
An Area-Efficient FPGA Overlay using DSP Block
based Time-multiplexed Functional Units

Xiangwei Li∗, Abhishek Kumar Jain∗, Douglas L. Maskell∗ and Suhaib A. Fahmy†
∗School of Computer Engineering, Nanyang Technological University, Singapore

∗{xli045, abhishek013}@e.ntu.edu.sg, asdouglas@ntu.edu.sg
†School of Engineering, University of Warwick, United Kingdom

†s.fahmy@warwick.ac.uk

Abstract—Coarse grained overlay architectures improve FPGA
design productivity by providing fast compilation and software-
like programmability. Throughput oriented spatially configurable
overlays typically suffer from area overheads due to the re-
quirement of one functional unit for each compute kernel
operation. Hence, these overlays have often been of limited size,
supporting only relatively small compute kernels while consuming
considerable FPGA resources. This paper examines the possibility
of sharing the functional units among kernel operations for
reducing area overheads. We propose a linear interconnected
array of time-multiplexed FUs as an overlay architecture with
reduced instruction storage and interconnect resource require-
ments, which uses a fully-pipelined, architecture-aware FU design
supporting a fast context switching time. The results presented
show a reduction of up to 85% in FPGA resource requirements
compared to existing throughput oriented overlay architectures,
with an operating frequency which approaches the theoretical
limit for the FPGA device.

I. INTRODUCTION

Coarse grained FPGA overlay architectures have emerged
as an attractive solution for improving design productivity
by offering fast compilation and software-like programmabil-
ity. Recently, coarse grained overlay architectures have been
paired with general purpose processors as a co-processor [16],
[3] as this allows the hardware fabric to be viewed as a
software-managed hardware task, enabling more shared use.
Other advantages include application portability across de-
vices, better design reuse, and rapid reconfiguration that is
orders of magnitude faster than partial reconfiguration on fine-
grained FPGAs. An overlay overcomes the need for a full
cycle through vendor-implementation tools, instead presenting
a simpler problem of programming an interconnected array of
functional units (FUs). Overlays are not intended to replace
HLS and vendor-implementation tools and are instead in-
tended to support FPGA usage models where programmability,
abstraction, resource sharing, fast compilation and design
productivity are critical issues.

A number of coarse grained overlay architectures with
similarities to coarse-grained reconfigurable architectures
(CGRAs) have been proposed for FPGAs. These overlays
and CGRAs can be categorized based on their interconnect
configuration using the classification in [17], where 4 different
categories are defined as: spatially configured, time multi-
plexed, packet switched, and circuit switched. While examples

of packet switched [17] and circuit switched [12] networks
in FPGAs exist, they are generally resource hungry, and are
less suited for FPGA-based overlays. Thus, the majority of
overlays are restricted to two classes: spatially configured; and
time-multiplexed, where both the FU and the interconnect can
fall within either of these two categories.

The largest group consists of spatially configured FUs and
spatially configured interconnect networks [22], [2], [8], [14],
[13], [15], which we refer to as SCFU-SCN. In an SCFU-
SCN overlay, an FU executes a single arithmetic operation
and data is transferred between FUs over a programmable,
but temporally dedicated, point-to-point link. That is, both
the FU and the interconnect are unchanged while a compute
kernel is executing. This results in a fully pipelined, throughput
oriented datapath executing one kernel iteration per clock
cycle, thus having an initiation interval (II) [1] between kernel
data packets of one. A number of different spatially configured
interconnect strategies exist, with the most common being:
island style [22], [14], [13], [15], NN [8] and to a lesser extent
linear interconnect [11], [7].

The area overheads of SCFU-SCN overlays, in particular
the large interconnect resource requirements, have limited
the use of these overlays to very small compute kernels
in practical FPGA-based systems [2]. This means that in a
typical application a number of different kernels would need
to be mapped to the overlay as the application executes to
achieve the best application acceleration. Thus the kernel
context switch time is also an important consideration in the
efficient operation of an overlay [11]. Some of the current
overlays utilize partial reconfiguration to reduce the overlay
area, in particular the interconnect resources, by trading off
runtime connection flexibility [20]. However, while faster
than a complete FPGA reconfiguration, partial reconfiguration
still results in a significant context switch overhead, which
significantly impacts an application's runtime.

