The application must have only a single master thread that controls hardware

functions.

10. Predefined macros should be used to guard code with #ifdef and #ifndef pre-

processor statements [16].

11. Certain functions like pow(), printf() are not synthesizable and should not be

included.

12. One must use sds alloc to allocate an array if using zero-copy pragma for the

array or if using pragmas to explicitly direct the system compiler to use Simple-

DMA or 2D-DMA.

When a code is compiled for hardware, a SDSoC generates a software stub code.

This is done by redefining hardware function calls as calls to function stubs that

are implemented with low level function calls to a send / receive middleware layer

that efficiently transfers data between the platform memory and CPU and hardware

accelerators, interfacing as needed to underlying kernel drivers. This can be found in

the sds 〉swstubs folder of SDSoC. If we take a closer look at the stub code generated,

we can see that the function picked by us for offloading to hardware will be marked

out by p0 〈name 〉 0 as shown in the Fig. 3.6.

Last but not the least, as a good coding technique, write the computation to be

offloaded to hardware as not just a separate function but preferably as a separate

.c/.cpp file

3.8. DATA TRANSFER IN SDSOC 29

#ifdef __cplusplus

extern "C"

{

#endif

int _p0_add_0(int a[128], int b[128], int sum[128]);

#ifdef __cplusplus

}

#endif

int _p0_add_0(int a[128], int b[128], int sum[128])

{ }

Figure 3.6: SWStub code of the function ’add’ which is to be accelerated

3.8 Data Transfer in SDSoC

Once we have defined the functionality of the kernel to be offloaded to the hardware,

the focus now shifts to one of the most important aspects of using an accelerator -

the movement of data to and from the accelerator. Efficient communication between

the host and accelerator is key in achieving significant acceleration of the function

offloaded to the hardware. Hence we take a look at all the data movement and data

access techniques supported by SDSoC.

3.8.1 SDSoC pragmas

A top-level hardware function should not contain any HLS interface pragmas. In-

stead there are SDSoC environment pragmas which can be used to guide the SDSoC

environment to generate the desired HLS interface directives. They are as follows :

1. Data Copy : #pragma SDS data copy(p[0:])

This is the default data transfer mechanism and the RANDOM access pattern

used by SDSoC. The data is transferred by copying the data, as a consequence

of which, an array argument must be either used as an input or produced as an

output, but not both. The pragma must be specified immediately preceding a

function declaration, or immediately preceding another pragma that is bound

to the function.

2. Data zero copy : #pragma SDS data zero copy(p[0:])

30CHAPTER 3. SDSOC FOR PROGRAMMING HETEROGENEOUS PLATFORMS

This can be used to generate a shared memory interface implemented as an

AXI master interface in hardware. In the previous case, we saw that the array

argument cannot act as input and output. In case we require an array argument

to act as input and output, this pragma can be used as it tells the compiler that

the array should be kept in the shared memory and not copied. The shared

memory interface is also implemented as an AXI master interface in hardware.

An important feature to note when it comes to using the above two pragmas is

that they support variable data size transfers to the hardware function. This

is possible by using the pragma to generate code whose size is defines by an

arithmetic expression -

#pragma SDS data copy|zero copy(arg[0:〈c size expression〉]

where 〈c size expression〉must compile in the scope of the function declaration.

3. SEQUENTIAL : #pragma SDS data access pattern(argument:SEQUENTIAL)

This pragma is used to declare to sdscc that a streaming access is to be allowed

for a hardware function. This implies that each element is accessed only once

and in index order. The SDSoC environment automatically maps onto a packe-

tized AXI4-Stream channel and streaming is implemented as a FIFO interface in

hardware. Streaming interfaces are the fastest means of data transfer especially

when there are long streams of data and multiple streams. Since all the data is

not copied to BRAM, we are not limited by BRAM size. In case non-sequential

access is needed, then the data will have to be stored in local memory. One has

to note that a hardware function can have no more than eight input bram or

ap fifo arguments.

3.8.2 HLS pragmas

For certain cases, the SDSoC directives might not perform as expected. In such cases,

SDSoC provides the option to use the HLS pragmas but there are certain guidelines

to be followed while coding. As the HLS pragmas cannot be compiled by sdsc/sds++

compilers, they are to be protected using #ifndef SDSVHLS ...#endif. This directs

the SDSoC to ignore the segments enclosed within while SDSVHLS directs Vivado

3.8. DATA TRANSFER IN SDSOC 31

which is used at the back end to compile and synthesize the appropriate hardware.

The two commonly used HLS Pragmas, used for streaming of data are as follows :

1. AXI4-Lite : #pragma HLS INTERFACE s axilite port=arg

This pragma is used to generate a memory mapped control interface in HLS.

No FIFOs are present on the command interface or on scalar arguments. Only

one explicit AXI4-Lite interface is allowed for a hardware and all the ports must

be bundled into a single AXI4-Lite interface.

2. AXI-memory mapped (AXI-MM) master : #pragma HLS INTERFACE m axi

port=arg This is used to pass physical addresses over the AXI4-Lite interface

and the hardware function acts as its own data mover.

3. AXI4-Stream : #pragma HLS INTERFACE axis port=arg

#pragma HLS INTERFACE ap fifo port=arg this enables in having direct con-

nections between hardware functions with AXI4-Stream interfaces.

A comparison of the DMA Round Trip Time(RTT) for all the data transfer types

using SDSoC and HLS is shown in Fig. 3.7.

● ● ● ● ● ●
●

●

●

0

200

400

600

800

1000

1200

128 256 512 1K 2K 4K 8K 16K 32K
Samples

T
im

e(
us

)

● ap_fifo
axis
datacopy
datazerocopy
sequential

Figure 3.7: Single stream In-Out data transfer time

Each data sample is 4 bytes. The experiment involved a single stream of data

transferred to and from the accelerator. It can be seen that SEQUENTIAL is the

32CHAPTER 3. SDSOC FOR PROGRAMMING HETEROGENEOUS PLATFORMS

most efficient while the HLS pragmas perform poorly in comparison to all others.

Performance of SEQUENTIAL is as expected and though one would expect the other

two streaming interfaces to also perform equally good, a completely opposite behavior

is seen. SEQUENTIAL is 4× faster than axis and 3× faster than ap fifo. This could

be accounted to the overhead of launching the data transfer. Use of only single

stream might mask the performance improvement that could be achieved [16]. Since

essentially a streaming form of communication is known to be the fastest, we now

delve deeper into the behaviour of these streaming interfaces.

3.9 Streaming Interfaces - Case Study

3.9.1 Single Stream In-Out

Having seen the relative performance of all the data transfer types, we now take a

closer look at the three streaming interface models. We first try to understand the

underlying architecture created while using each of these streaming models. The

Vivado HLS tool is used to visualise the block designs generated.

