

Linux on Next-Generation Hybrid FPGAs

Ansari Zain Us Sami Ahmed

(G1200904F)

SCHOOL OF COMPUTER ENGINEERING

A DISSERTATION SUBMITTED IN PARTIAL FULFILMENT OF

THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE IN EMBEDDED SYSTEMS

2013

1

Contents

Abstract .. 2

Acknowledgements ... 3

List of Acronyms ... 4

List of Figures .. 7

List of Tables ... 8

Why Use FPGA based Computing platforms ... 10

Challenges faced by FPGA based Computing platforms .. 14

The Emergence of Extensible Programming Platform (EPP) ... 16

Why run an OS on FPGA based Computing Platforms .. 20

Task Binding: ... 23

Scheduling: .. 23

Communication: ... 24

Virtual Memory: .. 24

I/O: ... 25

Synchronization: .. 25

Protection: .. 25

Building the Tool chain ... 27

Building the Boot Loader .. 30

Building the First Stage Boot loader ... 32

Building the BOOT.BIN ... 34

Building the Device Tree ... 36

Building the Linux Kernel ... 37

Running Zynq on QEMU .. 38

Writing Device Drivers for Zynq .. 39

Code Walkthrough Register Access Driver: .. 44

DSP block-based intermediate fabric: ... 51

Code Walkthrough IF Driver: .. 63

Conclusion and Future Work ... 69

References ... 70

2

Abstract

This report focuses on the promising role of FPGA based computing platforms for general

purpose computation. ASICs are becoming infeasible due to high NRE costs and short life cycles

of the products, while general purpose processors do not offer the performance required by

modern applications, within tight energy budgets. This report discusses the real ground breaking

reason for demanding a paradigm shift in computing and what are the sort of challenges that this

kind paradigm shift could lead to. It also discusses why it makes sense to run an operating

system on a FPGA, considering complex embedded systems which cannot be managed without

the abstractions provided by the OS. The report then presents the Xilinx Zynq architecture which

is seen as a promising evolution of FPGA based computing because it bridges the wide gap

between hardware and software engineers promising a new breed of Hardware/Software

Embedded System designers. Section 2 focuses on system development for a Xilinx Zynq

system. It describes how to bring up the Xilinx Zynq system, how to execute the Linux Kernel on

it, how to develop applications for a Xilinx Zynq and how to talk to the custom peripherals that

are created on the FPGA.

3

Acknowledgements

I would distinctively like to thank my supervisor Suhaib A Fahmy for helping me a lot at every

stage of the project, without his help and directions I would have not been able to complete my

project successfully.

Moreover I would also like to thank Abhishek Kumar Jain for his continuous support, effective

suggestions, constructive criticism and timely help.

4

List of Acronyms

ACP Accelerator Coherency Port

ADC Analog to Digital Convertor

AHB AMBA High Performance Bus

AMBA Advanced Microcontroller Bus Architecture

APB Advanced Peripheral Bus

API Application Processing Interface

APU Application Processing Unit

ASB Advanced System Bus

ASIC Application Specific Integrated Circuit

AXI Advanced eXtensible Interface

BIN Binary

BSD Berkeley Software Distribution

BSP Board Support Package

CB Connection Boxes

CDMA Central Direct Memory Access

CPU Central Processing Unit

DAC Digital to Analog Convertor

DMA Direct Memory Access

DTB Device Tree Binary

DTS Device Tree Source

EDK Embedded Development Kit

ELF Executable Linkable Format

EMIO Extended Multiplexed Input Output

EPP Extensible Programming Platform

5

ES Embedded Systems

FIFO First In First Out

FLOPS Floating Point Operation per Second

FPGA Field Programmable Gate Array

FSBL First Stage Boot Loader

FTP File Transfer Protocol

GPL GNU Public License

GPP General Purpose Processor

GUI Graphical User Interface

HDL Hardware Description Language

HP High Performance

HPC High Performance Computing

HW Hardware

ICT Information and Communication Technology

IDE Integrated Development Environment

IF Intermediate Fabric

IOP Input Output Peripherals

ILP Instruction Level Parallelism

IP Intellectual Property

ISE Integrated Software Environment

MIPS Million Instructions Per Second

MIPS/W Million Instructions Per Second / Watt

MMC Multimedia Card

MMU Memory Management Unit

NFS Network File System

NRE Non Recurring Expense

6

OCM On-Chip Memory

OS Operating System

PL Programmable Logic

PLL Phase Lock Loop

PS Processing System

QEMU Quick Emulator

RAM Random Access Memory

RC Reconfigurable Computing

ROM Read Only Memory

RPC Remote Procedure Call

RTL Register Transfer Level

SCP Secure Copy

SD Secure Digital

SDK Software Development Kit

SoC System on Chip

SSH Secure Shell

SW Software

TRD Targeted Reference Design

TTM Time to Market

U-Boot Universal Boot

VDMA Video Direct Memory Access

VF Virtual Fabric

VHDL VHSIC Hardware Description Language

XPS Xilinx Platform Studio

7

List of Figures

1.1 Figure showing the speed ups achieved using FPGAs.

1.2 Figure to represent choice factors on different IC technologies.

1.3 Figure illustrates the functional blocks present in a Zynq System.

1.4 Figure illustrates PL interface to PS memory subsystem using HP Ports.

1.5 Figure illustrates the Unix System Structure.

1.6 Figure illustrates a typical Unix transition from user mode to Kernel mode for executing a

system call.

2.1 Figure illustrating a very typical cross development platform.

2.2 Figure illustrating the SDK Kit.

2.3 Figure illustrating the FSBL Build Parameters.

2.4 Figure illustrating the FSBL ELF.

2.5 Figure illustrating the SDK boot image creation tab.

2.6 Figure illustrating the boot image creation procedures and requirements.

2.7 Figure illustrating the Register Access application screen dump (Kernel Module Based).

2.8 Figure illustrating the Register Access application screen dump (Memory Mapped)

2.9 Figure illustrating the IF architecture.

2.10 Figure illustrating the 4 tap FIR filter implementation.

2.11 Figure illustrating the IF Registers.

2.12 Figure illustrating the State machine based context sequencer.

2.13 Figure illustrating the IF Access application screen dump (Kernel Module Based) 32

Samples.

2.14 Figure illustrating the IF Access application screen dump (Kernel Module Based) 64

Samples.

8

2.15 Figure illustrating the IF Access application screen dump (Kernel Module Based) 128

Samples.

2.16 Figure illustrating the IF Access application screen dump (Kernel Module Based) 256

Samples.

2.17 Figure illustrating the IF Access application screen dump (Kernel Module Based) 512

Samples.

2.18 Figure illustrating the IF Access application screen dump (Memory Mapped) 32 Samples.

2.19 Figure illustrating Xilinx Zynq, Linux Development flowchart.

List of Tables

1.1 Speed up and Power saving data from software migration to FPGA based

implementations.

1.2 Table illustrating the features of Zynq Family of Devices PS end.

1.3 Table illustrating the features of Zynq Family of Devices PL end.

2.1 Table illustrating the Utilities found in the Binutils Package.

2.2 Table illustrating the architectures supported by the Linux Kernel.

2.3 Table illustrating Xilinx Zynq features supported by QEMU.

9

Section 1

Introduction

10

Why Use FPGA based Computing platforms

Spatial computing platform provides a significant reduction in energy budget and speed up

factors of considerably large magnitude in comparison to the standard Von-Neumann architecture

[1]. As discussed in [2] if the current computing trends continue the electricity consumed by the

ICT industry alone would grow by a factor of 30. Along with this factor, in [3] it has been

described that cost of a warehouse scale compute or a data center is now entirely calculated on

the power cost and is not based on the hardware cost or the cost to maintain it. In such

circumstances it is completely justified to calculate performance not just on the basis of MIPS but

MIPS/W.

The premise of saving energy using FPGAs is not new and has been thoroughly investigated in

[4, 5]. Almost 15 years ago it was concluded microprocessors using the standard compilation

tool chains have been up to five hundred times power hungrier compared to a standard FPGA

implementation [5].

Figure 1.1 [6]

11

Figure 1.1 illustrates the speed ups achieved using FPGAs over the years compared to the

software implementations and these are just a few examples from a very broad range of

publications.

Table 1.1 [7]

Referring to the DES braking, there is a speedup of 28,500 the Power save factor of 3439 has

been reported in [7] and cost saving of 96x too. The argument for FPGAs strengthen, and

illustrates the fact that no cost intensive hardware is required for scientific computing and FPGAs

are not just restricted to embedded systems and are pervasive in several domains. The figures

presented in these findings suggest that the era of desktop supercomputing is just around the

corner.

Originally there was a perception that FPGAs are too power hungry, expensive and slow to be

used in embedded systems but with the emergence of Low power diverse packages FPGAs are

now seen in several embedded systems including but not limited to medical devices, cameras,

network switches, routers, military radios, etc.

―FPGAs have become incredibly capable with respect to handling large amounts of logic,

memory, digital-signal-processor (DSP), fast I/O, and a plethora of other intellectual property

(IP)‖ [8].

Recently more and more commercial solutions are available which speed up large scale

computationally intensive tasks using FPGAs among them the prominent ones include Maxeler

[9] and Convey [10].

Apart from all these factors the standard microprocessor based computing is itself faced with

acute challenges and is not promising any drastic speed ups. The standards microprocessors face

the challenge of power wall, memory wall and ILP wall and the future of computing is towards

heterogeneous multi core computing and parallel paradigms. This shift in programming

paradigm is massively favorable to FPGA based computing.