A number of overlays have been proposed which share
the functional units among kernel operations in an attempt to
reduce overlay resource requirements. Time-multiplexing the
FU can significantly reduce the FU and interconnect resource
requirements but at the cost of a higher II and hence a reduced
throughput. The most common time-multiplexed overlays have
both a time-multiplexed FU and a time-multiplexed intercon-
nect network [19], [21], [5], [20], which we refer to as TMFU-

Copyright held by the owner/author(s). Presented at
2nd International Workshop on Overlay Architectures for FPGAs (OLAF2016),
Monterey, CA, USA, Feb. 21, 2016.

8

TMN. Time-multiplexing the overlay allows it to change its
behavior on a cycle by cycle basis while the compute kernel
is executing [19], [21], [5], [20], thus allowing sharing of
limited FPGA resources. However, in many cases the storage
requirements for instructions are very large, resulting in a
significant area overhead. This is mainly due to: the scheduling
strategy; the execution model; and the design of overlay
architecture, and limits the scalability of the overlay while also
impacting the kernel context switch time. Additionally, many
of these overlays are not architecture-focused and hence the
FU operates at a relatively slow frequency.

The design of an efficient overlay should address the
concerns identified above. Thus, in this paper, we present a
TMFU-TMN overlay with reduced area overheads due to a
reduction in the instruction storage and interconnect resource
requirements. The main contributions are:

• An architecture using a linear connection of FUs to
form a processing pipeline which is able to support the
execution of feed-forward data flow graphs (DFGs). This
architecture results in a significant reduction in both the
FU and interconnect compared to other overlays.

• A scheduling methodology which reduces the number
of instructions that need to be stored in each FU thus
enabling an FU with a very small memory footprint.

• A 32 bit area-efficient, time-multiplexed FU with a very
small instruction memory built around a fully pipelined
DSP block using just a few memory primitives.

• An architecture with a significantly reduced context
switching time, thus enabling rapid kernel changes.

This combination of a small, highly pipelined FU with
a simple linear interconnect allows us to achieve a high
operating frequency and a relatively fast kernel context switch
time but at the expense of an increased II.

II. RELATED WORK

In TMFU CGRA overlays there are many options for the
type of FU, however, in FPGAs, the choice is more limited.
Here an FU could be a soft RISC processor [6], a DSP
macro based soft processor [9] or some simple ALU like
structure [19]. The FU would typically have an instruction
memory, allowing multiple operations to be time-multiplexed
to the FU. As with SCN interconnect networks, there are many
possibilities, with the NN style of programmable interconnect,
being most common. One benefit of using these types of
overlays is that well established algorithms and tools can be
used for application mapping.

One example is CARBON [5], which was implemented as
a 2×2 array of tiles on an Altera Stratix III FPGA. Each tile
has an FU with a programmable ALU and instruction memory,
supporting up to 256 instructions. An FU consumed 3K ALMs,
304 FFs, 15.6K BRAM bits and 4 DSP blocks, achieving
an operating frequency of 90 MHz. Compared to the other
TMFU-TMN overlays discussed here, CARBON has a large
FU resource requirement with a relatively slow speed which
limits the scalability of the architecture.

The SCGRA overlay [19] was proposed to address the
FPGA design productivity issue, demonstrating a 10-100×
reduction in compilation time compared to the AutoESL HLS
tool. Application specific SCGRA overlays were subsequently
implemented on the Xilinx Zynq platform [18], achieving a
speedup of up to 9× compared to the same application running
on the Zynq ARM processor. The FU used in the Zynq based
SCGRA overlay operates at 250 MHz and consists of an ALU,
multiport data memory (256×32 bits) and a customizable
depth instruction ROM (Supporting 72-bit wide instructions)
which results in the excessive utilization of BRAMs. As the
full FPGA bitstream needs to be reconfigured for a compute
kernel change, very fast context switching between applica-
tions, in the order of a few microseconds, is not possible.