Figure 3.8: Block Diagram for SEQUENTIAL DMA

Fig. 3.8 shows the architecture created by SDSoC when the SEQUENTIAL pragma

is used. We see that AXI interconnects are used and a FIFO is created as part of

the adapter which connects to the accelerator. There are two data movers, one for

3.9. STREAMING INTERFACES - CASE STUDY 33

Figure 3.9: Block Diagram for ap fifo port as streaming

Figure 3.10: Block Diagram for axis port as streaming

each input and output streams. Fig. 3.9 shows the streaming architecture built using

ap fifo port. Again we notice the auto-generated AXI interconnects and adapters

with FIFO. But we now see an ” AXI Stream Router” which was not present in

Fig. 3.8. Also, there is only one data mover being used. This is because the stream

router handles the routing of the input and output streams and we do not require

34CHAPTER 3. SDSOC FOR PROGRAMMING HETEROGENEOUS PLATFORMS

two data movers. In case of Fig. 3.10, we see that the data movers are back to two

but there is no longer an adapter with FIFO interface. Instead, we are provided with

a ”Data Width Converter”.

Note that in all the cases the Accelerator Coherency Port (ACP) port is used,

which is the cache coherent interface between programmable logic and external mem-

ory [16].One can also explicitly mention the port to be used if required by using the

following pragma :

#pragma SDS data sys port(ArrayName : port)

The port options involve ACP, High Performance (HP) ports or the non-cache coher-

ent accessAXI FIFO Interface (AFI)port. The default case is decided by compilers

using information regarding the array size, data movers, etc. This pragma can over-

write the default port usage.

Figure 3.11: Block Diagram showing use of ACP and HP ports

The Fig. 3.11 shows the Vivado generated block diagram when #pragma SDS data

sys port(ArrayName : AFI) was used. To get a clear understanding of the difference

in ACP and AFI, two accelerators using single stream were created and one uses ACP

(the path is highlighted in green) and the other uses HP port (highlighted in orange).

This is an advantage when an application requires multiple accelerators and we do

3.9. STREAMING INTERFACES - CASE STUDY 35

not want to share the ports.

The following experiments aim to evaluate the effect on communication time for

various sreaming techniques using ACP ports. The case of DMA with no computation

has been illustrated in Fig. 3.7. Next, we attach a compute unit or an accelerator

to the stream. For our experiments, we consider a Chebyshev kernel which processes

single incoming stream and produces single output stream and has extensive compu-

tations. Fig. 3.12 shows the Chebyshev implementation using all three modes of data

transfer.

● ● ● ●
●

●

●

●

0

500

1000

1500

2000

2500

3000

128 256 512 1K 2K 4K 8K 16K 32K
Samples

T
im

e(
us

)

● ap_fifo
axis
sequential

Figure 3.12: Chebyshev kernel without compute optimizations

Table 3.2: Chebyshev Kernel with and without pipelining

Number of Time(us)

Samples SEQUENTIAL without pipeline SEQUENTIAL with pipeline

128 25.415 7.873

256 44.179 9.034

512 82.007 11.236

1024 157.084 15.335

2048 307.712 23.28

4096 609.167 39.804

8192 1211.849 72.472

16384 2416.434 136.838

32768 4825.291 265.579

36CHAPTER 3. SDSOC FOR PROGRAMMING HETEROGENEOUS PLATFORMS

● ● ● ● ● ●
●

●

●

0

200

400

600

800

1000

1200

128 256 512 1K 2K 4K 8K 16K 32K
Samples

T
im

e(
us

)

● ap_fifo
axis
sequential

Figure 3.13: Chebyshev kernel with pipelining

Unlike our expectation of curves similar to those in Fig. 3.7, we see that all are

performing the same and poorly. This is because we are limited by the extensive com-

putation which is increasing the Initiation Interval (II) of the accelerator. This makes

the RTT in all cases approximately the same with a performance of ≈ 6MSPS. Hence

the advantage of a streaming architecture is lost on the implementation. To bring

back the visibility of the effect of streaming, we need to optimise the computation

which can be done by pipelining.

Using the pipeline pragma to set the II to 1 for the Chebyshev filter computations,

the accelerator is able to process one sample every clock cycle. This in turn shifts

the performance deciding factor to the communication technique used. The results

obtained are shown in Fig. 3.13. Table 3.2 consolidates the profiling results of the ex-

periments mentioned. And again we see that for larger data samples, SEQUENTIAL

has the least RTT and is 2× better than other two cases.

Last but not the least, we compare the speed up achieved using accelerator in

comparison to the same implementation in software. The example considered is the

Chebyshev kernel. The result is tabulated in Table 3.3 and Fig. 3.14 shows the plot.

The experiment compares the pipelined SEQUENTIAL data transfer implementation

with the Chebyshev running on ARM. We see that the Chebyshev kernel is performing

3.9. STREAMING INTERFACES - CASE STUDY 37

Table 3.3: Chebyshev kernel profiling : Hardwre vs. Software

Number of Time(us)

Samples Hardware Software

128 7.873 10.836

256 9.034 21.266

512 11.236 41.911

1024 15.335 83.586

2048 23.28 166.253

4096 39.804 333.631

8192 72.472 685.229

16384 136.838 1378.818

32768 265.579 2757.138

● ● ● ● ● ● ● ●
●

0

500

1000

1500

2000

2500

3000

128 256 512 1K 2K 4K 8K 16K 32K
Samples

T
im

e(
us

)

● Hardware
Software

Figure 3.14: Chebyshev kernel hardware vs. software

10× faster on hardware than the software, giving ≈ 120MSPS. This serves as a strong

justification for offloading tasks to hardware accelerators.

3.9.2 Multiple Stream In - Single Stream Out

Having analysed the effect of single stream in and out, we now take a look at multiple

stream in single out data transfers. Experiments have been carried out for 2 In-1

Out, 3 In-1 Out and 4 In-1 Out for all three streaming architectures.

As expected, as the number of streams increase, the RTT also increases in all

38CHAPTER 3. SDSOC FOR PROGRAMMING HETEROGENEOUS PLATFORMS

● ● ● ● ● ● ●
●

●

0

200

400

600

800

1000

1200

128 256 512 1K 2K 4K 8K 16K 32K
Samples

T
im

e(
us

)

● 1 In − 1 Out
2 In − 1 Out
3 In − 1 Out
4 In − 1 Out

Figure 3.15: Performance of MISO streaming using SEQUENTIAL

● ● ● ● ● ● ●
●

●

0

500

1000

1500

2000

2500

3000

128 256 512 1K 2K 4K 8K 16K 32K
Samples

T
im

e(
us

)

● 1 In − 1 Out
2 In − 1 Out
3 In − 1 Out
4 In − 1 Out

Figure 3.16: Performance of MISO streaming using ap fifo port

cases. This is because all the streams share the same ACP port for streaming in and

hence the streaming is of various arrays is in a queued fashion. From the timing values

in Fig. 3.15, we can see that SEQUENTIAL outperforms all others up to four input

streams. There is ≈ 2.5× speed up using SEQUENTIAL in 4 In-1 Out compared to

ap fifo streaming whose results are shown in Fig. 3.16. In case of axis streaming, the

BRAM runs out of resources to store arrays of 32K samples for four input streams.

3.10. IMAGE PROCESSING ON ZEDBOARD USING SDSOC 39

● ● ● ●
●

●

●

0

200

400

600

800

128 256 512 1K 2K 4K 8K
Samples

T
im

e(
us

)

● 1 In − 1 Out
2 In − 1 Out
3 In − 1 Out
4 In − 1 Out

Figure 3.17: Performance of MISO streaming using axis port

Hence the Fig. 3.17 only plots timing till 8K samples. But even at sample count of

8K we see that SEQUENTIAL is better than axis streaming.