12

There are other business related factors that are now in favor of FPGA based computing and

developers would need to keep an eye on when choosing between a Microprocessor, FPGA or an

ASIC

Figure 1.2 [11]

1. Time to Market (TTM): Since product lifecycles are becoming short, FPGA‘s biggest

strength is the time to market compared to ASIC. The design process of an ASIC

involves Design, Verification, Fabrication, Packaging and Device Test. Apart from all

this Software Development for an ASIC can only be started when the final product comes

in hand. Whereas the FPGA is already fabricated, packaged and tested by the vendor this

immediately cuts almost four months from the initial development time giving access to

market earlier.

2. Cost: The unit cost of FPGAs is significantly higher than ASICs, but if the demand is in

low volumes, this is balanced by the high ASIC NRE costs.

3. Development Time: FPGAs are developed using standard hardware design approach and

they are described in Verilog or VHDL. There are commercial high level synthesis tools

which convert Imperative languages such as C to HDLs which significantly further

reduces the development time.

4. Standard Tools: The vendor tools available with the commercial tool chains provide

significant observability and diversity for debugging and application development.

13

5. Reprogramability: ASICs and microprocessors both provide fixed logic whereas the

reconfigurability of FPGAs make them highly programmable

 To summarize, FPGAs provide high performance and flexibility. They are becoming as design

compatible and portable as ASICs and their costs are nearing the microprocessor spectrum.

FPGAs give the highest possible performance when the applications they are utilized in are

inherently parallel.

14

Challenges faced by FPGA based Computing

platforms

Due to current semiconductor technology trends, constraints such as area overhead for

reconfigurable substrate remain significant because of the significant resources found on chip and

increased power sensitivity in many applications. Hence, FPGAs face several acute challenges

before they can be considered a mainstream compute platform.

The applications that can benefit the most from FPGA based computing platforms are required to

have certain characteristics which have been summarized by DeHon and Hauck in [12] and these

can be broadly classified into:

 Parallelism.

 Streaming.

 Heterogeneous Computing requiring adaptation.

The application developers need to focus on application based migrations from legacy serial

software which possess these characteristics to Hardware Descriptions in FPGAs. Automated

tools need to evolve to facilitate this migration and automatically exploit these capabilities.

FPGAs enable the hardware to adapt with changes in system requirements this is the reason it

FPGA based computing is often referred to as Reconfigurable Computing. But the biggest

challenge in this domain is the reconfiguration time of hardware. The reconfiguration speed of

hardware must be at speed with real time constraints of it applications.

Since FPGA are inherently redundant they should be able to provide Reliability by introducing

capabilities such as fault tolerance, defect analysis and self-healing. The flexibility of the system

should be utilized to isolate the bad parts in a system and new parts or modules must take over.

However at present such tools are lacking which can provide such flexibility to FPGA based

computing platforms.

The synthesis tools currently under use focus on mapping hardware description languages to

efficient hardware implementations based on the metrics preferred by the designer such as speed,

power consumption and area. But FPGA based computing platform or RC require an end to end

tool chain which not only cover synthesis and analysis but also require the sophistication

15

provided by the tools to develop complex software. Apart this tool chain other valuables tools

include profilers, Visualization tools, Load Balancing Tools, custom instruction set generation,

runtime resource management tools and functional simulation. Static Analyzers and Dynamic

Analyzers for RC are also an open problem which would not only allow optimization at Compiler

or design time but also dynamic reconfiguration.

Since RC‘s main target domain is Embedded Systems which is an extremely demanding industry

to satisfy because not only demand real time performance or adaptability but they also

challenging requirements such a Safety Criticality and other certain guarantees which are not

explicitly available in FPGA based computing platforms.

FPGA based computing platform certainly provide improved performance, better power

efficiency but the usability of such systems remains an open question. Several successful

technology ventures have proved that the magic is not in technology but the magic is in usability.

In most embedded systems projects the software team turns out to be the main driving force for

the selection of a certain processing element. With current tool chains and interfaces FPGAs is a

no go area for Software Developers because it is simply too complex and risky for them. As

argued by Hartenstein in [13], there is indeed a need to train a programmer population who think

parallel and also think about locality. But this legacy code is not going away easily and we need

to look in the direction of tools to provide Automatic Dynamic Parallelization but also work on

providing high level languages closer to Java and C++ to make FPGAs really accessible.

16

The Emergence of Extensible Programming

Platform (EPP)

“A Processor with FPGA accelerators” is more attractive than an “FPGA with

Processor inside” – R. Hartenstein

As established by [14] embedded system designers are simply not fond of FPGAs with CPUs

inside. FPGA has entirely remained the domain of Hardware Engineers and software engineers

have stayed away from FPGAs. For the very reason of involving the software team right from

the start, Xilinx has decided to go beyond the FPGA and introduced the Extensible Programming

Platform. In 2010 [15] Xilinx pre announced a new platform with Dual Core ARM Cortex A9

Processing System (PS) along with the programmable logic (PL).

This announcement was based on the fact that Xilinx realizes the importance of Software in

Computer systems and wants FPGAs to be considered a computing platform by providing a

single chip solution. For several years processors have been implemented in FPGAs where

standard FPGA based configurations had to be done after which the soft processor could take

over. However in this platform FPGA is attached with the a standard processor and these new

chips would have a standard SD Boot like the Raspberry pi [16] and boot binary which also

contains the bit stream can configure the FPGA. However the FPGA also be used as bare metal

using the JTAG mode which has been explained in later chapters.

ARM and Xilinx both have very large ecosystems around them, with the emergence of ARM in

mobile devices there has been extensive development around ARM. Now ARM is looking to

enter the desktops and Servers market, whereas Xilinx has always been the pioneer of

programmable FPGAs and has large number of pre built 3
rd

 party IPs. When these two qualities

are combined it makes FPGA based computing platforms a lot more realistic. This approach is

extremely software centric, it is now completely upon the discretion of the software developer

what to keep in the PS and what to push to the PL right at the design time.

17

This family of Xilinx Devices has been called the Xilinx Zynq, apart from the PS and PL these

chips also contain on-chip memory, external memory interfaces, and a rich set of peripheral

connectivity interfaces.

Table 1.2 [18]

Table 1.2 illustrates the features of Zynq family of devices on the PS end.

Table 1.3 [18]

Table 1.3 illustrates the features of Zynq family of devices on the PL.

18

Figure 1.3 [18]

Figure 1.3 illustrates the functional blocks present in a Zynq System.

The PS contains the Four Major blocks.

 Application Processing Unit.

 Interconnects.

 Input/Output Peripherals.

 Memory Interfaces.

For more details on these blocks [18] should be referred.

19

Figure 1.4 [18]

Figure 1.4 illustrates PL interface to PS memory subsystem using HP Ports.

Extensive details about the Xilinx Zynq SoC can be found in the Technical Reference Manual

[19].

Following the suite Altera the other major manufacturer have stepped up and introduced the SoC

FPGA [17] based product line.

With features very similar to Xilinx Zynq the Altera SoC FPGAs promise a peak bandwidth of

125 Gbps between the processors and the FPGA which can be very significant for high

performance applications.

Similar to arguments made above Altera [17] promises features such as:

 Low Power Systems.

 Smaller Board Size.

 Lower System Cost.

 Increased Performance.

 Rich ARM ecosystem.

20

Why run an OS on FPGA based Computing

Platforms

Generally an Operating System is considered the software that turns hardware into something

useful. But the main functions it performs include:

 Multiplex Hardware among multiple applications.

 Abstract Hardware for Programmer‘s convenience.

 Isolate applications to contain bugs.

These are the main tasks that an operating system performs in all systems these tasks can be

further sub divided into.

 Memory Management.

 I/O Management.

 Multitasking/Multiprogramming.

 File System.

 Networking.

 Process Management

 Etc………

In fact there is no hard and fast rule to what an OS is limited to whatever gets shipped with an

operating system is considered a part of the operating system.

But the definition that satisfies the most is that, the one program the always runs in the operating

system is the Kernel and that is what I consider the core OS. Everything else can be categorized

as System Software or Application software.

21

Figure 1.5 [21]

Figure 1.5 illustrates the Unix System Structure, all the Unix like system including Linux are

based on this structure and this is the classical model illustrated by [Silberschatz, Galvin,

Gagne], this figure also represents the differentiation between the User Space, Kernel Space and

Hardware.

This typical User Mode and Kernel mode is well known as dual mode operation, normal

programs are executed in the user mode but they can transfer to the Kernel Mode to do certain

supervisor tasks which cannot be executed in user mode.

Figure 1.6 [21]

22

Figure 1.6 illustrates a typical Unix transition from user mode to Kernel mode for executing a

system call, similarly this can occur for interrupts and exceptions.

As it has been pointed out and similarly has been discussed by Tanenbaum in [22] the two most

important roles that Operating Systems perform are managing shared resources and simplifying

the programming platform with the usage of an abstracted programming model. Both these

functionalities are extremely valuable for FPGA based computing platform. As pointed out in

[20] an operating system coupled with the compilation toolchain can truly simplify the

programming of an FPGA based computing platform. This model would not only define the

software tasks that would run on the PS but also define hardware tasks for PL.

The basic functionalities that an OS is expected to perform on an FPGA based Computing

platform are.

 Providing methods for communicating and synchronization between PL and PS.

 Abstraction of the resources and configuration on the PL.

 Scheduling of overlapping resources within and across tasks.

 Protection of PL tasks from PS tasks.