The reMORPH [20] overlay better targeted the FPGA
fabric, with an FU consuming 1 DSP Block, 3 block RAMs,
196 LUTs and 41 registers. To reduce the overhead due to
routing and muxes, the reMORPH FU does not use decoders
resulting in a 72-bit instruction memory (supporting up to 512
instructions) which causes an over utilization of BRAMs. Tiles
are interconnected using an NN style of non-programmable
interconnect, which is adapted using partial reconfiguration
at runtime, and hence, suffers from the same slow hardware
context switch problem as SCGRA.

The TILT overlay [21], being a floating point overlay, unlike
the other overlays discussed here, results in high resource
consumption. An 8-core TILT system (with each core having
one multiply FU and one add/sub FU) was specifically de-
signed to implement a 64-tap FIR filter application, resulting
in a throughput of 30 M inputs/sec and consuming 12K
eALMs. For the same application, Altera OpenCL HLS was
used to generate a fully parallel and pipelined implementation,
resulting in a throughput of 240 M inputs/sec (8× higher
throughput than 8-core TILT) and consuming 51K eALMs (4×
higher area than 8-core TILT).

Most of the time multiplexed overlays described above
suffer from large area overheads due to instruction storage
requirements, which along with their use of partial reconfigura-
tion results in a long kernel context switch time. Thus, there is
significant scope to develop a time multiplexed overlay which
is able to better address these issues.

III. PROGRAMMABLE PIPELINES

A fully pipelined SCFU-SCN overlay can deliver maximum
performance by executing one computation iteration every
clock cycle (that is it has an II of one), but with a large FPGA
resource overhead. Alternatively, a TMFU-TMN overlay with
its reduced FPGA resource requirements may be a feasible
alternative allowing the remainder of the FPGA fabric to be
utilized for other purposes. However, the exact architecture
needs to be carefully analysed taking into account the charac-
teristics of the application kernels and the underlying FPGA
architecture, so as to minimise FPGA resource usage.

As discussed earlier, some of the more area efficient
overlays utilise a simple linear interconnect structure, which
can reduce to a simple direct connection between FUs by

2nd International Workshop on Overlay Architectures for FPGAs (OLAF2016)

9

(a) C Source Code

SQR_N10

I0_N1 I1_N2 I2_N3 I3_N4 I4_N5

SUB_N6 SUB_N7 SUB_N8 SUB_N9

SQR_N11 SQR_N12 SQR_N13

ADD_N14 ADD_N15

ADD_N16

O0_N17

(b) Data Flow Graph
Fig. 1: The ‘gradient’ benchmark.

allocating DFG nodes from the same scheduling time step to
the individual FUs. For example, Fig. 1(a) shows the medical
imaging ‘gradient’ benchmark [10], while Fig. 1(b) shows the
resulting data flow graph (DFG). By using a simple ASAP
schedule, we can allocate the nodes in each stage to a different
FU which in this example results in 4 stages, with the FU
in each stage being time-multiplexed among stage operations
using a direct (non-programmable) connection between FUs.
That is, the first stage would contain four subtract operations
which would execute on the first FU, the second stage would
contain four multiplication operations executing on the second
FU, and so on. Thus for the example shown in Fig. 1(b) the
II would be 11, consisting of 5 cycles for data entry, 4 cycles
for the 4 subtract operations, 1 cycle for data output and 1
cycle to flush the pipeline. Note that multiplexing the kernel
operations of the DFG in Fig. 1(b) to a single FU would result
in an II of 17 (5 load, 11 operation, and 1 store), assuming
best case execution without NOP insertions, while a spatially
configured overlay would require 11 FUs with an II of 1.

Furthermore, this means that only a small subset of all
possible instructions needs to be stored in each FU, resulting
in a very small memory requirement overcoming the problem
of the large area overheads due to the instruction storage
requirements in the overlays described in Section 2. This is
further assisted by using a simple low resource, but highly
pipelined, FU (similar to the iDEA soft core processor [9]).
This combination of linear interconnect and time multiplexed
FU presents an interesting design space which will likely result
in high throughput programmable architectures with reduced
II and significantly reduced hardware resource requirements.

A. Architecture Description

The 32-bit pipeline consists of a streaming data interface
made up of Distributed RAM (DRAM) acting as a FIFO,
which feeds into a cascade of time-multiplexed FUs, with
another DRAM-based FIFO at the pipeline output, as shown
in Fig. 2. The FU is optimized for FPGA implementation,
and consists of a lightweight processor, based loosely on the
iDEA DSP48E1-based soft core processor [9]. The main FU
components are an instruction memory (IM), register file (RF)
and DSP-based ALU, as shown in Fig. 3.

