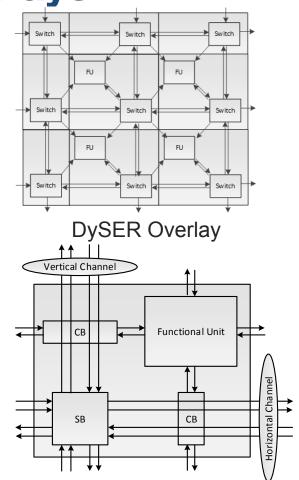


An Area-Efficient FPGA Overlay Architecture using Time-multiplexed DSP Block based Functional Units

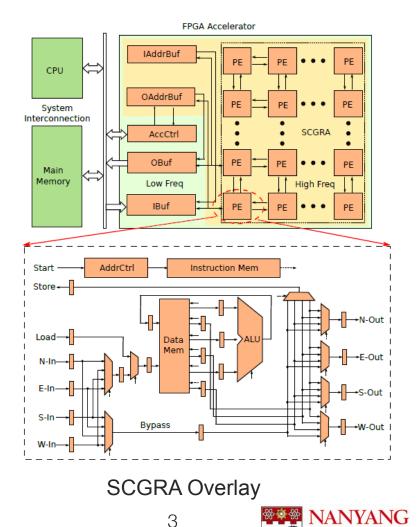

Xiangwei Li, Abhishek Jain, Douglas Maskell & Suhaib Fahmy †

School of Computer Engineering, NTU Singapore [†] School of Engineering, University of Warwick, UK

2nd International Workshop on Overlay Architectures for FPGAs (OLAF) 21st Feb 2016, Monterey, CA, USA

Coarse Grained FPGA Overlays

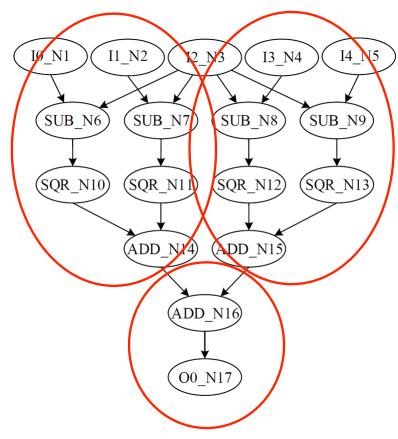
- Spatially Configured Overlays
- Throughput Oriented with an II of 1
- IF, DySER, DSP based overlay
- Resource hungry due to FU requirement for each operation and connection network
- Zynq-7020 can accommodate:
 - 6x6 DySER supporting up-to 36 OPs
 - 8x8 DSP based overlay supporting up-to 192 Ops
- No sharing of FUs among multiple operations to sustain high throughput
- So, can we share FUs to reduce area requirements at the cost of reduced throughput?



Island-style DSP Block based Overlay

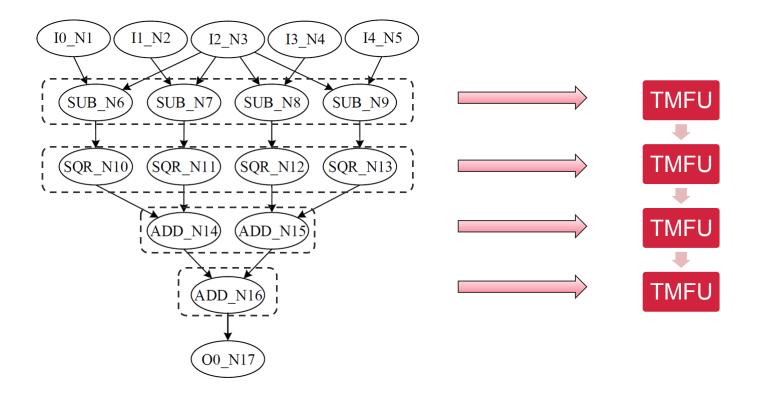
Time-multiplexing Functional Units

- Reduced FU requirements
- 5x5 SCGRA can fit on Zynq-7020
 - Limited Scalability due to instruction storage requirement
 - Need to store completely unrolled instruction stream in BRAMs
- reMORPH: Another similar overlay
 - Same problem of instruction storage
 - FU not really FPGA architecture friendly
- So, can we reduce the instruction storage requirements?