Apart from these features it has been pointed out in [23] that it is extremely desirable to have a

unified development environment for both hardware and software to maximize functionality and

reduce debugging effort. In [25] Rupnow has also emphasized the importance of running an OS

to manage multiple compute resources in order to maximize the system performance. Moreover

in [26] Khoa et al have written about utilizing Microkernel OS based hypervisors to achieve

application isolation and simpler use of Hardware resources. The virtual machine concept

provides the developer the illusion of dedicated use of Compute resources [27].

The concept of utilizing an operating system with FPGA based computing platform is not new

and has been around since 1996 [24] similarly soft CPUs have been around for a long time and

since 2009 Linux Kernel has supported the Xilinx‘s soft CPU Microblaze out of the box. But

even these developments have not been able to support the FPGA computing cause and have

been victim of hardware/software dilemma. Since FPGAs are a domain of Hardware engineers

they have always been happy to forgo the abstraction provided by OS and have created

workarounds by including hardware management operations.

23

But since the complexity in embedded systems is growing very rapidly these workarounds seem

insufficient. One should consider the Cellular phone example which started with providing

Calling functionality and other basic functionality which was very achievable without an

operating system. Today a Cellular phone not only makes phone calls, but also takes photos,

support gaming, provide Internet browsing, run video and audio playback. Not only do Cellular

phones perform several functions but also are able to multi task, all due to the abstraction

provided by the operating systems. Even in the mobile phone market Unix like operating

systems have been clear winners. Clearly Cellular phones have become the ―General Purpose‖

handheld device, although FPGAs are not aiming to become to become ―General Purpose‖

Computers but clearly FPGAs must be able to adapt to some kind of OS.

Task Binding:
Since FPGAs are inherently flexible, they demand much more intensity in terms of shared

resource management from the OS. The complexity is in binding tasks to the hardware resources

available in terms of Hardware Resource utilization and Performance. Tasks can be implemented

by dynamically linking them to pre compiled libraries of hardware [28], these libraries can be

implemented as part of the drivers in the OS.

Scheduling:
Scheduling is another very important task for OSs in FPGA based platforms, because which

resource has to be used when by a task has to be decided by the OS. The simplest

reconfiguration scheduling is to run a queue and reconfigure on demand [24]. The application

can be profiled and analyzed to form a static schedule for it and based on this analysis hardware

tasks can be configured [29, 30 31]. This method can also minimize configuration overhead.

Scheduling for performance is a very important factor but scheduling for deadlines is also

significantly important. Real time systems and the operating systems they utilize focus

significantly on this research are [29, 32]. The scheduling algorithms for real time dead line can

be tailored for FPGA based computing platform based on their Hardware capacity, the tasks

hardware requirement and the deadline to execute the task [33, 34]. Scheduler must also have the

feature of preemption to allocate hardware resources to a task of higher priority [34].

24

Communication:
Communication between tasks is also another very important abstraction provided by the

operating systems and achieving this in FPGAs is not very straightforward. Shared memory

model is the common communication style used in multi core systems but in FPGA based

systems data might have to be copied from a far away memory which can insert significant

communication time overhead complicating the shared memory abstraction. Synchronization

between shared task is most common source of error in shared memory system and the viability

of this model has been questioned in [35, 36] is massively parallel systems.

Since shared memory seem unviable for FPGA base systems the second method used is method

calls. Message passing is a technique of method call similar to the remote procedure call [37].

Another method call implementation is MPI [38] and MPI has already been tested with FPGA

based computing platforms [39] but MPI is considered heavy weight for FPGA based platforms

specially for fine grained tasks. A light weight method call system has been developed Nollet et

al as discussed in [40] for reconfigurable FPGA systems. Similarly RPC have also been

developed [41] for use between PS and PL.

Method call is a communication mechanism which very dynamic and the OS has no information

about which task is going to talk when. Streams are based on graph structures for task

communication and they can be used to transmit data and control information. The process

receives data from one or multiple streams and uses these inputs to compute data for one or

multiple streams on the output [42, 43].

Virtual Memory:
When FPGAs are tightly coupled with a processor with MMU support, the FPGA can share

processor‘s MMU [44]. The processor can now be used by the OS to perform memory accesses

to feed data to the FPGA for computation [45]. This model brings good control but reduces the

ability of the processor to act as a compute unit as is kept busy in memory transfers. DMA

controllers can be implemented to counter this issue of handling memory transfers.

25

I/O:
Apart from communicating with other tasks the tasks would need to communicate with I/O in the

system. Chang discusses the libraries in [46] which can be used to abstract hardware interfaces

from the programmer. Apart from these libraries the driver implementation in the OS should

generic enough to deal with changes in the hardware of same family.

Synchronization:
FPGA based computations are inherently concurrent where more than one hardware tasks occur

in parallel with software tasks, in such scenarios synchronization between tasks is a critical issue.

With parallelism the problem of concurrent programming is exacerbated [47]. In such

circumstances synchronization abstraction provided by OS is extremely critical for design and

performance. The simplest method is the thread style synchronization [48, 49] on hardware tasks

in this style of synchronization semaphores are used to control the hardware. The thread style

synchronization is difficult to design and debug and with degree of parallelism in FPGA based

system implementing this is simply very challenging [35, 36]. In such scenarios we can use

implicit synchronization using a scoreboarding technique as described in [50] for the prevention

of hazard in aggressive processor pipelines.

Protection:
All computing systems need to protect processes or tasks from interfering with each other not

only for sake of data correctness but also to prevent malicious task to destroy the good task.

When this comes to hardware implementations short circuits is the biggest concern [51, 52], the

operating system must be able find out and deny any such implementations. To provide inter task

protection, communication can be restricted to only via the shared virtual memory [45, 53], but

this methodology introduces significant amount of latency into the system. However if operating

system allocates resources [43] which eliminates user control, this strategy generates an inherent

isolation in the programming model.

26

Section 2

Running Linux on Xilinx Zynq

27

Building the Tool chain

The first step to running Linux or any other operating system on any embedded system is to set

up a cross compiler tool chain for building the Kernel and other system and application software.

The word cross implies that the system that compilation that takes place on is of one family

called the host usually x86, whereas the system that compilation is done for is of another family

called the target which in our case is ARM.

This is done because the target which is usually an embedded system may not have enough

memory, disk space to contain the native compilation tool chain. The system might not even

have an interface to give commands for running the compilation environment. Another very

important reason for doing cross compilation is the compilation speed that is offered by standard

x86 systems. This is referred to as a complete tool chain because a compiler alone is of no use.

A compiler requires linkers, assemblers and standard libraries to successfully compile a program.

Figure 2.1 [54]

Figure 2.1 illustrates a very typical cross development platform where the host is connected to the

target using Serial Console and the Ethernet. The Ethernet only becomes useful after some sort

of kernel is loaded onto the target until then all commands are passes via the serial console. This

configuration can be utilized for both development and debugging the kernel and the application

and system software.

The compilation Tool chain for Xilinx Zynq is provide Mentor Graphics at [59] and called the

Sourcery CodeBench for ARM GNU/Linux which provides open source development for C/C++

on x86 host machines.

This tool chain can also be obtained from the Zynq repository.

https://dl.dropbox.com/u/44609249/xilinx-2011.09-50-arm-xilinx-

linux-gnueabi.bin

https://dl.dropbox.com/u/44609249/xilinx-2011.09-50-arm-xilinx-linux-gnueabi.bin
https://dl.dropbox.com/u/44609249/xilinx-2011.09-50-arm-xilinx-linux-gnueabi.bin

28

After the tool chain has been installed export the environment variables with the following

commands.

Table 2.1 [56]

The most common utilities found in a Tool chain are listed in the table above along with their

functionalities.

After the compilation has been done on the host, the next phase is getting the executable into the

target system. There are several ways to do including.

 Building a Network File System (NFS) and copying the executable on to the target or

running it directly from the host memory.

 Copying the executable on the SD card and mounting the desired partition to access the

executable.

 The file can also be copied over the network using SCP or FTP.

bash> PATH=~/CodeSourcery/Sourcery_CodeBench_Lite_for_Xilinx_GNU_Linux/bin:$PATH

bash> export CROSS_COMPILE=arm-xilinx-linux-gnueabi-

29

Next is the execution phase where the executable can be invoked by a script or directly from the

over the serial console or SSH.

The tool chain provided by Xilinx uses standard C library called the glibc, however this

considered too bloated and has a large foot print for embedded system development and other

options available to developers are uClibc [60] and Buildroot [61]. Both these libraries are

highly customizable and are available for ARM processors.

30

Building the Boot Loader

The boot loader itself runs for a very negligible time on the system but performs some of the

most important tasks to bring up the system these tasks can vary from a General purpose system

to an embedded system and there are several variations in Embedded System too but generally an

Embedded System boot loader perform the following the following functions.

 Provide initialization code for the board to load which is usually written in native

assembly of the operating processor.

 Flushing the processor Cache.

 Load Processor registers with useful values.

 Determine the hardware present in the system.

 Pass the hardware information to kernel.

 Loading the Kernel into the memory.

 Executing the Kernel.

 Loading the init file system.

 Validate the Operating System Image.

The boot loader of choice these days for ARM based embedded systems is U-Boot [62]. Xilinx

has also chosen U-Boot as the default boot loader for Zynq. U-Boot is a sensible choice because

it is a universal boot loader it is compatible across several different architectures.

 There are several points in its favor including:

 Free and Open Source.

 Active Community Support.

 Large Architecture level support including ARM, MIPS, PPC and x-86.

 Lower Development Cost.

 Highly Optimized for Embedded Systems.

 Large Debugging and Development Support.