At initialization, or upon a hardware context switch, a 40-bit
data word, made up of a 32-bit wide instruction and an 8-bit
tag (used to match an instruction with its corresponding FU),
is clocked to the FU instruction port from a separate 40-bit
wide context memory implemented externally using BRAMs.

Time-multiplexed

Functional Unit

FIFO channel

Time-multiplexed

Functional Unit

Programmable

ALU
Register File

Instruction

Memory

DSP Block

Time-multiplexed

Functional Unit

FIFO channel

Fig. 2: A programmable processing pipeline.

The FU instruction ports are daisy-chained together, allowing
for efficient configuration of the complete overlay. There are
two types of instruction: arithmetic or data bypass (used to
forward data to the next stage). A 5-bit instruction counter
(IC) is used to keep track of the instructions written to the FU.
There are two types of instruction: arithmetic or data bypass.
The FU architecture supports a 32 entry IM implemented
using RAM32M primitives. The RAM32M primitive is an
efficient memory primitive implemented in LUTRAMs, which
can be configured as a 32 deep 2-bit wide quad port (3 read, 1
read/write), 32 deep 4-bit wide dual port (1 read, 1 read/write)
or an 8-bit wide single port (1 read/write) memory. Since
the IM writes only occur once at context initialization, we
multiplex the read and write addresses enabling us to use the
single port variant which uses just four RAM32M primitives
to instantiate the 32×32 IM. A 32-bit instruction has two
parts, the 21-bit DSP block configuration and two 5-bit source
operand addresses. Upon the completion of the context write
cycle, each FU contains the necessary instructions in its IM
and the instruction count in its IC register.

The RF is used to hold the 32-bit data streamed from the
input FIFO or the previous FU stage. The RF requires two
read ports and one write port, but as reads and writes do not
occur simultaneously we again multiplex one port enabling
both read and write operations. Thus the 32 entry RF requires
8 RAM32M primitives configured as a 1 read/write and 1
read port memory. Data is streamed into the FU when the
valid signal is high and is written to the RF using a simple
sequential data counter (DC). When all the data is available in
the RF the valid signal is taken low. The control generator then
asserts a control signal which triggers the IM to start sending
operand addresses to the RF and configuration data to the
DSP block. A program counter (PC) controls the execution of
instructions while the control signal is high. After executing all
the instructions related to the scheduling stage, including the
data output to the next stage, or output FIFO, the DSP block
flushes its internal pipeline and the program counter resets
allowing the same sequence of instructions to be reissued.
Thus, each FU only needs to execute a small number of
instructions, allowing for a small IM and RF design.

The other major block in the FU is the ALU, which consists
of a DSP48E1 primitive, two 32-bit registers, one at the C
input port for pipeline balancing and another at the output, and
an 18-bit register for holding the ALU configuration data. The
DSP48E1 primitive can support various operations determined

2nd International Workshop on Overlay Architectures for FPGAs (OLAF2016)

10

DSP Block

RAM32M

Primitive

Based

Register

File

D

C

Control

Generator

RAM32M

Primitive

Based

Instruction

Memory

Data

Valid

Data

Valid

M
Input Map

Logic

Instruction Instruction

PC

IC

Tag

Matching

40

32

1

40

32

1

8 32

1

1

5

5

32

5

5

55

5

21 21

1 1 4 7

5

1
11

Fig. 3: The proposed time-multiplexed functional unit.

by the configuration control inputs. As instruction decoders
are not used the instruction format must explicitly specify the
read addresses and the modes of operation of the DSP block
directly, allowing us to achieve a relatively high frequency.

The FU of Fig. 3 was synthesized and mapped to a
Xilinx Zynq XC7Z020-1CLG484C using Xilinx ISE 14.6.
We achieve a frequency of 325 MHz while consuming 1
DSP block, 160 LUTs and 293 FFs. A complete pipeline
consisting of 8 FUs and the 2 I/O FIFOs, consumed 8 DSP
blocks, 808 LUTs and 1077 FFs representing less than 4%
of the Zynq FPGA resources while operating at a slightly
reduced frequency of 303 MHz. When mapped to a more
capable XC7VX485T Virtex 7 device, we achieve a frequency
in excess of 600 MHz for the same resource utilization. The
maximum configuration time for a single pipeline consisting
of 8 FUs is 0.85 µs at 300 MHz. This assumes that all 8 IMs
require the full 32 instructions and that the kernel contexts are
already preloaded into the external context memory.