3.10 Image Processing on Zedboard using SDSoC

The need for image processing was explained in Section 2.4.1. In the real world, the

applications deal with video data rather than still images. But video is nothing but

streaming frames of still images. Hence we perform experiments using still images,

which can later be extended to video stream. The experiments focus on the spatial

grey level transforms which have been described briefly in Section 2.4.2.

We first consider a simple application of determining the negative or inverse of an

image. The image used is grey scale in .pgm format. A header is used to read the

image and store the pixel values in a buffer that is allocated using the API sds alloc

as shown in Fig. 3.18.

The processing is done in terms of float. Two functions implement computing

the negative - one on software or ARM and the other on hardware or FPGA. The

compute function that is being accelerated is shown in Fig. 3.19. Adhering to the

coding guidelines mentioned in Section 3.7.2, the function to be offloaded to hardware

40CHAPTER 3. SDSOC FOR PROGRAMMING HETEROGENEOUS PLATFORMS

pgm_t ipgm;

/* Image file input */

readPGM(&ipgm, "/mnt/lena.pgm");

width = ipgm.width;

height = ipgm.height;

in_image = (float *)sds_alloc(width * height * sizeof(float));

out_image = (float *)sds_alloc(width * height * sizeof(float));

for(i = 0; i < width; i++)

{

for(j = 0; j < height; j++)

{

((float*)in_image)[(width*j) + i] = (float)ipgm.buf[width*j + i];

}

}

Figure 3.18: Reading the image and allocating memory

is in a separate .c file and accessed from main using its header file.

for(i = 0; i < width; i++)

{

for(j = 0; j < height; j++)

{

((float*)out_image)[(width*j) + i] = 255 - ((float*)in_image)[(width*j) + i];

}

}

Figure 3.19: Compute function to be accelerated

Both software and hardware computations can be timed using the SDSoC API

sds clock counter(void) as shown in Fig. 3.20.

We can also check if the output of hardware computation matches the expected

software computation. Finally, the processed image bytes are written back to form

the output image using the pgm format headers as shown in Fig. 3.21. Also, note

that the objects allocated using sds alloc and the pgm type objects are to be freed at

the end of the program as shown in Fig. 3.21.

Once the compilation is successful, the contents of sd card folder along with the

image to be processed is copied on to the SD Card. To execute the application,

3.10. IMAGE PROCESSING ON ZEDBOARD USING SDSOC 41

#define sw_sds_clk_start() { sw_sds_counter = sds_clock_counter();

sw_sds_counter_num_calls++; }

#define hw_sds_clk_start() { hw_sds_counter = sds_clock_counter();

hw_sds_counter_num_calls++; }

#define sw_sds_clk_stop() { unsigned long long tmp = sds_clock_counter(); \

sw_sds_counter_total += ((tmp < sw_sds_counter) ? (sw_sds_counter - tmp): (tmp -

sw_sds_counter)); }

#define hw_sds_clk_stop() { unsigned long long tmp = sds_clock_counter(); \

hw_sds_counter_total += ((tmp < hw_sds_counter) ? (hw_sds_counter - tmp): (tmp -

hw_sds_counter)); }

#define sw_avg_cpu_cycles() (sw_sds_counter_total / sw_sds_counter_num_calls)

#define hw_avg_cpu_cycles() (hw_sds_counter_total / hw_sds_counter_num_calls)

.

.

hw_sds_clk_start();

negative(in_image, out_image, width, height);

hw_sds_clk_stop();

sw_sds_clk_start();

negative_sw(in_image, out_image_sw, width, height);

sw_sds_clk_stop();

.

.

printf("\n Average SW cycles : %llu \n", sw_avg_cpu_cycles());

printf("\n Average HW cycles : %llu \n", hw_avg_cpu_cycles());

Figure 3.20: Profiling the hardware and software compute times

opgm.width = height ;

opgm.height = width ;

/* Image file output */

normalizeF2PGM(&opgm, out_image);

writePGM(&opgm, "output_hw.pgm");

destroyPGM(&ipgm);

sds_free(in_image);

sds_free(out_image);

Figure 3.21: Create output image and free memory objects

navigate to the folder containing the .elf and the output image in .pgm format will

be created. The output can be viewed by transferring to a workstation. The input

image used for the experiment and the corresponding output is shown in Fig. 3.22.

To evaluate the effect of different data transfer techniques provided by SDSoC, we

can mention them as pragmas in the header file just before the function declaration

42CHAPTER 3. SDSOC FOR PROGRAMMING HETEROGENEOUS PLATFORMS

(a) (b)

Figure 3.22: 512x512 input image and its negative

as shown in Fig. 3.23.

#ifndef NEGATIVE_H_

#define NEGATIVE_H_

#pragma SDS data access_pattern(in_image:SEQUENTIAL, out_image:SEQUENTIAL)

int negative(float in_image[512*512], float out_image[512*512], int width, int

height);

#endif /* NEGATIVE_H_ */

Figure 3.23: Using Data Transfer pargmas

Various data packing and transfer techniques have been explored to determine the

best performance without using compute optimisations. Initially the image data was

of 32-bit floating point precision. Taking into account the fact the pixels of an image

have values ranging from 0-255 and can be represented by 8 bits, and the lack of any

complex computation, 8-bit representation was used. Furthermore, four 8-bit data

was packed to form 32 bits and the resulting packed bits were transferred and the

performance measured. The results of the mentioned experiments is tabulated below.

From the Table 3.4, we can see that the computation time for each data transfer

reduces as we move from 32-bit to 8-bit precision and finally use packing of data to

be transferred. In case of 128x128 image size, we see that software is always giving

3.10. IMAGE PROCESSING ON ZEDBOARD USING SDSOC 43

Table 3.4: Profiling computation of negative of an image

Image Size Data Type Software(ms) Hardware

Data Copy(ms) Data Zero Copy(ms) SEQUENTIAL(ms)

float 0.47 1.576 7.952 1.271

128x128 unsigned char 0.112 0.398 6.913 0.239

8-bit packed 0.06 0.247 1.617 0.196

float 29.55 NA 172.75 23.93

512x512 unsigned char 9.784 NA 114.88 3.68

8-bit packed 4.43 NA 25.82 3.49

the best performance. It could be because the size of data involved in computation

is not large enough to mask the cost of DMA transfers. But in case of 512x512 size

image, we see that SEQUENTIAL is faster than software. This further supports our

claim of needing large data sizes to be transferred to hardware so as to achieve the

benefit of hardware for computation. The Data Copy pragma is mentioned as NA

for 512x512 image size as it exceeds the BRAM capacity and hence cannot be copied

to local memory. Data zero copy timing being the highest could be attributed to

the use of shared memory for data communication between software and hardware.

SEQUENTIAL turns out to be the most efficient among other data transfer types as

expected. It is to be noted that in all the cases the accuracy of the function was not

compromised while trying to achieve faster data transfer.

Thus, from the results presented we can say that using SDSoC for defining func-

tions to be accelerated does provide us considerable speed up compared to software

implementation. The fact that such performance is achieved even with the high levels

of abstraction is appreciable. Adding to the advantage is the flexibility that helps a

pure C implementation to be offloaded to hardware with minimal changes(so as to

follow hardware function coding guidelines) which makes SDSoC an easy to use and

effcient tool.