 Easy to port from one platform to another.

31

After the compilation tool chain has been built it would be used to compile the boot loader.

Clone the boot loader source code from Xilinx‘s repository.

Configure the boot loader for a specific Chip which in our case is the Xilinx Zynq ZC7000 series.

After the configuration has completed build the boot loader using the make file.

This build would produce u-boot.elf which would be later used to build the BOOT.BIN in order

to boot the Zynq system.

bash> git clone git://git.xilinx.com/u-boot-xlnx.git

bash> cd u-boot-xlnx

bash> make zynq_zc70x_config

bash> make

32

Building the First Stage Boot loader

The on-chip ROM code loads when the CPU is powered up, this code seeks for FSBL and upon

success it loads the FSBL into the memory.

The tasks that FSBL is responsible for include:

 Configuring the bitstream on to the FPGA.

 Load the DDR controller.

 Load and execute U-Boot from SD card into the RAM.

 Initialize the clock Phase Lock Loop.

Beyond FSBL the U-Boot takes over and performs its roles.

To general a new FSBL open the Xilinx SDK.

Figure 2.2

File  New  Application Project.

33

Figure 2.3

Setup the New project according to the settings above, click Finish.

Figure 2.4

Upon Build completion the SDK would generate an ELF which would be later used to generate

the BOOT.BIN

34

Building the BOOT.BIN

BOOT.BIN is the boot image stored in the SD card it contain the boot loader ELF, the FSBL and

the bitstream to configure the FPGA.

To create a bit stream launch the Xilinx SDK.

Figure 2.5

Load the files

Xilinx Tools  Create Boot Image.

--zynq_fsbl.elf

--system.bit

--u-boot.elf

35

Figure 2.6

The particular order of the files has to be maintained for the system to load properly.

36

Building the Device Tree

Device tree blob is a database of the hardware connected to a certain board. So when a new

peripheral is created into the PL region a new entry needs to be created for it in the device tree.

In this example a FIFO has been attached and its entry in the device tree looks such.

After the device has been added to the device tree compile the DTS to DTB.

After compiling the device tree copy binary to SD card.

fifo_dma1: fifo_dma@7C000000 {

 compatible = “xlnx,fifo-dma”;

 reg = <0x7C000000 0x2000>;

 fifo-depth = <4096>;

 dma-channel = <2>;

 burst-length = <4>;

};

bash> cd linux-digilent

bash> scripts /dtc/dtc –I dts –O dtb –o /path/to/devicetree.dtb /path/to/devicetree.dts

37

Building the Linux Kernel

Next step is to build the kernel for running on the Zynq. It is the most fundamental component

in the Linux system.

Table 2.2 [56]

The major architectures supported by the Linux kernel are listed in the table above.

To begin compiling the Kernel, obtain the Linux Kernel Source Tree from Digilent's GIT

repository.

Now configure the Kernel to be compiled for Zedboard and Compile it.

Upon successful compilation the built kernel image would be formed at location

Copy this image to the SD Card.

bash> git clone git://github.com/Digilent/linux-digilent.git

bash> cd linux-digilent

bash> make ARCH=arm digilent_zed_defconfig

bash> make

linux-digilent/arch/arm/boot/zImage

38

Running Zynq on QEMU

QEMU [65] is an open source emulator which has the ability to execute the code one on

architecture on another by using dynamic translation. For slow processors it is able to achieve

near native performance on a fast x86 machine.

There is a strong case for using QEMU because all the developers cannot be given the target

machine to work on due to cost and availability constraints, whereas x86 machines are readily

available to each and every application developer. Apart from these reasons there is a trend of

disposing the cross compiler and using the native compilers on QEMU. This gives the best of

performance and optimization.

Table 2.3 [66]

Table 2.3 illustrates the hardware components of a Xilinx Zynq System that have successfully

implemented on the QEMU.

To run Xilinx Zynq on QEMU, Download the precompiled QEMU source with Zynq kernel from

the link.

After downloading the compressed source, uncompress it and run the script.

http://zedboard.pbworks.com/w/file/64538134/zynq_linux.tar.gz

bash> tar xvzf zynq_linux.tar.gz

bash> cd zynq_linux

bash> ./start_qemu.sh

http://zedboard.pbworks.com/w/file/64538134/zynq_linux.tar.gz

39

Writing Device Drivers for Zynq

Device driver development becomes the most important segment in a FPGA based system

running an operating system like Linux. The peripherals created onto the PL would need an

interface to talk to the PS so that data and control information can be exchanged. A device driver

is system software directly associated to the hardware at the lowest level

There are three main types of Device Drivers:

 Character Devices: These are the drivers that would be most commonly utilized in

FPGA based system. These drivers treat devices as files by giving the open, read, write

and close functions. They usually allow only sequential access and written and read byte

by byte at a time.

 Block Devices: In a Linux based system Block devices also behave like character

devices with an additional capability of transferring data multiple block sizes. They also

allow random access to device and occasionally file systems are mounted using these

device drivers.

 Network Devices: This kind of device driver does not handle bytes or streams of data

but packets of data. These drivers usually utilize the BSD sockets API to communicate

with the hardware. All the network interfaces are mapped using these device drivers.

The user space and kernel space has already been explained in an earlier section, so according to

that particular model the device drivers or the modules execute in the Kernel Space whereas the

application that calls the drivers and send commands and data to it is executed in the user space.

The device driver can be made part of the Kernel tree during the Kernel compilation or the device

driver can also be loaded into a running kernel as a loadable module.

Developing device drivers through modules is the most convenient method of device driver

development. Modules are loadable code which can loaded into the kernel using insmod and

removed from the kernel using rmmod as and when needed. All device drivers can be

implemented as kernel modules but all modules are not necessarily device drivers.

40

Following is an implementation of Kernel Module Device Driver implemented on Xilinx Zynq

for register access peripheral on the PL.

In the Register Access core, three registers are memory mapped in the PL region and they can be

accessed from PS.

PS writes to a Register in the PL and as soon as the acknowledgement for write arrives, the core

starts counting the number of cycles in the third register. The PS then writes to the second

register on the PL and as soon as the acknowledgement for write arrives, the counter stops

counting in the third register giving a good estimate of the write delay and register access latency

in terms of number of cycles.

Copyright (c) 2013 Ansari Zain Us Sami Ahmed (s120050@ntu.edu.sg)

#include <linux/kernel.h>

#include <linux/module.h>

#include <linux/fs.h>

#include <asm/uaccess.h>

#include <asm/io.h>

#define SUCCESS 0

#define DEVICE_NAME "/dev/reg_access"

#define REG_ADDRESS 0x7C600000

static int *mmio;

static int major_num;

static int Device_Occupied = 0; //Set to 1 When Device is under Use

mailto:s120050@ntu.edu.sg

41

static int device_open(struct inode *inode, struct file *file)

{

 if (Device_Occupied)

 return -EBUSY;

 Device_Occupied++;

 try_module_get(THIS_MODULE);

 return SUCCESS;

}

static int device_release(struct inode *inode, struct file *file)

{

 Device_Occupied--;

 module_put(THIS_MODULE);

 return SUCCESS;

}

static ssize_t device_read (struct file *file, char __user * buffer, size_t length,

loff_t * offset)

{

 return SUCCESS;

}

static ssize_t device_write (struct file *file, char __user * buffer, size_t length,

loff_t * offset)

{

 return SUCCESS;

}

42

int device_ioctl(struct file *file, unsigned int ioctl_num, unsigned long ioctl_param)

{

 mmio[1]= (int *) 0x00000001;

 mmio[2]= (int *) 0x00000002;

 printk(KERN_INFO "The Write Latency is %d Cycles\n", *(unsigned int *) mmio);

 return SUCCESS;

}

struct file_operations Fops = {

 .read = device_read,

 .write = device_write,

 .unlocked_ioctl = device_ioctl,

 .open = device_open,

 .release = device_release,

 };

43

int init_module()

{

 int ret_val;

 major_num = register_chrdev(0,DEVICE_NAME, &Fops); //TO Register the Character

Driver

 //Negative Values Signify the Errors in the Code

 if (major_num < 0)

 {

 printk(KERN_ALERT "%s failed with %d\n","Sorry, registering the character

device ", ret_val);

 return ret_val;

 }

 printk(KERN_INFO "%s The major device number is %d.\n", "Registration was

Successful",major_num);

 printk(KERN_INFO "If you want to talk to the Device Driver, \n");

 printk(KERN_INFO "Than create the following device file by the command. \n");

 printk(KERN_INFO "mknod %s c %d 0\n", DEVICE_NAME, major_num);

 mmio = ioremap(REG_ADDRESS,0x100);

 return 0;

}

void cleanup_module()

{

 int ret;

 //Unregister the Device

 iounmap(mmio);

 unregister_chrdev(major_num,DEVICE_NAME);

}

MODULE_AUTHOR("Zain Ansari");

MODULE_DESCRIPTION("Xilinx Zynq Reg Access Driver");

MODULE_LICENSE("GPL v2");

44

Code Walkthrough Register Access Driver:
The register access driver works as follows.

The REG_ADDRESS defines the physical base address to be access on the memory mapped PL

all registers are implemented with respect to this address.

This device driver supports the file operations mentioned above, the functions read and write

have not been utilized but are implemented for complex operations in future.

When the user insmod this kernel module into the kernel the above function is called mapping the

physical addresses to the virtual addresses and requesting the user to create a device node for the

driver to access it from the user mode.

When the user calls rmmod the above function is called causing the physical to virtual mapping

being released.