To overcome the effect of the increase in II compared to a
spatially configured overlay, we propose replicating multiple
pipelines, as shown in Fig. 4. This way, the proposed pipeline
can be used as a high performance hardware accelerator which
is integrated within a general purpose processor based system,
such as the Xilinx Zynq SOPC. Integration within the SOPC
allows the use of an OS or hypervisor for runtime management
of both the software tasks on the general purpose processor

DRAM Controller

Offchip DRAM

 ARM Cortex-A9

Memory

Subsystem

A
X

I
A

C
P Programmable Logic

A
X

I
H

P

Streaming I/O Interfaces

FIFO

FU

FU

FIFO

FU

FIFO

FU

FU

FIFO

FU

FIFO

FU

FU

FIFO

FU

Static Region

PR Region

Fig. 4: The proposed overlay on the Zynq platform.

and the hardware tasks on the proposed overlay using software
APIs. As shown in Fig. 4, a memory subsystem is required as
a bridge between the overlay on the FPGA fabric, the ARM
processor and the external memory. This memory subsystem
consists of a single port Block RAM for each programmable
pipeline and a single Block RAM for configuration data for
all pipelines. Data transfer between these memories and the
external memory is performed under DMA control.

IV. COMPILING TO THE OVERLAY

An overlay has two separate design processes: Overlay
implementation on the FPGA and application mapping to
the overlay. While the design and implementation of the
overlay relies on the conventional hardware design flow using
vendor tools, this process is done offline, once only, and so
does not impact the compute kernel implementation of an
application. We then use an in-house automated compilation
flow to provide a rapid, vendor independent, mapping to the
overlay. The mapping process comprises DFG extraction from
high level compute kernels, scheduling of the DFG nodes
onto the overlay, and finally, the instruction generation for
each FU. This is also done offline. Then at power-on the
bitstream for the overlay, and any other unrelated hardware
components, is used to configure the FPGA. Subsequent to
this, the ARM processor loads the kernel configuration into the
overlay pipeline and initiates kernel execution. Our mapping
flow is described below using the previous example.

HLL to DFG Conversion: The tool transforms a ‘C’
description of the compute kernel to a DFG text description,
where nodes represent operations and edges represent data
flow between operations, as shown in Fig. 1(b).

Operation Scheduling: Scheduling is used to generate a
sequenced DFG, with nodes in each scheduling stage being
allocated to a single FU for execution. Here, the set of instruc-
tions from the sequenced DFG is identified, then the cycle-by-
cycle execution pattern is formed as shown in Table. I, and
lastly the 32-bit FU instructions are generated.

For the example shown in Fig. 1, FU0 waits for an initial 5
cycles (from clock cycle 1 to clock cycle 5) while the data is
loaded into the RF, as indicated in Table I. As soon as loading
has completed, FU0 is triggered (in the 6th clock cycle) and
starts executing the 4 SUB instructions, one every cycle, using
the data from the RF. Note that as all operations are in the

2nd International Workshop on Overlay Architectures for FPGAs (OLAF2016)

11

TABLE I: First 32 cycles of the schedule with II=11.
cycle FU0 FU1 FU2 FU3

1 Load R0
2 Load R1
3 Load R2
4 Load R3
5 Load R4
6 SUB (R0 R2)
7 SUB (R1 R2)
8 SUB (R2 R3) Load R0
9 SUB (R2 R4) Load R1
10 Load R2
11 Load R3
12 Load R0 SQR (R0 R0)
13 Load R1 SQR (R1 R1)
14 Load R2 SQR (R2 R2) Load R0
15 Load R3 SQR (R3 R3) Load R1
16 Load R4 Load R2
17 SUB (R0 R2) Load R3
18 SUB (R1 R2) ADD (R0 R1)
19 SUB (R2 R3) Load R0 ADD (R2 R3)
20 SUB (R2 R4) Load R1 Load R0
21 Load R2 Load R1
22 Load R3 ADD (R0 R1)
23 Load R0 SQR (R0 R0)
24 Load R1 SQR (R1 R1)
25 Load R2 SQR (R2 R2) Load R0
26 Load R3 SQR (R3 R3) Load R1
27 Load R4 Load R2
28 SUB (R0 R2) Load R3
29 SUB (R1 R2) ADD (R0 R1)
30 SUB (R2 R3) Load R0 ADD (R2 R3)
31 SUB (R2 R4) Load R1
32 Load R2 Load R0