Chapter 4

OpenCL for programming

Heterogeneous platforms

In Chapter3, we explored how to program a CPU-FPGA SoC using the Xilinx high-

level synthesis tool SDSoC. SDSoC required us to develop a C/C++ application and

everything that follows to offload required computation to hardware was abstracted

from us. The only way to interact and set certain hardware performance related

properties was through pragmas. We now explore the OpenCL programming model

for Zedboard. We have used the OpenCl version 1.2.

4.1 Why OpenCL?

The introduction of new architecture brings along with it the challenge of program-

ming them. Most of the compute units that make up a heterogeneous system use a

vendor dependent development environment.

Consider the GPU ,which was designed for graphics processing, but its parallel ar-

chitecture made it suited for data parallel processes. The release of NVIDIAs CUDA

programming language finally opened up the possibility of GPGPU (General Purpose

GPU). But the CPU cannot be completely replaced either. The CPU manages exe-

cution of code, managing the file system and user interface as GPU has no Operating

System running on it. 2.2.2 touched upon briefly the CUDA programming model.Now

44

4.1. WHY OPENCL? 45

look at the accelerator Cell/B.E., known for its use on the PLAYSTATION3. The

Cell/B.E. is programmed using the ”Cell SDK” released by IBM [18]. The Cell/B.E.

requires specific compilers for its Power Processing Element (PPE)s as control units

and 8 Synergistic Processing Element (SPE)s as compute units. Although it does not

extend a language like the CUDA, the SPE must be controlled by the PPE, using

specific library functions provided by the Cell SDK [18]. We observe that both the

heterogeneous systems have same structure where CPU/PPE is used for control and

GPU/SPE does the compute. There are other systems using similar models, for ex-

ample, DSps managed by CPUS in embedded electronics for signal processing. But

in all these cases, inspite of similar procedures being used, the user has to work with

APIS that are very different from one another.

Summarizing the above, the common characteristics in the above mentioned sys-

tems is that:

• They use SIMD hardware to perform vector-ized operation

• They use a processor to control numerous compute units

• The systems have multi-tasking capabilities

But since the software development method for each combination is unique, soft-

ware development and services related to each the platform has to start from scratch.

This is quite inconvenient, requiring programmers to learn a new set of APIs and

languages. And with every new release, there is a possibility that what was learnt

might be outdated. This is especially more common in heterogeneous platforms, as

programming methods can be quite distinct from each other [19]. Add to it the

fact that the software development process might have different levels of diffculty,

choosing hardware platforms might not be very easy. The solution to this problem is

”OpenCL”.

46CHAPTER 4. OPENCL FOR PROGRAMMING HETEROGENEOUS PLATFORMS

4.2 OpenCL for Heterogeneous Platforms

OpenCL is ”a framework suited for parallel programming of heterogeneous systems”

using a standardized coding method independent of the processor types or ven-

dors [20]. It is standardized by the Khronos Group, consisting of members from

the processor or multi-core software vendors like AMD, Apple, IBM, Intel, NVIDIA,

Texas Instruments, Sony, Toshiba [19]. The standardization aims at enabling use of

one language to programs multiple devices like CPU, GPU, Cell/B.E., DSP, etc. For

example, an OpenCL supported multi-core CPU and GPU can be used in sync where

CPU with its SSE supporting cores and entire GPU can aid in parallel processing.

With heterogeneous models being used largely from Embedded Systems to Desktops,

OpenCL looks like the clever choice to consider.

One of the basic concepts that we need to know about OpenCL is that of Host and

Device. OpenCL defines the control processors and compute processors as follows:

• Host-Environment comprising of CPU and its memory to control the device

through software.

• OpenCL Devices-Environment made up of devices like GPU, Cell/B.E., DSP

which executes the compute logic.

Conventionally an OpenCL device packs multiple Processing Element (PE) which

combine together to form multiple Compute Unit (CU). For example, a GPU can be

described in OpenCL as follows:

• OpenCL Device - GPU

• Compute Unit - Streaming Multiprocessor (SM)

• Processing Element - Scalar Processor (SP)

The code executing on CPU is called the ’Host Code’ and on the device is called

’Kernel”. The OpenCL kernel language is based on C but the kernels can be called

from host using languages such as C, C++, Java, Python, JavaScript, Haskell, Perl,

Ruby, etc. This enables portability and reuse of existing OpenCL kernels and results

4.2. OPENCL FOR HETEROGENEOUS PLATFORMS 47

in flexible support for GPGPU computing across a number of development environ-

ments. Developing OpenCL programs require the following two:

• OpenCL Compiler

• OpenCL Runtime Library

OpenCL compilers are designed for a particular environment. They are used to

compile the source code that is executed on the device. The controlling processor

manages the allocation of memory and loading of binary. The execution process that

is common to all heterogeneous combinations is coded by the programmer. The set

of commands that are used by the host for compilation is contained in the ”OpenCL

Runtime Library,” which is designed to be used for that particular environment [19].

Once the host is programmed using OpenCL runtime API, it is linked to the OpenCL

runtime library implemented for the host-device combination.

Another important aspect is the memory and its management. OpenCL allows

the kernel to access the following 4 types of memory:

1. Global Memory or the device’s main memory that can be read from all work

items.

2. Constant Memory which also can be read from all work items but its utilization

efficiency can overtake global memory if constant memory cache is supported

by hardware.

3. Local Memory which is the physically shared memory on each compute unit

that can be read from work items within a work group.

4. Private Memory which is physically the registers used by each processing ele-

ment and can only be used within each work item.

Among these, the host is capable of reading and writing to the global, constant,

and the host memory. The device memory can only be accessed by the kernel. There

are no rules regarding how the host and the OpenCL device are connected. In the

case of CPU + GPU, PCI Express is used most often. For CPU servers, the CPUs

can be connected over Ethernet, and use TCP/IP for data transfer [19].

48CHAPTER 4. OPENCL FOR PROGRAMMING HETEROGENEOUS PLATFORMS

Now that we have an overview of OpenCL, we can explore the basic program flow.

4.3 OpenCL APIs

The Kernel code represents the function to be executed on the device. The kernel ac-

cess of global, constant, local, and private memory, is specified by global, constant,

local, private, respectively. If this is not specified, it will assume the address space

to be private, which is the device-side register. The host program tells the device

to execute the kernel using the OpenCL runtime APIs which have been explained

briefly below. For more details refer [21].

1. ret = clGetPlatformIDs(1, &platform id, &ret num platforms);

This allows the host program to discover OpenCL devices, which is returned as

a list to the pointer platform id of type cl platform id.

2. ret = clGetDeviceIDs(platform id, CL DEVICE TYPE DEFAULT, 1, &device id,

&ret num devices);

This selects the device to be used. CL DEVICE TYPE DEFAULT selects the

platforms default device. It can be replaced by CL DEVICE TYPE GPU or

CL DEVICE TYPE CPU depending on the desired target device being CPU

or GPU respectively.

3. context = clCreateContext(NULL, 1, &device id, NULL, NULL, &ret);

This creates an OpenCL context for the desired devices.

4. command queue = clCreateCommandQueue(context, device id, 0, &ret);

The command queue serves as a connection between host and device and is used

to control the device. For each device, one or more command queue objects must

be created.