#define REG_ADDRESS 0x7C600000

 .read = device_read,

 .write = device_write,

 .unlocked_ioctl = device_ioctl,

 .open = device_open,

 .release = device_release,#define

init_module()

cleanup_module()

45

The above function has been implemented to achieve a lock or a mutual exclusion on the device

driver so only one user mode program can access it at a particular instance.

The above function has been implemented to release the mutual exclusion lock on the device

driver so when a user mode application has finished utilizing the driver it is available for other

applications.

The above function is the main function of the device driver which is called using:

In this function the driver writes two different values to different physical address mapped to the

PL as registers. Upon completion of writing to the first register in the PL a performance counter

is invoked which counts the number of cycles it takes to complete the second write which

presents the latency between the two operations and prints it to the screen.

The Performance counter register is located at the base address whereas register 1 and 2 are 4 and

8 bytes ahead of the base address respectively.

static int device_open(struct inode *inode, struct file *file)

static int device_release(struct inode *inode, struct file *file)

int device_ioctl(struct file *file, unsigned int ioctl_num, unsigned long ioctl_param)

ioctl(file_desc, 1, NULL); // Call The IOCTL in Kernel Module

46

Figure 2.7

When the driver is loaded into the kernel using insmod¸ the function init_module()

executes. Since Xilinx Zynq running is MMU enabled system this function maps the physical

address to the virtual address so that the application program can access it.

The driver requests the user to create a node to access the register access driver file from user

space.

Issuing this command on the Xilinx Zynq Linux system creates file node /dev/reg_access, c

represents the type of driver (Character Driver), 250 is the major number of the driver and 0 is the

minor number of the driver.

zynq> mknod /dev/reg_access c 250 0

47

Following is the application code that talks to driver implemented above.

In this application the node that has been created is accessed in file_desc the ioctl

function invokes device_ioctl function in the kernel module.

Copyright (c) 2013 Ansari Zain Us Sami Ahmed (s120050@ntu.edu.sg)

#include <stdio.h>

#include <stdlib.h>

int main()

{

 int file_desc;

 file_desc = open(DEVICE_FILE_NAME, O_RDWR | O_SYNC);

 if (file_desc < 0)

 {

 printf("Cannot open the device file: %s\n", DEVICE_FILE_NAME);

 exit(-1);

 }

 printf("Register Write test application \n");

 ioctl(file_desc, 1, NULL); // Call The IOCTL in Kernel Module

 return 0;

}

#include <fcntl.h>

#include <unistd.h>

#include <sys/ioctl.h>

#define DEVICE_FILE_NAME "/dev/reg_access"

mailto:s120050@ntu.edu.sg

48

A Makfile is also required to compile the Kernel Modules so that a loadable .ko module can be

created.

This Makefile tells the tool chain to use the ARM compiler, the location of Kernel headers and

the file which contains the Module code.

Upon execution of this make file .ko modules are generated which can be loaded into the Kernel.

This is not the sole or exclusive method to access the Physical Addresses or peripherals but this is

the safest method of doing so. The other common method of writing drivers is writing the

complete driver in the user space which has its own pros and cons.

Pros:

 Complete C libraries are available to the user to perform any functions, however when

programming in the kernel space a certain set of rules have to be followed with access to

limited libraries.

 Easier to compile without access to the Kernel headers.

 Debugging can be relatively simpler compared to Kernel level debugging.

 Source can be close with relative ease.

 User Space memory is swappable.

Cons:

 Interrupts cannot be utilized in the user space.

 I/O and physical address can only be access via mmap on the /dev/mem which is only

available by root access.

 Higher latency to get data from user space to hardware because of the context switch

overhead.

 User space drivers are limited to Character drivers.

ARCH := arm

KER_DIR := /home/zain/linux-digilent

obj-m += driver.o

all:

 make ARCH=$(ARCH) -C $(KER_DIR) M=$(PWD) modules

clean:

 make ARCH=$(ARCH) -C $(KER_DIR) M=$(PWD) clean

49

Figure 2.8

The figure above shows the run of a user space driver implementation of the same Register

Access driver implemented as the Kernel Module. This driver takes 15 cycles to complete the

operation whereas the kernel space driver took 5 cycles to complete the same operation.

Copyright (c) 2013 Abhishek Kumar Jain (abhishek013@ntu.edu.sg)

#include <stdio.h>

#include <stdlib.h>

#include <assert.h>

#include <unistd.h>

#include <errno.h>

#include <fcntl.h>

#include <sys/mman.h>

#define MAP_SIZE 4096UL

#define MAP_MASK (MAP_SIZE - 1)

mailto:abhishek013@ntu.edu.sg

50

int main(void) {

 int fd;

 int *map_base, *virt_addr;

 off_t target = 0x7C600000;

 if((fd = open("/dev/mem", O_RDWR | O_SYNC)) == -1) {

 printf("/dev/mem could not be opened.\n");

 perror("open");

 exit(1);

 } else {

 printf("/dev/mem opened.\n");

 }

 map_base = mmap(0, MAP_SIZE, PROT_READ | PROT_WRITE, MAP_SHARED, fd, target &

~MAP_MASK);

 if(map_base == (void *) -1) {

 printf("Memory map failed.\n");

 perror("mmap");

 } else {

 printf("Memory mapped at address %p.\n", map_base);

 }

 virt_addr = map_base + (target & MAP_MASK);

 printf("Now try to change the value of the on-board DIP switche\n");

 virt_addr[1] = (int *)0x00000001;

 virt_addr[2] = (int *)0x00000002;

 printf("latency is %x cycles\n",*(int *)virt_addr);

 if(munmap(map_base, MAP_SIZE) == -1) {

 printf("Memory unmap failed.\n");

 }

 close(fd);

}

51

Even in this User Space driver the physical address that is being accessed is 0x7C600000, it is

first converted to a virtual address and all the same functionality is performed on this using

/dev/mem interface.

Similar drivers have also been developed to pass data into a DSP block-based intermediate fabric

on the Xilinx Zynq Linux.

DSP block-based intermediate fabric:

Figure 2.9[26]

Figure 2.9 illustrates the implementation of intermediate fabric which consists of 12 DSP slices

which are the primary processing elements and 13 connection boxes. The connection boxes are

used to provide a programmable interconnection between the processing elements. Each PE is

connected to its intermediate neighbors using connection boxes. Dual port Block RAM memory

is utilized to transfer data between PS and PL, one port is connected to the IF and second port is

connected to the AXI interconnect.

If a simple 4 tap FIR filter is implemented on the intermediate fabric it utilizes 4 PEs and 5 CBs,

the input data is transferred into the IF‘s input BRAM using the AXI interface, the processed data

52

is stored into the output BRAM which is available to read by the processor. Figure 2.10

illustrates the implementation described above.

Figure 2.10

CB Area Overhead: One CB consists of 12 Multiplexers (16-bit 12 to 1). Each Multiplexer is

consuming 66 LUTs and 1 slice register. Hence Total LUTs used = 66 x 12 =792 LUTs

Slice Logic Utilization:

Number of Slice Registers: 12 out of 106400

Number of Slice LUTs: 792 out of 53200

PE Area Overhead: One PE consists of 1 DSP slice and 4 Multiplexers (3 mux (2-to-1) and 1

mux (4-to 1)). Hence Total LUTs used = (48 x 1) + (16 x 3) =96 LUTs.

16-bit 2-to-1 multiplexer : 3

48-bit 4-to-1 multiplexer : 1

53

Slice Logic Utilization:

Number of Slice Registers: 144 out of 106400

Number of Slice LUTs: 96 out of 53200

Number of Slice DSP Slices: 1 out of 220

Operating frequency of PE = 175.5 MHz

Total area utilization of current IF: 12 PE and 13 CB. Total LUTs used = 96 x 12 + 792 x 13 =

11448 LUTs

Slice Logic Utilization:

Number of Slice Registers: 156 out of 106400

Number of Slice LUTs: 11448 out of 53200

Number of Slice DSP Slices: 12 out of 220

The IF is configured using the registers specified in the figure 2.11.

Figure 2.11

54

Three registers dsp_config, dsp_config_d, dsp_config_pb are used to configure the PEs and store

the coefficients of the FIR filter.

Two registers are cb_config_ws and cb_config_en are used to configure the routing information

on each connection box.

The IF provides a memory mapped interface from the PL to PS a context sequencer is

implemented in the PL to control and monitor the execution of hardware tasks on the IF.

Figure 2.12 illustrates the state machine based context sequencer.

Figure 2.12[26]

The state machine in figure 2.12 describes all the states from start to finish how a hardware task

is executed on IF and is controlled and monitored by the state machine based context sequencer.

For complete details on the behavior of context sequencer refer to [26].