same scheduling stage there is no data dependency between
operations. FU0 starts sending the resulting data to FU1 on
the 8th clock cycle (due to the 3 stage internal pipeline in
the DSP block) and then waits for the cycle to repeat. Two
extra cycles (clock cycle 10 and 11) are needed for flushing
the pipeline of FU0, and hence we use a back-pressure signal
from FU0 to the input FIFO channel (from clock cycle 6 to
clock cycle 11) to pause further data input.

The operation of FU1 is similar to that of FU0. The output
data from FU0 (the SUB instruction at cycle 6) is input to
FU1 at cycle 8 due to the pipeline depth. Data input into
the RF of FU1 takes 4 cycles (clock cycle 8 to clock cycle
11), before FU1 is triggered (on the 12th clock cycle) and
starts executing the 4 multiply (SQR) instructions on the data
available in its RF. Once the first instruction is completed, it
outputs the processed data to FU2 (for 4 cycles starting from
the 14th clock cycle) and waits for the next set of data from
FU0, upon which it repeats the previous operation. FU2 and
FU3 also execute in a similar manner.

The proposed scheduling approach allows us to store just a
small number of instructions for each FU, resulting in very
small memories and hence an area efficient overlay. Other
time multiplexed architectures, such as in [18] need large
instruction memories as the FUs in those architectures need
to store the full list of instructions executing every cycle,
resulting in much higher resource utilization.

V. EXPERIMENTAL EVALUATION

We evaluate the performance of the proposed overlay and
that of our compiler using a set of compute kernels extracted
from compute intensive applications from the literature [13],
[4], as shown in Table II. The graph depth corresponds to
the number of FUs needed in the proposed overlay, while

TABLE II: DFG characteristics of benchmark set.
Benchmark Characteristics

No. Name i/o graph op graph average
nodes edges nodes depth parallelism II eOPC

1. chebyshev 1/1 12 7 7 1.00 6 1.2
2. sgfilter 2/1 27 18 9 2.00 10 1.8
3. mibench 3/1 22 13 6 2.16 11 1.2
4. qspline 7/1 50 26 8 3.25 18 1.4
5. poly5 3/1 43 27 9 3.00 14 1.9
6. poly6 3/1 72 44 11 4.00 17 2.6
7. poly7 3/1 62 39 13 3.00 17 2.3
8. poly8 3/1 51 32 11 2.90 15 2.1

the effective operations per cycle (eOPC) is the ratio of DFG
nodes (op nodes) and the II, which ranges from 1.2 to 2.6. The
II is high for benchmarks with a large number of I/O nodes
and high average parallelism. But, as there are no loop carried
dependencies, we can replicate the processing pipeline, as in
Fig. 4, to effectively achieve a lower II.

To demonstrate the benefits of the proposed overlay, we
compare it to one of the more efficient SCFU-SCN overlays
from the literature [13] and to RTL implementations of the
same kernels using Vivado HLS 2014.2. For all 3 imple-
mentations we use the minimal number of FUs/hardware for
the benchmark implementations. This is to observe the effect
of FU reduction on the area requirement. Fig. 5 shows the
number of FUs required for the proposed TMFU-TMN overlay
compared to that of the SCFU-SCN overlay in [13] for each of
the benchmarks in Table II. Here we see a significant reduction
in the number of FUs required, but at the expense of an
increase in the II. In the instances requiring more than 8 FUs
(that is benchmarks 2, 5, and 6-8) two of the 8 FU pipelines
shown in Fig. 4 are cascaded.