5. memobj = clCreateBuffer(context, CL MEM READ WRITE, MEM SIZE *

sizeof(char), NULL, &ret);

This creates a memory object which allows the host to access the device memory.

4.3. OPENCL APIS 49

6. Read Kernel File :

Since the kernel can only be executed via the host-side program, the host pro-

gram must first read the kernel program. Using a standard fread(), the kernel,

which is in the form of an executable binary, or a source code which must be

compiled using an OpenCL compiler, can be read.

7. program = clCreateProgramWithSource(context, 1, (const char **)&source str,

(const size t *)&source size, &ret);

This creates a program object which mentions in which context the read source

code is to be executed. clCreateProgramWithBinary() is an alternative [21].

8. ret = clBuildProgram(program, 1, &device id, NULL, NULL, NULL);

The program has to be built to create a binary for a particular target device. It

is also possible to specify compiler option string as part of this API. This step is

unnecessary if the program is created from binary using clCreateProgramWith-

Binary().

9. kernel = clCreateKernel(program, ”hello”, &ret);

This creates the kernel object corresponding to each kernel function using the

kernel name. Multiple kernel functions require multiple clCreateKernel() calls.

10. ret = clSetKernelArg(kernel, 0, sizeof(cl mem), (void *) &memobj);

This sets the kernel arguments using the kernel object, the argument number

of the kernel that is being referred to, the pointer to the argument and the

argument size.

11. ret = clEnqueueTask(command queue, kernel, 0, NULL, NULL);

This performs the task parallel kernel execution which is asynchronous by de-

fault. Synchronization is possible using ’event objects’ to wait for completion

of a kernel execution.

OpenCl also supports data-parallel kernel execution using the following API :

ret = clEnqueueNDRangeKernel(command queue, kernel, 1, NULL,

&global item size, &local item size, 0, NULL, NULL);

50CHAPTER 4. OPENCL FOR PROGRAMMING HETEROGENEOUS PLATFORMS

The dimension of the data we are dealing with, the total number of work items

that can execute a particular kernel in parallel and the number of work items

to be grouped together in a work group can be specified in the API. Choosing

the work group values based on the device is key in efficient optimization. Refer

4.4 for details data parallel execution. execution.

12. ret = clEnqueueReadBuffer(command queue, memobj, CL TRUE, 0,

MEM SIZE * sizeof(char), string, 0, NULL, NULL);

This copies the results from device to host. The data copy instruction is placed

in the command queue before it is processed. The function can be made syn-

chronous by using the ”CL TRUE” argument , which forces the host to wait for

data copy to finish before executing next command.”CL FALSE” on the other

hand makes the copy asynchronous.

13. Free Objects :

This fress all the OpenCL objects created.

ret = clReleaseKernel(kernel);

ret = clReleaseProgram(program);

ret = clReleaseMemObject(memobj);

ret = clReleaseCommandQueue(command queue);

ret = clReleaseContext(context);

14. Profiling Kernels :

The OpenCL kernels can be timed most effectively using the OpenCL profil-

ing API provided by Khronos. Firstly, the profiling action must be enabled

while creating the command queue by setting the profiling related argument

as CL QUEUE PROFILING ENABLE. The ’event’ flags are used to determine

the start and end of kernel execution. The API for profiling is as shown below :

clGetEventProfilingInfo(event, CL PROFILING COMMAND START,

sizeof(time start), &time start, NULL);

clGetEventProfilingInfo(event, CL PROFILING COMMAND END,

sizeof(time end), &time end, NULL);

4.4. DATA PARALLELISM IN OPENCL 51

Compute the difference in values of time start and time end to determine the

time taken for kernel execution. Note that the time is returned in nano-

seconds. Accurate timing requires that OpenCL devices correctly track time

across changes in device frequency and power states. The CL DEVICE PROFILING

TIMER RESOLUTION can be used to determine the resolution of the timer

being used to query.

In real-life applications, the flow of the OpenCL application development is an

iteration over setting kernel arguments, executing the kernel and finally device-to-

host copy. This suggests that we do not have to create/destro objects for every

iteration.But be aware that creating too many objects without freeing can lead to the

exhaustion of memory space at the host-side.

OpenCL has the capability of performing vectorized SIMD operations, data par-

allel processing, task parallel processing, and memory transfers. The use of kernels

efficiently depending on the nature of the task and the target architecture makes

OpenCL not only suitable for programming software accelerators, but also for defining

the implementation of a custom hardware accelerator. There is no need for modifying

main logic of the applications which is part of the kernel code for porting across plat-

forms. The changes from one platform to another would be the available resources

in terms of memory and compute units which determine the definition of work group

sizes. These modifications can be easily done at the host code to adapt efficiently to

the new platform and have maximum hardware utilization.

4.4 Data Parallelism in OpenCL

As mentioned in 3.6, OpenCL allows for both data parallel and task parallel oper-

ations. In OpenCL, the difference between the two is whether the same kernel or

different kernels are executed in parallel [19]. Since our focus is mainly on Image pro-

cessing, it implies that the computations are of single instruction multiple data(SIMD)

type. And a parallel architecture is the best for such computation. Hence we now

take a closer look at data parallel kernel execution in OpenCL.

52CHAPTER 4. OPENCL FOR PROGRAMMING HETEROGENEOUS PLATFORMS

Multiple processors can run the same kernel using clEnqueueNDRangeKernel().

Each compute unit runs a group of kernel and each group is assigned an ID. Another

ID for each kernel within each compute unit, which is run on each processing element.

The ID for the compute unit is called the Workgroup ID, and the ID for the processing

element is called the Work Item ID. The OpenCL runtime API assigns IDs for each

item once the total number of work items (global item) and the number of work items

to be run on each compute unit (local item) is input by the user. This ID is used to

access the index-space. The number of workgroups can be computed by dividing the

number of global items by the number of local items.The relationship between the

global work-item ID, local work-item ID, and the work-group ID are shown below in

Fig. 4.1.

Figure 4.1: Concept of work groups and work items

Data parallel processing follows two steps :

• Get work-item ID

• Process the subset of data corresponding to the work-item ID

One must note that a work-group must consist of at least 1 work-item, and the maxi-

mum is dependent on the platform [19]. Ynchronisation and sharing of local memory

is allowed between the work-items within a work-group. The number of work-groups

and work items has to be passed as the API arguments, as suggested earlier. The data

to process can have up to 3 dimensions. The number of work-items per work-group

is consistent throughout every work-group. The number of work-items should be di-

visble evenly among the work-groups, lack of which the fails the call to clEnqueueN-

DRangeKernel() and returns the error value CL INVALID WORK GROUP SIZE.

4.5. ONLINE AND OFFLINE COMPILATION 53

4.5 Online and offline compilation

Last but not the least is the feature to compile online and offline using OpenCL.

Fig. 4.2 gives an idea about the concept.

Figure 4.2: Concept of online and offline compilation

In ”offline-compilation”, the binary generated using a pre-built OpenCL kernel is

loaded using the OpenCL API. This reduces the time between starting the host code

and executing the kernel. The only problem in this case is that the size of executable

kernel increases if we intend to run it on various platforms as we need to include

kernels for multiple binaries.