55

Copyright (c) 2013 Ansari Zain Us Sami Ahmed (s120050@ntu.edu.sg)

#include <linux/kernel.h>

#include <linux/module.h>

#include <linux/fs.h>

#include <asm/uaccess.h>

#include <asm/io.h>

#define SUCCESS 0

#define DEVICE_NAME "/dev/vf_access"

#define MEM_0 0x61C20000

#define MEM_3 0x61C60000

#define NUM_SAMPLES 32

#define dst_mem 0x08000000

#define latency 18

#define start 0x00000001

mailto:s120050@ntu.edu.sg

56

static int *mmio; //Map Mem 0 to this Address

static int *mmio1; //Map Mem 3 to this Address

static int major_num;

static int Device_Occupied = 0; //Set to 1 When Device is under Use

static int device_open(struct inode *inode, struct file *file)

{

 if (Device_Occupied)

 return -EBUSY;

 Device_Occupied++;

 try_module_get(THIS_MODULE);

 return SUCCESS;

}

static int device_release(struct inode *inode, struct file *file)

{

 Device_Occupied--;

 module_put(THIS_MODULE);

 return SUCCESS;

}

static ssize_t device_read (struct file *file, char __user * buffer, size_t length,

loff_t * offset)

{

 return SUCCESS;

}

static ssize_t device_write (struct file *file, char __user * buffer, size_t length,

loff_t * offset)

{

 return SUCCESS;

}

57

int device_ioctl(struct file *file, unsigned int ioctl_num, unsigned long ioctl_param)

{

 int i;

 int start_cycles=0;

 int end_eycles = 0;

 int *XPAR_VF_0_S_AXI_MEM0_BASEADDR, *XPAR_VF_0_S_AXI_MEM3_BASEADDR;

 int value;

 XPAR_VF_0_S_AXI_MEM0_BASEADDR=mmio;

 XPAR_VF_0_S_AXI_MEM3_BASEADDR=mmio1;

 volatile int *c_base = XPAR_VF_0_S_AXI_MEM0_BASEADDR + 0x00000050;

 volatile int *d_base = XPAR_VF_0_S_AXI_MEM3_BASEADDR + 0x00000050;

 volatile int *ctrl = XPAR_VF_0_S_AXI_MEM0_BASEADDR;

 volatile int *stat = XPAR_VF_0_S_AXI_MEM3_BASEADDR;

 volatile int *count = XPAR_VF_0_S_AXI_MEM3_BASEADDR + 0x0000004F;

 volatile int *count_idle = XPAR_VF_0_S_AXI_MEM3_BASEADDR + 0x0000004E;

 *count=0x00000000;

 *ctrl= 0x00000000;

 volatile int *dsp_config01 = XPAR_VF_0_S_AXI_MEM0_BASEADDR + 0x00000001;

 volatile int *dsp_config01_d = XPAR_VF_0_S_AXI_MEM0_BASEADDR + 0x00000002;

 volatile int *dsp_config01_pd = XPAR_VF_0_S_AXI_MEM0_BASEADDR + 0x00000003;

 volatile int *dsp_config03 = XPAR_VF_0_S_AXI_MEM0_BASEADDR + 0x00000004;

 volatile int *dsp_config03_d = XPAR_VF_0_S_AXI_MEM0_BASEADDR + 0x00000005;

 volatile int *dsp_config03_pd = XPAR_VF_0_S_AXI_MEM0_BASEADDR + 0x00000006;

 volatile int *dsp_config10 = XPAR_VF_0_S_AXI_MEM0_BASEADDR + 0x00000007;

 volatile int *dsp_config10_d = XPAR_VF_0_S_AXI_MEM0_BASEADDR + 0x00000008;

 volatile int *dsp_config10_pd = XPAR_VF_0_S_AXI_MEM0_BASEADDR + 0x00000009;

 volatile int *dsp_config12 = XPAR_VF_0_S_AXI_MEM0_BASEADDR + 0x0000000A;

 volatile int *dsp_config12_d = XPAR_VF_0_S_AXI_MEM0_BASEADDR + 0x0000000B;

 volatile int *dsp_config12_pd = XPAR_VF_0_S_AXI_MEM0_BASEADDR + 0x0000000C;

 volatile int *dsp_config14 = XPAR_VF_0_S_AXI_MEM0_BASEADDR + 0x0000000D;

58

 volatile int *dsp_config14_d = XPAR_VF_0_S_AXI_MEM0_BASEADDR + 0x0000000E;

 volatile int *dsp_config14_pd = XPAR_VF_0_S_AXI_MEM0_BASEADDR + 0x0000000F;

 volatile int *dsp_config21 = XPAR_VF_0_S_AXI_MEM0_BASEADDR + 0x00000010;

 volatile int *dsp_config21_d = XPAR_VF_0_S_AXI_MEM0_BASEADDR + 0x00000011;

 volatile int *dsp_config21_pd = XPAR_VF_0_S_AXI_MEM0_BASEADDR + 0x00000012;

 volatile int *dsp_config23 = XPAR_VF_0_S_AXI_MEM0_BASEADDR + 0x00000013;

 volatile int *dsp_config23_d = XPAR_VF_0_S_AXI_MEM0_BASEADDR + 0x00000014;

 volatile int *dsp_config23_pd = XPAR_VF_0_S_AXI_MEM0_BASEADDR + 0x00000015;

 volatile int *dsp_config30 = XPAR_VF_0_S_AXI_MEM0_BASEADDR + 0x00000016;

 volatile int *dsp_config30_d = XPAR_VF_0_S_AXI_MEM0_BASEADDR + 0x00000017;

 volatile int *dsp_config30_pd = XPAR_VF_0_S_AXI_MEM0_BASEADDR + 0x00000018;

 volatile int *dsp_config32 = XPAR_VF_0_S_AXI_MEM0_BASEADDR + 0x00000019;

 volatile int *dsp_config32_d = XPAR_VF_0_S_AXI_MEM0_BASEADDR + 0x0000001A;

 volatile int *dsp_config32_pd = XPAR_VF_0_S_AXI_MEM0_BASEADDR + 0x0000001B;

 volatile int *dsp_config34 = XPAR_VF_0_S_AXI_MEM0_BASEADDR + 0x0000001C;

 volatile int *dsp_config34_d = XPAR_VF_0_S_AXI_MEM0_BASEADDR + 0x0000001D;

 volatile int *dsp_config34_pd = XPAR_VF_0_S_AXI_MEM0_BASEADDR + 0x0000001E;

 volatile int *dsp_config41 = XPAR_VF_0_S_AXI_MEM0_BASEADDR + 0x0000001F;

 volatile int *dsp_config41_d = XPAR_VF_0_S_AXI_MEM0_BASEADDR + 0x00000020;

 volatile int *dsp_config41_pd = XPAR_VF_0_S_AXI_MEM0_BASEADDR + 0x00000021;

 volatile int *dsp_config43 = XPAR_VF_0_S_AXI_MEM0_BASEADDR + 0x00000022;

 volatile int *dsp_config43_d = XPAR_VF_0_S_AXI_MEM0_BASEADDR + 0x00000023;

 volatile int *dsp_config43_pd = XPAR_VF_0_S_AXI_MEM0_BASEADDR + 0x00000024;

 volatile int *cb_config00_ws=XPAR_VF_0_S_AXI_MEM0_BASEADDR + 0x00000025;

 volatile int *cb_config00_en=XPAR_VF_0_S_AXI_MEM0_BASEADDR + 0x00000026;

 volatile int *cb_config02_ws=XPAR_VF_0_S_AXI_MEM0_BASEADDR + 0x00000027;

 volatile int *cb_config02_en=XPAR_VF_0_S_AXI_MEM0_BASEADDR + 0x00000028;

 volatile int *cb_config04_ws=XPAR_VF_0_S_AXI_MEM0_BASEADDR + 0x00000029;

 volatile int *cb_config04_en=XPAR_VF_0_S_AXI_MEM0_BASEADDR + 0x0000002A;

 volatile int *cb_config11_ws=XPAR_VF_0_S_AXI_MEM0_BASEADDR + 0x0000002B;

 volatile int *cb_config11_en=XPAR_VF_0_S_AXI_MEM0_BASEADDR + 0x0000002C;

 volatile int *cb_config13_ws=XPAR_VF_0_S_AXI_MEM0_BASEADDR + 0x0000002D;

 volatile int *cb_config13_en=XPAR_VF_0_S_AXI_MEM0_BASEADDR + 0x0000002E;

59

 volatile int *cb_config20_ws=XPAR_VF_0_S_AXI_MEM0_BASEADDR + 0x0000002F;

 volatile int *cb_config20_en=XPAR_VF_0_S_AXI_MEM0_BASEADDR + 0x00000030;

 volatile int *cb_config22_ws=XPAR_VF_0_S_AXI_MEM0_BASEADDR + 0x00000031;

 volatile int *cb_config22_en=XPAR_VF_0_S_AXI_MEM0_BASEADDR + 0x00000032;

 volatile int *cb_config24_ws=XPAR_VF_0_S_AXI_MEM0_BASEADDR + 0x00000033;

 volatile int *cb_config24_en=XPAR_VF_0_S_AXI_MEM0_BASEADDR + 0x00000034;

 volatile int *cb_config31_ws=XPAR_VF_0_S_AXI_MEM0_BASEADDR + 0x00000035;

 volatile int *cb_config31_en=XPAR_VF_0_S_AXI_MEM0_BASEADDR + 0x00000036;

 volatile int *cb_config33_ws=XPAR_VF_0_S_AXI_MEM0_BASEADDR + 0x00000037;

 volatile int *cb_config33_en=XPAR_VF_0_S_AXI_MEM0_BASEADDR + 0x00000038;

 volatile int *cb_config40_ws=XPAR_VF_0_S_AXI_MEM0_BASEADDR + 0x00000039;

 volatile int *cb_config40_en=XPAR_VF_0_S_AXI_MEM0_BASEADDR + 0x0000003A;

 volatile int *cb_config42_ws=XPAR_VF_0_S_AXI_MEM0_BASEADDR + 0x0000003B;

 volatile int *cb_config42_en=XPAR_VF_0_S_AXI_MEM0_BASEADDR + 0x0000003C;

 volatile int *cb_config44_ws=XPAR_VF_0_S_AXI_MEM0_BASEADDR + 0x0000003D;

 volatile int *cb_config44_en=XPAR_VF_0_S_AXI_MEM0_BASEADDR + 0x0000003E;

