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ABSTRACT
We present a lightning demo of Logic in Memory Emulator (LiME),
an open source hardware/software library that can emulate memory
latencies ranging from 10’s of nanoseconds to microseconds. LiME
also can non-intrusively capture and time stamp everymemory read
and write command presented to the external memory system by an
application running on the SoC’s CPU. LiME addresses the shifting
focus of high performance computing systems from CPU centric to
memory and data centric. LiME allows emulation with significant
savings in FPGA logic and development time by leveraging fixed IP
modules such as the ARM cores, caches, and memory controllers
within Xilinx SoC/MPSoC devices.
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1 MOTIVATION
For memory intensive workloads, modern high performance multi-
core processors usually spend a significant amount of time waiting
for memory to serve requests, leaving processor cycles idle. Types
and capacities of memory are proliferating (For example, HBM,
DDRx, SCM varieties, Flash (w/DRAM buffer)) and there is a sig-
nificant need to assess these emerging memory architectures and
configurations on realistic application access patterns. Investiga-
tions of memory performance have typically been conducted using
trace-driven simulation in architecture simulators [3, 6]. Due to the
detailed software simulation of CPU microarchitecture and cache
hierarchy, these simulators are very slow. Programmable hardware
such as FPGAs have been used historically for performing system
simulations by emulating complex CPU, cache hierarchy and mem-
ory controller [2, 7]. This approach is advantageous as emulation
is closer to real-time, and low level emulation may improve the ac-
curacy of the predictions. However, it takes tremendous resources
and development time to create the emulation architecture.

2 APPROACH
Inclusion of hard IP modules, such as embedded ARM processors,
cache hierarchy and memory controller, now makes modern SoC
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platforms [1] an excellent choice for exploring architectural changes
in memory hierarchy and composition. Our approach of developing
the emulation platform around an SoC platform allow us to use
these IP modules, thus saving FPGA logic and development time [4,
5]. However, interfacing fixed IP blocks with programmable logic
blocks requires coordination of multiple clocks to accurately model
the desired system. We have developed a method to route memory
traffic through programmable logic to capture each request, and
carefully coordinate the clock domains in a modern MPSoC, Zynq
Ultrascale+ platform. With this system, we can faithfully emulate
the latencies of a wide range of existing and proposed memories,
while running the application orders of magnitude faster than full
software simulation. To model execution of a 2.75GHz CPU causes
only 20x slowdown from actual execution.

However, using fixed CPU and cache also limits the emulator to
a specific processor and cache hierarchy. To assess the impact of
fixed CPU, we compare emulated performance profiles from two
LiME platforms, the Zynq 7000 with 32-bit dual ARM A9 and the
Zynq Ultrascale+ with 64-bit quad ARM A53. We show that though
absolute performance numbers differ, the performance trends track
closely between the two platforms.

3 METHOD
Figure 1 shows the architecture of Zynq Ultrascale+ MPSoC with
emulation framework in which the ARM cores can run at a clock
frequency of up to 1100 MHz. Since the FPGA logic on the em-
ulation board is limited to a maximum clock frequency of about
300MHz, the ARM core is slowed to run at a comparable frequency.
For the experiments in this paper, the ARM runs at 137.5MHz and
when multiplied by a scaling factor of 20, represents the emulated
CPU frequency of 2.75 GHz. The off-chip memory runs at its normal
rate of 1900 Mt/s. In the emulation infrastructure, memory trans-
actions are delayed to scale the latencies of the emulated memory
relative to the emulated CPU clock frequency. Delay units in the
FPGA fabric are programmable at a range of 0–262 us in 0.25 ns
increments. The application’s load/store requests not satisfied in
cache are routed to the delay units, and from there through a hard
IP memory controller to off-chip DDR4 memory, crossing multiple
clock domains as shown in Figure 2.

4 RESULTS AND DISCUSSION
The Figure 3, 4 and 5 present results of emulating varying latencies
of memory on various latency sensitive workloads on the two emu-
lation platforms.While the 64-bit processor has faster run times, the
trend lines track closely for a very wide range of emulated latencies,
demonstrating that for purposes of memory latency emulation, the
trends are valid despite significant differences in CPU (out-of-order,
32-bit vs. in-order, 64-bit), cache hierarchy and cache line size.
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Figure 1: Zynq Ultrascale+ with emulation framework
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Figure 2: Different clock domains in the loopback path for
Zynq Ultrascale+
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Figure 3: STREAM-triad execution time at varying latencies.
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Figure 4: Random Access at varying latencies.
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Figure 5: Image difference at varying latencies.
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