In ”online-compilation”, the OpenCL runtime library builds the kernel from the

source.the kernel is built from source during runtime using the OpenCL runtime

library. It has an advantage that we gain a device-independent binary at the host

side. Also, we need not compile the kernel every time. However, this is not suited for

embedded systems that require real-time processing.

One can choose either of the compilation methods depending on the need.

4.6 Image Processing on Zedboard using OpenCL

We again explore the performance of the grey level spatial transforms like in 3.10 and

few spectral transform using OpenCL. We implement the applications on Zedboard

54CHAPTER 4. OPENCL FOR PROGRAMMING HETEROGENEOUS PLATFORMS

and compare the performance of pure C implementation with OpenCl on Zedboard

ARM. We also compare the execution times of an OpenCL code with respect to a

pure c implementation.

Before we can start executing OpenCL kernels on Zedboard or any other Linux

targets, there are a set of pre-requisites that must be fulfilled. Firstly we require an

Operating System on the Zedboard. The OS chosen is Xilinux , a linux version for

Zedboard which is of Ubuntu 12.04. It can be used to integrate the linux running

on the ARM directly to the FPGA through /dev/. The process of installing Xilinux

on Zedboard with the base Xillybus bitstream can be seen in detail in [22]. Once

the OS is in place, we need to set up the Zedboard so as to be able to identify and

execute OpenCL code. For this purpose, we need to first install a portable and open

source version of OpenCL that is compatible with ARM. For wide support, POCL

was chosen. Refer [23] to know about POCL in detail. Installing POCL requires a

set of dependencies to be installed first whose details can be seen in [24].

cl_platform_id platform_id = NULL; //platform object

cl_device_id device_id = NULL; //device object

cl_context context = NULL; //context object

cl_command_queue queue = NULL; //command queue

cl_program program = NULL; //program object

cl_mem xmobj = NULL; //memory objects

cl_mem rmobj = NULL;

cl_kernel trns = NULL; //kernel object

cl_uint ret_num_devices; //ret types for various API calls

cl_uint ret_num_platforms;

cl_int ret;

Figure 4.3: Creating OpenCL objects

For profiling of applications, we use the OpenCL API indexed in Section 4.3 for

determining the kernel execution time and PAPI to profile the time for every other

API function call. PAPI or Performance API is an API that can be used for effective

profiling in ARM as well as intel targets. In both cases, the PAPI needs to be compiled

from source to support the profiling being used. The installation of PAPI is given in

4.6. IMAGE PROCESSING ON ZEDBOARD USING OPENCL 55

detail in [24]. Now we are all set to execute and profile OpenCL applications on both

our target platforms Zedboard ARM and x86 processors.

Again we first consider a simple application of determining the negative of an

image. The host code will deal with reading the image and passing it onto the kernel

which then performs the computation and returns the processed values to the host

code where the output image is created. Consider the host code which initially creates

all the required OpenCl objects as shown in Fig. 4.3.

Note that the OpenCL version of standard data types like uint is prefixed by ’cl ’.

Once the OpenCL objects and host-end objects are created, we move on to reading

the kernel code which is a ’.cl’ file as shown in Fig. 4.4.

FILE *fp;

const char fileName[] = "./negative.cl";

/* Read kernel source code */

fp = fopen(fileName, "r");

if (!fp)

{

fprintf(stderr, "Failed to load kernel.\n");

exit(1);

}

source_str = (char *)malloc(MAX_SOURCE_SIZE);

source_size = fread(source_str, 1, MAX_SOURCE_SIZE, fp);

fclose(fp);

Figure 4.4: Read and store the kernel code

Once the image is read and stored in host-side buffer, we move on to initialising

the target device and creating the communication interface through a series of API

calls mentioned in Section3.6 as shown in Fig. 4.5.

Next the kernel program is built, arguments set and offloaded for data parallel

execution using clEnqueueNDRangeKernel() as shown in Fig. 4.6. The kernel code

that computes the negative is shown in Fig. 4.7.

Note that there are no loops going over the width and height of the image as one

would expect in normal C code. This is because we set the global worksize as the

size of the image and the OpneCL runtime automatically handles iterating over the

entire global work space thereby covering every pixel of the image.

56CHAPTER 4. OPENCL FOR PROGRAMMING HETEROGENEOUS PLATFORMS

/* Get platform and device information */

ret = clGetPlatformIDs(1, &platform_id, &ret_num_platforms);

ret = clGetDeviceIDs(platform_id, CL_DEVICE_TYPE_DEFAULT, 1, &device_id, &

ret_num_devices);

/* OpenCL creating context*/

context = clCreateContext(NULL, 1, &device_id, NULL, NULL, &ret);

/* Createing command queue */

queue = clCreateCommandQueue(context, device_id, CL_QUEUE_PROFILING_ENABLE, &ret);

/*Create memory buffer */

xmobj = clCreateBuffer(context, CL_MEM_READ_WRITE, width*height*sizeof(cl_float),

NULL, &ret);

rmobj = clCreateBuffer(context, CL_MEM_READ_WRITE, width*height*sizeof(cl_float),

NULL, &ret);

Figure 4.5: Initialisation of OpenCL device

/* Create kernel program from read source */

program = clCreateProgramWithSource(context, 1, (const char **)&source_str, (const

size_t *)&source_size, &ret);

/* Build kernel program */

ret = clBuildProgram(program, 1, &device_id, NULL, NULL, NULL);

/* OpenCL create kernel */

trns = clCreateKernel(program, "negative",&ret);

/* set kernel arguments */

ret = clSetKernelArg(trns, 0, sizeof(cl_mem), (void *)&rmobj);

ret = clSetKernelArg(trns, 1, sizeof(cl_mem), (void *)&xmobj);

ret = clSetKernelArg(trns, 2, sizeof(cl_int), (void *)&width);

/* set global and local work size*/

gws[0] = width;

gws[1] = height;

/*Enque task for parallel execution*/

ret = clEnqueueNDRangeKernel(queue, trns, 2, NULL, gws, NULL, 0, NULL, &event);

Figure 4.6: Offloading task to target device

Profiling the kernel execution can be done as shown in Fig. 4.8.

Finally we read the processed data back to host from device memory and create

4.6. IMAGE PROCESSING ON ZEDBOARD USING OPENCL 57

__kernel void negative(__global float *dst, __global float* src, int n)

{

unsigned int xgid = get_global_id(0);

unsigned int ygid = get_global_id(1);

unsigned int iid = ygid * n + xgid;

unsigned int oid = xgid * n + ygid;

dst[iid] = 255 - src[iid];

}

Figure 4.7: Kernel code computing negative of input image

clWaitForEvents(1, &event); //wait for kernel execution to finish

clFinish(queue); //check that queued kernels are all executed

clGetEventProfilingInfo(event, CL_PROFILING_COMMAND_START, sizeof(time_start), &

time_start, NULL);

clGetEventProfilingInfo(event, CL_PROFILING_COMMAND_END, sizeof(time_end), &time_end

, NULL);

Figure 4.8: Profiling the kernel

the output as shown in Fig. 4.9.