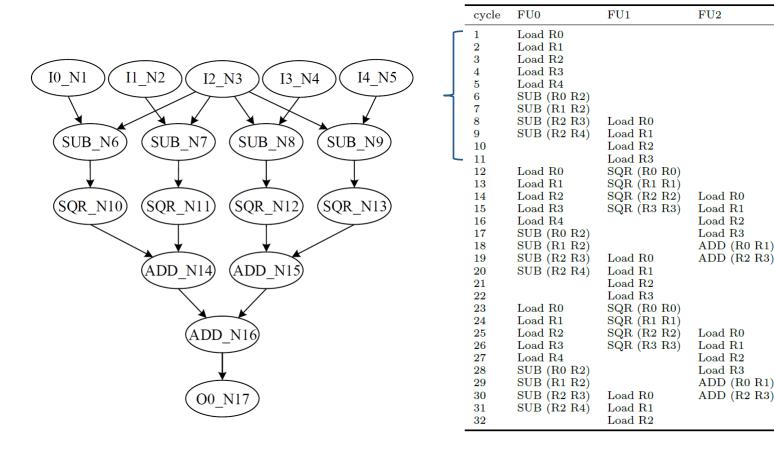


Issues

- Can we find a better scheduling strategy so that we avoid excessive BRAM utilization (while minimizing II)?
- How can we make the FU and routing network as area efficient as possible?
- Can we better optimize the FU's operating frequency to the FPGA devices?


Sharing FU among Kernel Operations

Sharing the FU among kernel operations can reduce the No. of FUs required.

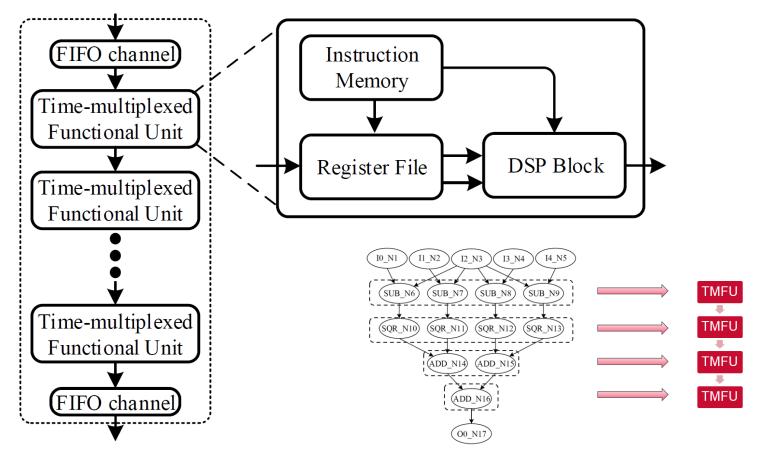

Sharing FU among Kernel Operations

So instead, share the FU among the same scheduling stage kernel operations. Can again reduce the No. of FUs.

Instruction Scheduling

Initial Interval (II) = 11

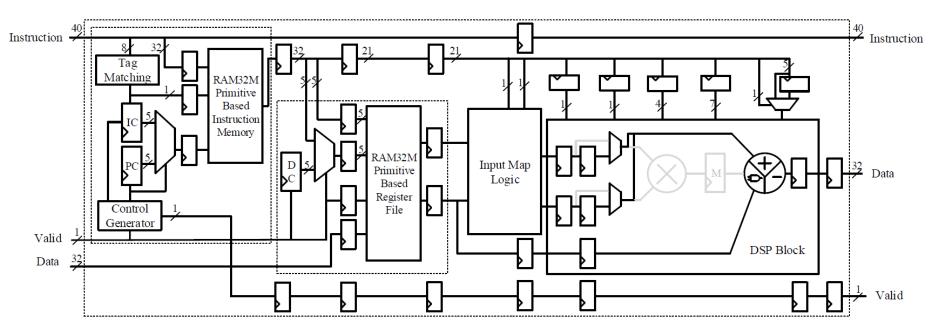
FU3


Load R0

Load R1

Load R0

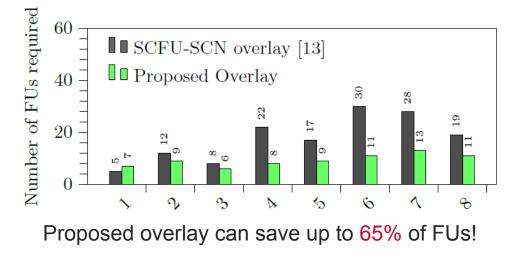
ADD (R0 R1)