Because the different implementations we are attempting
to compare use differing hardware resources, it is difficult
to compare them directly. Instead we use a single equivalent
slices (or e-Slices) metric, where we assume that 1 DSP block
is equivalent to 60 slices based on the ratio of slices/DSP
on the Zynq XC7Z02-1CLG484C (which is approximate 60).
That is, if the FU in the proposed overlay consumes 1 DSP
block and 81 slices it uses 141 e-Slices.

Then, for the benchmarks in Table II, we obtain the area in
e-Slices and the throughput in Giga-operations/s (GOPS) for
the 3 implementations on a Xilinx Zynq XC7Z02-1CLG484C,
as shown in Table III. The FPGA hardware area consumption
for the proposed overlay shows a significant reduction com-
pared to the SCFU-SCN overlay (up to 63% FUs and 85% e-
Slices), while using just 35% more resources than the Vivado
implementations, as shown in Fig. 6. The time multiplexed
overlay has a significant reduction in the throughput (ranging

1 2 3 4 5 6 7 8
0

20

40

60

5

1
2

8

2
2

1
7

3
0

2
8

1
9

7

9

6

8 9

1
1 1
3

1
1

N
um

be
r

of
FU

s
re

qu
ir

ed

SCFU-SCN overlay [13]
Proposed Overlay

Fig. 5: Number of FUs required for the benchmarks.

2nd International Workshop on Overlay Architectures for FPGAs (OLAF2016)

12

TABLE III: Area and throughput comparison.
No. Benchmark Proposed Overlay SCFU-SCN overlay [13] Vivado HLS

Name Tput Area Tput Area Tput Area

1. chebyshev 0.35 987 2.35 1900 2.21 265
2. sgfilter 0.54 1269 6.03 4560 4.59 645
3. mibench 0.35 846 4.36 3040 3.51 305
4. qspline 0.43 1128 8.71 8360 6.11 1270
5. poly5 0.58 1269 9.05 6460 7.02 765
6. poly6 0.78 1551 14.74 11400 11.88 1455
7. poly7 0.69 1833 13.07 10640 10.92 1025
8. poly8 0.64 1551 10.72 7220 8.32 1025

from 6× to 18×) compared to the SCFU-SCN overlay and
the Vivado implementations, due to the larger II which is
acceptable in cases when a low to moderate throughput is
sufficient. The important point here is that the proposed
TMFU-TMN overlay has comparable area to the Vivado
implementations, but with a reduced throughput, compared
to the SCFU-SCN overlay which has comparable throughput,
but with an increased area and so it represents another useful
design alternative for overlay design space exploration. To
put things into proper perspective, we also calculate the
throughput per unit area for the three different implementations
in MOPS/eSlices, which ranges from 0.35-0.5, 1.04-1.48, and
4.8-11.5 for the proposed overlay, the SCFU-SCN overlay and
for the HLS implementations, respectively.

The context configuration data of the benchmark set for the
proposed overlay ranges from 65 Bytes to 410 Bytes. Thus,
the worst case context switch between kernels takes 82 cycles
(using a 40-bit wide context data word), which at 300 MHz
is 0.27 us. For the SCFU-SCN overlay [13] with a worst case
of 323 Bytes of configuration data which takes 13 us. This is
more than that of the proposed overlay because it does not use
a local context memory, and instead configuration data must
come from external memory, which is slower. For the HLS
implementation, we assume a PR bitstream size of 75 kByte,
which is just large enough for the largest benchmark. On the
Zynq platform this region requires a configuration time of 200
us. Thus the proposed overlay allows for very fast context
switching between kernels.

VI. CONCLUSION

We have presented an area efficient FPGA overlay that
uses a linear connection of time-multiplexed FUs based on

1 2 3 4 5 6 7 8
0

0.5

1

·104

A
re

a
C

on
su

m
pt

io
n

in
eS

lic
es

Vivado-HLS
SCFU-SCN overlay [13]
Proposed Overlay

Fig. 6: Area comparison for the benchmarks.

the Xilinx DSP48E1 macro. While the overlay exhibits a
lower throughput than spatially configured overlays due to the
much larger II, it has a significantly reduced FPGA resource
requirement and a much lower context switching time. Our
experimental evaluation shows that for a range of benchmarks,
the proposed overlay delivers a throughput which is 6× to 18×
less than the SCFU-SCN and Vivado implementations, but
which uses 85% fewer e-Slices than the SCFU-SCN overlay
and just 35% more e-Slices than the Vivado implementations.
We are currently examining architectural modifications to
reduce the II, which would result in an improved throughput.