/* Read from memory buffer */

ret = clEnqueueReadBuffer(queue, rmobj, CL_TRUE, 0, width*height*sizeof(cl_float),

rm, 0, NULL, NULL);

/* Output image*/

normalizeF2PGM(&opgm,rm);

writePGM(&opgm, "output.pgm");

Figure 4.9: Read from device to host memory

The output images are showin in Fig. 4.10

Following similar coding style and reusing upto 90% of the host code, we can

develop several applications. Few of the other grey level spatial transform results has

been shown below.

• Transpose : A 90° rotate left operation has been used on a rectangular image

whose results are shown in Fig. 4.11.

• Power Law Transform : A γ value of 2 has been used to give the output image

58CHAPTER 4. OPENCL FOR PROGRAMMING HETEROGENEOUS PLATFORMS

(a) (b)

Figure 4.10: 400x225 input image and its negative

(a) (b)

Figure 4.11: Input image and transposed output

as shown in Fig. 4.12

(a) (b)

Figure 4.12: Input image and power law transformed output

4.6. IMAGE PROCESSING ON ZEDBOARD USING OPENCL 59

• Log Transform : The log trasnformed image is shown in Fig. 4.13. We can see

that the range of pixel values have been spread out to yield a lighter image

compared to input.

(a) (b)

Figure 4.13: Input image and log transformed output

• Thresholding : The two level image output for a threshold value of 50 is shown

in Fig. 4.14. The value can be shifted up or down for differnt results.

(a) (b)

Figure 4.14: Input image and thresholded output

• Convolutional transforms : In this case the mask used is also transferred from

host to device along with the input image. The convolutional kernel usually

has four loops - two iterating over image and other two over the mask. But in

case of OpenCL kernel, we have only the loops iterating over the masks which

reduces the code to that shown in Fig. 4.15.

Blurring can be achieved using convolution using more than one kind of mask.

The result of using a Box filter is shown in Fig. 4.16.

60CHAPTER 4. OPENCL FOR PROGRAMMING HETEROGENEOUS PLATFORMS

__kernel void gaussianblur(const __global float * const input,

__constant float * const mask,

__global float * const output,

const int inputWidth,

const int maskWidth)

{

const int x = get_global_id(0);

const int y = get_global_id(1);

float sum = 0;

for (int r = 0; r < maskWidth; r++)

{

const int idxIntmp = (y + r) * inputWidth + x;

for (int c = 0; c < maskWidth; c++)

sum += ((mask[(r * maskWidth) + c])/9) * input[idxIntmp + c];

}

output[y * get_global_size(0) + x] = sum;

}

Figure 4.15: Read from device to host memory

(a) (b)

Figure 4.16: Blurring of image

Edge detection is another application that uses convolution. The result of using

a Sobel edge detector is shown in Fig. 4.17(a) and 4.17(b). The output of

horizontal and vertical edge detection can also be combined to detect all the

edges in the image by summing the magnitudes of former.

Now that we have explored the correctness of OpenCL based still image processing

applications, we try to quantify the performance by measuring the kernel execution

time and comparing with a pure C implementation. We have used the profiling API

mentioned in Section 4.3 to measure the performance in case of OpenCL and PAPI

in case of C implementation. The results are tabulated and plotted as shown below.

4.6. IMAGE PROCESSING ON ZEDBOARD USING OPENCL 61

(a) Horizontal Edges using Sobel (b) Vertical Edges using Sobel

Figure 4.17: Sobel filter for edge detection

Table 4.1: OpenCl kernel and C function execution time

Application Time(ms)

OpenCL kernel C function

Blurring 4609.718 20.792

Log 4393.950 48.016

Negative 4387.646 2.802

Power Law 4365.141 59.749

Thresholding 4363.409 48.016

Transpose 4404.033 1.659

1e+01

1e+03

1e+05

Blurring Log Negative Power Law Thresholding Transpose

Application

T
im

e(
us

)
in

 lo
g

sc
al

e

OpenCL
C

Figure 4.18: Comparing OpenCL and C execution time

From the results in Fig. 4.18, we see that the OpenCL execution time is higher

than the corresponding C implementation. This can be attributed to the overheads

62CHAPTER 4. OPENCL FOR PROGRAMMING HETEROGENEOUS PLATFORMS

of using POCL. In fact this overhead cost might even explain why there isn’t much

difference in the execution time of different kernels as can be seen from Table 4.1.

Though this might make us wonder why use OpenCL at all, we must recall that

the main aim of using OpenCL is to achieve portability across platforms. Of course,

performance portability at a high cost of performance degradation is not acceptable.

But from the results it is evident that the gap in performance is only in 10s of

milliseconds. Hence the use of OpenCL can be justified for platform portable SoC

applications.

Chapter 5

Conclusions and Future Work

This chapter concludes and summarizes this report. Furthermore, in this chapter we

discuss future research directions in detail.

5.1 Conclusions

The main focus of the thesis was to explore ways to carry out computations using a

heterogeneous platform, specifically Xilinx Zynq The challenge and time involved in

programming the platform (Xilinx Zynq) using its own programming model brought

up the need to use tools (Xilinx SDSoC) which provided us with programming ab-

straction. The experiments were designed to evaluate the two main performance

deciding factors when using FPGA as an accelerator, namely communication and

computation. With respect to communication we observed that offloading a task to

hardware is worth the effort only when the size of data being transferred is large so as

to mask the overhead of launching DMA transfers. We also observed that streaming

architecture option provided by SDSoC, SEQUENTIAL, is the fastest. With re-

spect to computation, we observed that just offloading a function to hardware is not

suffiecient to extract maximum performance. Techniques like pipelining, especially

when data is streamed, increases the performance efficiency 20×. We see that despite

the high levels of abstraction, it is possible to obtain considerably fast implementation

63

64 CHAPTER 5. CONCLUSIONS AND FUTURE WORK

using SDSoC. Even if it is not maximum achievable performance (considering manu-

ally designed custom hardware modules), the speed ups are encouraging enough and

makes SDSoC a perfect choice for non-hardware engineers who wish to use FPGA for

acceleration.

We use OpenCL to aim source code portability across various platforms. The

experiments focused on first understanding the OpenCL programming model and

learning how to develop an OpenCL application depending on the target device and

the type of computation required. Though OpenCL includes even higher level of

abstraction, it still requires that the user has the knowledge of underlying architecture

so as to extract maximum performance. Our experiments used generic codes and we

observed that the OpenCl kernel execution times were higher than C implementation.

This could be attributed to the overheads of using POCL. But nevertheless using

OpenCL eliminates the need to know various programming models corresponding to

each device being used. Thus, easing the effort and saving the time spent on porting

applications to different platform, OpenCL stands out a strong choice for developing

applications for heterogeneous platforms.

5.2 Future work

With respect to SDSoC, there are a few areas that are yet to be explored, like

• Real Time Video Processing: Processing video in real time requires highly

efficient and optimised application development. This would lead to exploring

various communication ports other than ACP and also other compute optimi-

sations like loop unrolling and array partitioning. We also plan to explore gen-

eration of high speed streaming interfaces using SDSoC so that custom stream

processors can be integrated with the SDSoC generated streaming interfaces.

• Machine Learning: Machine learning is one of the most popular applications

requiring extensive parallel computations with a need for high accuracy and

speed. We plan to use SDSoC to offload machine learning functions to the

FPGA fabric. It is extremely easy to explore the design space using SDSoC due

to the high level of programming abstractions.