*dsp_config01=0x07b5a000;

 *dsp_config01_d=0x00000005;

 *dsp_config01_pd=0x00000000;

 *dsp_config03=0x07b5a000;

 *dsp_config03_d=0x00000007;

 *dsp_config03_pd=0x00000000;

 *dsp_config10=0x07b52000;

 *dsp_config10_d=0x00000007;

 *dsp_config10_pd=0x00000000;

 *dsp_config12=0x07b52000;

 *dsp_config12_d=0x00000005;

 *dsp_config12_pd=0x00000000;

 *cb_config00_ws=0x00000000;

 *cb_config00_en=0x00678000;

 *cb_config02_ws=0x00000000;

60

 *cb_config02_en=0x00678000;

 *cb_config11_ws=0x00678000;

 *cb_config11_en=0x00000000;

 *cb_config13_ws=0x00345000;

 *cb_config13_en=0x00000000;

 *cb_config20_ws=0x00345000;

 *cb_config20_en=0x00000000;

 for(i=0;i<NUM_SAMPLES;i++){

 c_base[i]=i+0x01;

 }

 *ctrl= (dst_mem | (NUM_SAMPLES<<12) | (latency<<4) | start);

 *stat=0x00000000;

 while(*stat!=0x1);

 for(i=0;i<NUM_SAMPLES;i++){

 value= d_base[i];

 }

 *ctrl=0x00000000;

 for(i=0;i<NUM_SAMPLES;i++){

 c_base[i]=i+0x01;

 }

 *ctrl= (dst_mem | (NUM_SAMPLES<<12) | (latency<<4) | start);

 *stat=0x00000000;

 while(*stat!=0x1);

 printk(KERN_INFO "Execution time %d cycles in HW--\n\r", *(int*)count);

 for(i=0;i<NUM_SAMPLES;i++){

 value= d_base[i];

 }

 printk(KERN_INFO "IDLE time %d cycles in HW--\n\r", *(int*)count_idle);

61

 int e_base[NUM_SAMPLES];

 for(i=0;i<NUM_SAMPLES;i++){

 e_base[i]=5*((int)c_base[i+3])+7*((int)c_base[i+2])+5*((int)c_base[i+1])+7*((int

)c_base[i]);

 }

 int Success=0;

 for(i=0;i<NUM_SAMPLES-5;i++){

 if(e_base[i]!=(int)(d_base[i] >>16)){

 Success=0;

 }

 else{

 Success=1;

 }

 }

 if(Success){

 printk(KERN_INFO "Verification Successful...........\n\r");

 }

 else{

 printk(KERN_INFO "Verification failed...............\n\r");

 }

 return SUCCESS;

}

struct file_operations Fops = {

 .read = device_read,

 .write = device_write,

 .unlocked_ioctl = device_ioctl,

 .open = device_open,

 .release = device_release,

 };

62

int init_module()

{

 int ret_val;

 major_num = register_chrdev(0,DEVICE_NAME, &Fops); //TO Register the Character

Driver

 //Negative Values Signify the Errors in the Code

 if (major_num < 0)

 {

 printk(KERN_ALERT "%s failed with %d\n","Sorry, registering the character

device ", ret_val);

 return ret_val;

 }

 printk(KERN_INFO "%s The major device number is %d.\n", "Registration was

Successful",major_num);

 printk(KERN_INFO "If you want to talk to the Device Driver, \n");

 printk(KERN_INFO "Than create the following device file by the command. \n");

 printk(KERN_INFO "mknod %s c %d 0\n", DEVICE_NAME, major_num);

 mmio = ioremap(MEM_0,0x100);

 mmio1 = ioremap(MEM_3,0x100);

 return 0;

}

void cleanup_module()

{

 int ret;

 //Unregister the Device

 iounmap(mmio);

 unregister_chrdev(major_num,DEVICE_NAME);

}

MODULE_AUTHOR("Zain Ansari");

MODULE_DESCRIPTION("Xilinx Zynq VF Access Driver");

MODULE_LICENSE("GPL v2");

63

Code Walkthrough IF Driver:
Similar to register access drives the IF access drivers are implemented but they are utilizing the

two Block RAMs on the PL one is the source of configuration and data while the other one the

sink for the processed data.

This defines the number of samples or the number of taps to be processed.

For different TAP values the useful data comes after a certain latency in a 4 TAP filter the

latency is 18 whereas 8 and 12 TAP the latency is 34 and 50 respectively.

This device driver supports the file operations mentioned above, the functions read and write

have not been utilized but are implemented for complex operations in future.

#define NUM_SAMPLES 32

#define latency 18

 .read = device_read,

 .write = device_write,

 .unlocked_ioctl = device_ioctl,

 .open = device_open,

 .release = device_release,#define

init_module()

64

When the user insmod this kernel module into the kernel the above function is called mapping the

physical addresses to the virtual addresses and requesting the user to create a device node for the

driver to access it from the user mode.

When the user calls rmmod the above function is called causing the physical to virtual mapping

being released.

The above function has been implemented to achieve a lock or a mutual exclusion on the device

driver so only one user mode program can access it at a particular instance.

The above function has been implemented to release the mutual exclusion lock on the device

driver so when a user mode application has finished utilizing the driver it is available for other

applications.

The above function is the main function of the device driver which is called using:

cleanup_module()

static int device_open(struct inode *inode, struct file *file)

static int device_release(struct inode *inode, struct file *file)

int device_ioctl(struct file *file, unsigned int ioctl_num, unsigned long ioctl_param)

ioctl(file_desc, 1, NULL); // Call The IOCTL in Kernel Module

65

This call is made from the application program, it does the following operations.

 Initially it allocates the BRAMs on the virtual addresses to be accessible from the kernel.

 It configures 4 PEs.

 It configures 5 CBs.

 Writes coefficients and data to PEs.

 Computes the execution time in terms of number of cycles.

 Computes IDLE time in terms of number of cycles.

 Verifies the correctness of results.

For Different Value of samples the results have been such with the test application.

32 Samples

Figure 2.13

64 Samples

Figure 2.14

66

128 Samples

Figure 2.15

256 Samples

Figure 2.16

512 Samples

Figure 2.17

67

32 Samples using User Space Drivers:

Figure 2.18

There are scenarios where large chunks of data need to be transferred between the memory and

the PL. In such scenarios DMA is method of preference DMA utilizes interrupts for synchronous

and asynchronous transfers. DMA permits the peripherals to transfer data between the system

memory and the peripheral memory without the involvement of the processor. The efficiency of

DMA is entirely dependent on how the interrupt are dealt with.

The ARM cores built into the Xilinx Zynq has a PL-330 DMA controller built into it. The

software driver running on the ARM processor can issue status and control commands to the

DMA controller [63].

The Xilinx Zynq Wiki [64] contains the full driver support for the PL-330 controller which can

be ported to transfer data to BRAMs or FIFOs on the PL from the system memory. This driver

has now been made part of the main line kernel as well and can be run directly to the DMA

controller on the Xilinx Zynq.

68

The following picture sums up the complete Xilinx Zynq development on Linux ecosystem.

Figure 2.19 [67]

69

Conclusion and Future Work

The points that have been raised in this report create a significant ground for FPGAs to be now

seen as a serious computing platform but along with that it also faces massive challenges and

some of them are open research problems. This report also focused on a vendor specific platform

but since it is a widely available solution it seemed a wise choice, the methodologies and

procedures have been described in this report which could enable typical hardware design FPGA

engineer to utilize the processor and the operating system to develop some of the most complex

embedded systems.

This sort of enabling technology leaves plenty of open research problems for the researchers in

High Performance Computing. The author of this report is working on CUDA like library for

Hybrid FPGAs using the LLVM compiler infrastructure, utilizing such library selected portions

of code could be executed on the FPGA based virtual fabric which could be static or

reconfigurable depending on the application or situation it is being utilized in. Apart from this

now FPGA based SoC are taking flight and even more high performance chips are entering the

market which significantly reduces the challenges faced by the FPGA based computing

platforms.

70

References

[1] John von Neumann: First Draft of a Report on the EDVAC; University of Pennsylvania, June

30, 1945.

[2] G. Fettweis: ICT Energy Consumption - Trends and Challenges; WPMC‗08, Lapland

Finland, 8 –11 Sep 2008.

[3] J. Rabaey: Low Power Design Essentials; Springer Verlag, 2009.

[4] J.Rabaey: Reconfigurable Processing: The Solution to Low-Power Programmable DSP,

Proc. ICASSP 1997.

[5] T. Claasen: High Speed: Not the Only Way to Exploit the Intrinsic Computational Power of

Silicon; ISSCC-1999, pp. 22–25, Feb. 1999.

[6] J.M.P. Cardoso and M. Hübner (eds.), Reconfigurable Computing: From FPGAs to

Hardware/Software Codesign, DOI 10.1007/978-1-4614-0061-5_2, © Springer Science+Business

Media, LLC 2011.

[7] K. Gaj, T. El-Ghazawi: Cryptographic Applications; RSSI Reconfigurable Systems Summer

Institute, July 11–13, 2005, Urbana-Champaign, IL, USA

http://www.ncsa.uiuc.edu/Conferences/RSSI/presentations.html

[8] Garrison Jeff: What! How big did you say that FPGA is? (Team-design for FPGAs)

(EETimes Design Article). 27 Sept. 2010

[9] http://www.maxeler.com/

[10] http://www.conveycomputer.com/

[11] Ciletti MD, ―Advanced Digital Design with the Verilog HDL‖, Prentice Hall, 2003

[12] Hauck, S. and DeHon, A. ―Reconfigurable Computing: the Theory and Practice of FPGA

Based Computation‖, Morgan Kaufmann Publishers Inc., 2008.