REFERENCES

[1] V. H. Allan, R. B. Jones, R. M. Lee, and S. J. Allan. Software pipelining.
ACM Computing Surveys, 27(3):367–432, 1995.

[2] J. Benson, R. Cofell, C. Frericks, C.-H. Ho, V. Govindaraju, T. Nowatzki,
and K. Sankaralingam. Design, integration and implementation of the
DySER hardware accelerator into OpenSPARC. In HPCA, 2012.

[3] N. W. Bergmann, S. K. Shukla, and J. Becker. QUKU: a dual-layer
reconfigurable architecture. ACM TECS, 12(1s), 2013.

[4] D. Bini and B. Mourrain. Polynomial test suite, 1996. See http://www-
sop. inria. fr/saga/POL.

[5] A. D. Brant. Coarse and fine grain programmable overlay architectures
for FPGAs. Master’s thesis, 2013.

[6] M. Butts. Synchronization through communication in a massively
parallel processor array. Micro, IEEE, 27(5):32–40, 2007.

[7] D. Capalija and T. Abdelrahman. Towards synthesis- free JIT compila-
tion to commodity FPGAs. In FCCM, 2011.

[8] D. Capalija and T. S. Abdelrahman. A high- performance overlay
architecture for pipelined execution of data flow graphs. In FPL, 2013.

[9] H. Y. Cheah, F. Brosser, S. A. Fahmy, and D. L. Maskell. The
idea dsp block-based soft processor for fpgas. ACM Transactions on
Reconfigurable Technology and Systems (TRETS), 7(3):19, 2014.

[10] J. Cong, H. Huang, C. Ma, B. Xiao, and P. Zhou. A fully pipelined and
dynamically composable architecture of CGRA. In FCCM, 2014.

[11] J. Coole and G. Stitt. Adjustable-cost overlays for runtime compilation.
In FCCM, 2015.

[12] C. Hilton and B. Nelson. PNoC: a flexible circuit- switched NoC
for FPGA-based systems. IEE Proceedings-Computers and Digital
Techniques, 153(3):181–188, 2006.

[13] A. K. Jain, S. A. Fahmy, and D. L. Maskell. Efficient overlay architecture
based on DSP blocks. In FCCM, 2015.

[14] A. K. Jain, X. Li, S. A. Fahmy, and D. L. Maskell. Adapting the DySER
architecture with DSP blocks as an Overlay for the Xilinx Zynq. In
HEART, 2015.

[15] A. K. Jain, D. L. Maskell, and S. A. Fahmy. Throughput oriented FPGA
overlays using DSP blocks. In DATE, 2016.

[16] A. K. Jain, K. D. Pham, J. Cui, S. A. Fahmy, and D. L. Maskell.
Virtualized execution and management of hardware tasks on a hybrid
ARM-FPGA platform. J. Signal Process. Syst., 77(1–2), 2014.

[17] N. Kapre et al. Packet switched vs. time multiplexed FPGA overlay
networks. In FCCM, 2006.

[18] C. Liu, H.-C. Ng, and H. K.-H. So. QuickDough: a rapid FPGA loop
accelerator design framework using soft CGRA overlay. In FPT, 2015.

[19] C. Liu, C. L. Yu, and H. K.-H. So. A soft coarse- grained reconfig-
urable array based high-level synthesis methodology: Promoting design
productivity and exploring extreme FPGA frequency. In FCCM, 2013.

[20] K. Paul, C. Dash, and M. S. Moghaddam. reMORPH: a runtime
reconfigurable architecture. In DSD, 2012.

[21] R. Rashid, J. G. Steffan, and V. Betz. Comparing performance,
productivity and scalability of the tilt overlay processor to opencl hls.
In FPT, 2014.

[22] G. Stitt and J. Coole. Intermediate fabrics: Virtual architectures for
near-instant FPGA compilation. IEEE ESL, 3(3):81–84, 2011.

2nd International Workshop on Overlay Architectures for FPGAs (OLAF2016)

13