An Overlay with Linear Interconnection

No need for switch box and connection box in comparison with island style interconnect!

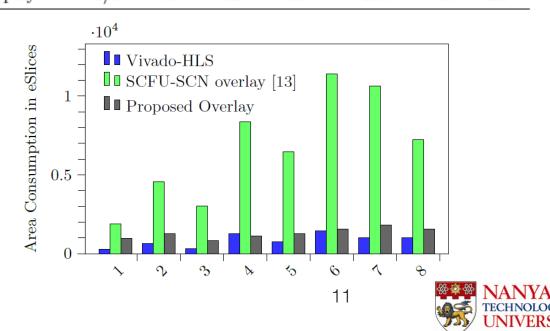
Time Multiplexed FU

1 TMFU = 1 DSP + 160 LUTs + 293 FFs


Use RAM32M primitives for the instruction memory and register file instead of BRAMs

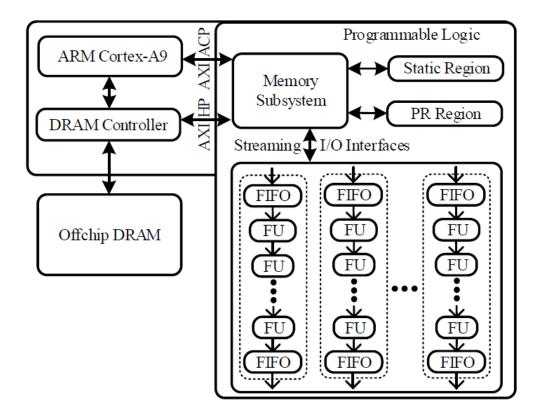
Can achieve up to 325 MHz on Zynq and 600 MHz on Virtex 7

Reduction in FU requirement


Benchmark	Characteristics						
Name	i/o nodes	graph edges	op nodes	graph depth	average parallelism	II	eOPC
chebyshev	1/1	12	7	7	1.00	6	1.2
sgfilter	2/1	27	18	9	2.00	10	1.8
mibench	3/1	22	13	6	2.16	11	1.2
qspline	7/1	50	26	8	3.25	18	1.4
poly5	3/1	43	27	9	3.00	14	1.9
poly6	3/1	72	44	11	4.00	17	2.6
poly7	3/1	62	39	13	3.00	17	2.3
poly8	3/1	51	32	11	2.90	15	2.1

Area Reduction for a Set of Benchmarks

- Benchmark Characteristics Name i/o graph graph average op eOPC nodes edges nodes parallelism Π depth Equivalent slices chebyshev 121.001.21/17 7 6 (e-Slices). The No. 2/1272.00sgfilter 189 101.83/122mibench 136 2.1611 1.2of slices per DSP gspline 7/150268 3.2518 1.443273.003/19 14 1.9poly5 block. ~60 on 3/17244 4.002.6poly6 11 17Zynq 3/1623913 3.002.3poly7 17 poly8 3/1513211 2.90152.1
- Proposed overlay can save up to 85% of e-Slices!!!



Context Switch Time

	Configuration data	Context switch time
Proposed overlay	65-410 Bytes	0.27 us
SCFU-SCN overlay	323 Bytes	13 us
Vivado HLS	75K Bytes	200 us

Future Work: Cascading pipelines

A cascade of multiple processing pipelines helps reduce the value of II; thus improve the throughput.

Conclusion

- Benefits
 - Less FUs
 - Less interconnect
 - Less instructions
 - Fast context switch
- Limitations
 - Larger II
 - Feed forward data flow graphs only

Thank you!