[13] R. Hartenstein (keynote): Reconfigurable Computing: boosting Software Education for the

Multicore Era; IV Southern Programmable Logic Conference (SPL 2010), Porto Galinhas Beach,

Brazil, 24–26 March 2010.

[14] J. Turley: How Many Times Does CPU Go Into FPGA? Embedded Technology Journal -

June 8, 2010.

[15] Selwood: EPP - A Platform to Bridge a Gap? Emb. Technology J. June 8, 2010

[16] http://www.raspberrypi.org/

http://www.ncsa.uiuc.edu/Conferences/RSSI/presentations.html
http://www.maxeler.com/
http://www.conveycomputer.com/
http://www.raspberrypi.org/

71

[17] http://www.altera.com/devices/processor/soc-fpga/overview/proc-soc-fpga.html

[18] DS190 – Zynq – 7000 – Overview

[19] Xilinx Inc. Zynq-7000 All Programmable SoC Technical Reference Manual. Xilinx Inc., 1.4

edition, 2012. Xilinx UG585.

[20] K. Compton, A. DeHon, "Chapter 11: Operating System Support for Reconfigurable

Computing", Reconfigurable Computing: The Theory and Practice of FPGA-based Computation,

S. Hauck, A. DeHon (editors), Morgan Kaufmann/Elsevier, 2008.

[21] Silberschatz, Galvin, Gagne: Operating System Concepts, 7th Edition

[22] A. S. Tanenbaum.Modern Operating Systems, Prentice-Hall, 1992.

[23] M. Kretz and A. Kugel, Linux on FPGA platforms: control software to connect custom

peripherals. ;In Proceedings of SIGBED Review. 2012, 12-16.

[24] G. Brebner. A virtual hardware operating system for the Xilinx XC6200.International

Workshop on Field-Programmable Logic and Applications, 1996.

[25] K. Rupnow, ―Operating system management of reconfigurable hardware computing

systems,‖ in Proceedings of the International Conference on Field-Programmable Technology

(FPT), 2009, pp. 477–478.

[26] Microkernel Hypervisor for a Hybrid ARM-FPGA Platform Khoa D. Pham, Abhishek K.

Jain, Jin Cui, Suhaib A. Fahmy and Douglas L. Maskell

[27] B. Ylvisaker, B. Van Essen, C. Ebeling. A type architecture for hybrid microparallel

computers. IEEE Symposium on Field-Programmable Custom Computing Machines, 2006.

[28] N. Moore, A. Conti, M. Leeser, L. S. King. Writing portable applications that dynamically

bind at run time to reconfigurable hardware.IEEE Symposium on Field-Programmable Custom

Computing Machines, 2007.

[29] Z. Li, K. Compton, S. Hauck. Configuration caching management techniques for

reconfigurable computing. IEEE Symposium on FPGAs for Custom Computing Machines, 2000

[30] R. Maestre, F. J. Kurdahi, M. Fern´ andez, R. Hermida, N. Bagherzadeh, H. Singh. A

framework for reconfigurable computing: Task scheduling and context management.IEEE

Transactions on VLSI 9(6), December 2001.

[31] Y. Markovskiy, E. Caspi, R. Huang, J. Yeh, M. Chu, J. Wawrzynek, A. DeHon. Analysisof

quasi-static scheduling techniques in a virtualized reconfigurable machine. ACM/SIGDA

International Symposium on Field-Programmable Gate Arrays, 2002.

http://www.altera.com/devices/processor/soc-fpga/overview/proc-soc-fpga.html

72

[32] H. Koptez. Real-Time Systems: Design Principles for Distributed Embedded Applications,

Kluwer Academic Publishers, 1997.

[33] C. Steiger, H. Walder, M. Platzner. Operating systems for reconfigurable embedded

platforms: Online scheduling of real-time tasks.IEEE Transactions on Computers 53(11), 2004.

[34] H. Walder, M. Platzner. Online scheduling for block-partitioned reconfigurable devices.

Design, Automation and Test in Europe, 2003.

[35] E. Lee. The problem with threads. Computer 39(5), May 2006.

[36] S. Singh. Integrating FPGAs in high-performance computing: Programming models for

parallel systems—the programmer‘s perspective.ACM/SIGDA International Symposium on

Field-Programmable Gate Arrays, 2007.

[37] B. J. Nelson. Remote Procedure Call, Xerox Palo Alto Research Center technical report,

1981.

[38] M. Snir, W. Gropp.MPI: The Complete Reference, 2nd ed., MIT Press, 1998.

[39] A. Patel, C. A. Madill, M. Saldana, C. Comis, R. Pomes, P. Chow. A scalable FPGA-based

multiprocessor. IEEE Symposium on Field-Programmable Custom Computing Machines, 2006.

[40] V. Nollet, P. Coene, D. Verkest, S. Vernalde, R. Lauwereins. Designing an operating

system for a heterogeneous reconfigurable SoC. Proceedings of the Reconfigurable

Architectures Workshop, 2003

[41] M. Budiu, M. Mishra, A. Bharambe, S. C. Goldstein. Peer-to-peer hardware–software

interfaces for reconfigurable fabrics. IEEE Symposium on Field-Programmable Custom

Computing Machines, 2002.

[42] M. Butts, A. M. Jones, P. Wasson. A structural object programming model, architecture,

chip and tools for reconfigurable computing. IEEE Symposium on Field Programmable Custom

Computing Machines, 2007.

[43] A. DeHon, Y. Markovskiy, E. Caspi, M. Chu, R. Huang, S. Perissakis, L. Pozzi, J. Yeh, J.

Wawrzynek. Stream computations organized for reconfigurable execution. Microprocessors and

Micro systems 30, September 2006.

[44] J. R. Hauser. Augmenting a Microprocessor with Reconfigurable Hardware, Ph.D. thesis,

University of California, Berkeley, 2000.

[45] W. Fu, K. Compton. A simulation platform for reconfigurable computing research.

International Conference on Field-Programmable Logic and Applications, August 2006.

[46] C. Chang, J. Wawrzynek, R. W. Brodersen. BEE2: A high-end reconfigurable computing

system.IEEE Design and Test of Computers 22(2), 2005.

73

[47] S. Qadeer, D. Wu. KISS: Keep It Simple and Sequential.ACM SIGPLAN Conference on

Programming Language Design and Implementation, 2004.

[48] D. Andrews, D. Niehaus, R. Jidin. Implementing the thread programming model on hybrid

FPGA/CPU computational components. Workshop on Embedded Processor Architectures,

International Symposium on Computer Architecture, 2004.

[49] G. Brebner. Multithreading for logic-centric systems. International Conference on Field-

Programmable Logic and Applications, 2002.

[50] J. A. Jacob, P. Chow. Memory interfacing and instruction specification for reconfigurable

processors.ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, 1999.

[51] R. Amerson, R. Carter, W. Culbertson, P. Kuekes, G. Snider, L. Albertson. Plasma: An

FPGA for million gate systems.ACM International Symposium on Field-Programmable Gate

Arrays, 1996.

[52] Xilinx. XC6200 FPGA Advanced Product Specification, June 1996.

[53] P. Garcia, K. Compton. A reconfigurable hardware interface for a modern computing

system. IEEE Symposium on Field-Programmable Custom Computing Machines, 2007.

[54] Embedded Linux Primer: A Practical Real-World Approach by Christopher Hallinan,

Prentice Hall PTR; 2nd edition, 2010.

[55] Linux Device Drivers 3rd Ed. by Jonathan Corbet, Alessandro Rubini, and Greg Kroah

Hartman, Oreilly.

[56] Karim Yaghmour, Jon Masters, Gilad Ben-Yossef, Philippe Gerum: "Building Embedded

Linux Systems 2nd edition", Paperback: 462 pages, O'Reilly & Associates; (August 2008); ISBN

10: 0-596-52968-6; ISBN 13: 9780596529680 ISBN 059600222X

[57] P. Raghavan; Amol Lad, Sriram Neelakandan Embedded Linux System Design and

Development, December 21, 2005 by Auerbach Publications.

[58] Xilinx Inc. Zynq-7000 All Programmable SoC: Concepts, Tools, and Techniques (CTT).

Xilinx UG873 V14.5 (March 20, 2013).

[59] https://sourcery.mentor.com/sgpp/lite/arm/portal/release1039

[60] http://uclibc.org

[61] http://buildroot.uclibc.org

[62] http://www.denx.de/wiki/U-Boot

https://sourcery.mentor.com/sgpp/lite/arm/portal/release1039
http://uclibc.org/
http://buildroot.uclibc.org/
http://www.denx.de/wiki/U-Boot

74

[63] A description of the DMA Controller (DMAC) including the programmers model and

instruction set can be found in the DMA-330 Technical Reference Manual, (ARM DDI 0424)

available from http://infocenter.arm.com.

[64] Zynq Linux pl330 DMA http://www.wiki.xilinx.com/Zynq+Linux+pl330+DMA

[65] http://wiki.qemu.org/Main_Page

[66] http://www.wiki.xilinx.com/QEMU

[67] http://www.wiki.xilinx.com/Getting+Started

http://infocenter.arm.com/
http://www.wiki.xilinx.com/Zynq+Linux+pl330+DMA
http://wiki.qemu.org/Main_Page
http://www.wiki.xilinx.com/QEMU
http://www.wiki.xilinx.com/Getting+Started