5.2. FUTURE WORK 65

With respect to OpenCL we can examine the following areas :

• Memory handling in OpenCL: One of the most important contributor to

time spent for kernel execution is data access. for small datasets it is simple

as all the data can be copied to local memory. But in case of large data sets,

they have to be efficiently handled and shared so as to minimize the data access

overheads.

• OpenCL for FPGA: Currently only Altera has developed its version of OpenCL

called AOCL that can offload functions to FPGA fabrics in Altera SoCs. There

is no open source feature of detecting FPGA as a device for other SoCs. We

plan to develop OpenCL drivers for SDSoC generated hardware accelerators.

• Machine Learning: Applications like convolutional neural networks (CNN)

can be accelerated by running the convolution kernels on target device while all

the convolution layer maps can be handled at the host side.

Thus, working towards achieving the set milestones will aid us in bringing to

light the techniques that will help extract maximum performance using SDSoC and

OpenCL. This in turn will help in popularizing SDSoC and OpenCL as good choices

for heterogeneous platform computing.

Bibliography

[1] End of moore’s law. [Online]. Avail-

able: http://www.telegraph.co.uk/technology/2016/02/25/

end-of-moores-law-whats-next-could-be-more-exciting/

[2] M. M. Waldrop, “The chips are down for moores law,” Nature News, vol. 530,

no. 7589, p. 144, 2016.

[3] Wiki on heterogeneous computing. [Online]. Available: https://en.wikipedia.

org/wiki/Heterogeneous computing?

[4] Amd’s ”what is heterogeneous computing?”. [Online]. Avail-

able: http://developer.amd.com/resources/heterogeneous-computing/

what-is-heterogeneous-computing/

[5] B. S.Z.Ahmad, S.R.Xu and S.F.Ahmad, “Research and implementation of hybrid

parallel computing for force field calculation,” Proceedings of the International

Conference EITI 2014, Shenzhen, 16-17 August 2014, pp. 21–24, 2014.

[6] V. H. Naik and C. S. Kusur, “Analysis of performance enhancement on graphic

processor based heterogeneous architecture: A cuda and matlab experiment,” in

Parallel Computing Technologies (PARCOMPTECH), 2015 National Conference

on, Feb 2015, pp. 1–5.

[7] H. Yazdanpanah, A. Shouraki, and N. Jamali, “Evaluation performance of task

scheduling algorithms in heterogeneous environments,” Evaluation, vol. 138,

no. 8, 2016.

66

http://www.telegraph.co.uk/technology/2016/02/25/end-of-moores-law-whats-next-could-be-more-exciting/
http://www.telegraph.co.uk/technology/2016/02/25/end-of-moores-law-whats-next-could-be-more-exciting/
https://en.wikipedia.org/wiki/Heterogeneous_computing?
https://en.wikipedia.org/wiki/Heterogeneous_computing?
http://developer.amd.com/resources/heterogeneous-computing/what-is-heterogeneous-computing/
http://developer.amd.com/resources/heterogeneous-computing/what-is-heterogeneous-computing/

BIBLIOGRAPHY 67

[8] Introduction to openmp. [Online]. Available: https://en.wikipedia.org/wiki/

OpenMP

[9] Cuda programming model by nvidia. [Online]. Available: http://www.nvidia.

com/object/cuda home new.html

[10] F. S. Amit Kumar, IMAGE PROCESSING IN DIABETIC RELATED CAUSES,

1st ed., ser. Springer Briefs in Forensic and Medical Bioinformatics. Springer,

1 2016, vol. 4.

[11] R. E. W. Rafael C Gonzalez, Digital Image Processing, 3rd ed., ser. Prentice-Hall.

Inc. Upper Saddle River, NJ, USA: Pearson Education, 1 2008, vol. 4.

[12] Gray level transformation. [Online]. Available: http://www.tutorialspoint.com/

[13] S. E. Gianelli, “Xilinx announces sdsoc development environment for all pro-

grammable socs and mpsocs,” Embedded Vision Alliance, 2015.

[14] Xilinx targets software developers with sdsoc. [Online]. Available:

http://www.embedded.com/electronics-blogs/max-unleashed-and-unfettered/

4438849/Xilinx-Targets-Embedded-Software-Developers-with-SDSoC

[15] Zynq-7000 All Programmable SoC Technical Reference Manual.

[16] SDSoC Environment User guide.

[17] SDSoC Environment User guide.

[18] Cell sdk by ibm. [Online]. Available: http://www.ibm.com/developerworks/

power/cell/index/

[19] Opencl programming book. [Online]. Available: https://www.fixstars.com/

[20] J. Tompson and K. Schlachter, “An introduction to the opencl programming

model,” Person Education, 2012.

[21] The OpenCL Specification.

https://en.wikipedia.org/wiki/OpenMP
https://en.wikipedia.org/wiki/OpenMP
http://www.nvidia.com/object/cuda_home_new.html
http://www.nvidia.com/object/cuda_home_new.html
http://www.tutorialspoint.com/
http://www.embedded.com/electronics-blogs/max-unleashed-and-unfettered/4438849/Xilinx-Targets-Embedded-Software-Developers-with-SDSoC
http://www.embedded.com/electronics-blogs/max-unleashed-and-unfettered/4438849/Xilinx-Targets-Embedded-Software-Developers-with-SDSoC
http://www.ibm.com/developerworks/power/cell/index/
http://www.ibm.com/developerworks/power/cell/index/
https://www.fixstars.com/

68 BIBLIOGRAPHY

[22] Getting started with Xillinux for Zynq-7000 EPP.

[23] Portable computing language. [Online]. Available: http://pocl.sourceforge.net

[24] Installing pocl and papi. [Online]. Available: https://github.com/umaurmi/

OPENCL EXAMPLES ZEDBOARD

http://pocl.sourceforge.net
https://github.com/umaurmi/OPENCL_EXAMPLES_ZEDBOARD
https://github.com/umaurmi/OPENCL_EXAMPLES_ZEDBOARD

	Introduction
	Motivation
	Contribution
	Organization

	Background
	Heterogenous Computing Platforms
	Programming Models
	OpenMP
	CUDA
	OpenCL

	FPGA Accelerators and SDSoC
	Image Processing
	Need for Image Processing
	Image Enhancement Techniques
	Spatial Transformations
	Spectral Transformations

	SDSoC for Programming Heterogeneous Platforms
	SDSoC for Zynq
	SDSoC Environment
	Design flow in SDSoC
	Cross-Compiling for ARM
	Working with SDSoC
	Creating an Application
	Executing Application on the Target platform

	SDSoC APIs
	Designing Accelerators using SDSoC
	Factors Affecting Performance
	Coding the Hardware Function

	Data Transfer in SDSoC
	SDSoC pragmas
	HLS pragmas

	Streaming Interfaces - Case Study
	Single Stream In-Out
	 Multiple Stream In - Single Stream Out

	Image Processing on Zedboard using SDSoC

	OpenCL for programming Heterogeneous platforms
	Why OpenCL?
	OpenCL for Heterogeneous Platforms
	OpenCL APIs
	Data Parallelism in OpenCL
	Online and offline compilation
	Image Processing on Zedboard using OpenCL

	Conclusions and Future Work
	Conclusions
	Future work

	Bibliography

